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Chapter 1. Overview

Indeed, you can build a machine to draw demonitretiwt conclusions for you, but I
think you can never build a machine that will draw plausible infertnces.

-- Polys

1.1. Abstract of this Thesis
A program, called "AM", is described which models one aspect of elementary mathematics

research: developing new concepts under the guidance of a large body of heuristic rules.
"Mathematics" is considered a a type of intalligent behavior, not as a finished product.

The local heuristics communicate via an agenda mechanism, a global list of tasks for the
system to perform and reasons why each task Is plausible. A single task might direct AM to
define a new concept, or to explore some facet of an existing concept, or to examine some
empirical data for regularities, etc. Repeatedly, the program selects from the agenda the
task having the best supporting reasons, and then executes it.

Each concept is an active, structured knowledge module. A hundred very Incomplete
modules are initially provided, each one corresponding to an elementary set-theoretic
concept (e.g., union). This provides a definite but immense "space" whitch AM begins to
explore. AM extends its knowledge base, ultimately rediscovering hundreds of common
concepts (e.g., numbers) and theorems (e.g., unique factorization).

This 4pproach to plausible inference contains great powers and great limitations.
'K



Chapter I AM: Discovery in Mathematics as Heuristic Search -2-

1.2. Five-page Summaryof the Project

Scientists oft!n face the difficult task of formulating nontrivial research problems which are
solvable. In any given branch of science, It is usually easier to tackle a specific given
problem than to propose interesting yet managable new questions to investigate. For
example, contrast solving the Missionaries and Cannibals problem with the more ill-defined
reasoning which led to inventing it.

This thesis is concerned with creative theory formation in mautiematics: how to propose
interesting new concepts and plausible hypotheses connecting them. The experimental
vehicle of my research is a cumputer program called AM' Initially, AM is given the

* definitions of 115 simple set-theoretic concepts (like "Delete", "Equality"). Each concept is
represented internally as a data structure with a couple dozen slots or facets (like
"Definition", "Examples", "Worth"). Initially, most facets of most concepts are blank, and
AM uses a collection of 250 heuristics - plausible rules of thumb - for guidance, as it tries
to Pl in those blanks. Some heuristics are used to select which specific facet of which specific
concept to explore next, while others are used to actually find some appropriate information
about the chosen facet. Other rule prompt AM to notice simple relationships between
known concepts, to define promising new concepts to investigate, and to estimate how
interesting each concept is.

1.2.1. Detour: Analysis of a discovery

Before discussing how to synthesize a new theory, consider briefly how to analyze one, how
to construct a plausible chain of reasoning which terminates in a given discovery. One can
do this by working backwards, by reducing the creative act to simpler and simpler creative
acts. For example, consider the concept of prime numbers. How might one b!' led to define
such a notion? Notice the following plausible strategy:

"if f is a function which transforms elements of A Into elements of B, and
-:, B is ordered, then considr Just those members of A which are

transformed into extremal elements of B. This set is an interesting subset
of A."

When fx) means "divisors of x", and the ordering is "by length*, this heuristic says to
consider those numbers which have a minimal2 number of factors - that is, the primes. So
this rule actually reduces our task from "proposing the concept of prime numbers" to the
more elementary problems of "discovering ordering-by-length" and "inventing divisors-o.

But suppose we know this general rule:. "If f is an interesting function, consider its inverse." It

The original meanirg of lIhim mnemonic has been abandoned. As Exodus elatew i AM that I AM
2 The other extreme, numbers with a MAXIMAL number of factors, wss also proposed by AM as worth investigating. This led

AM to mony intert ting questiont. See Appendix 4.

0 "



Chapter I AM: Discovery in Mathematics as Heuristic Search -3-

reduces the task of discovering divisors-of to the simpler task of discovering multiplication 3.

Eventually, this task reduces to the discovery of very basic notions, like si',bstitution, set-
union, and equality. To explain how a given researcher might have made a given
discovery, such an analysis is continued until that inductive task is reduced to "discovering"
notions which the researcher already knew, which were his conceptual primitives.

1.2.2. What AM does: Syntheses of discoveries

This leads to the paradox that the more original a discovery the more obvious it
seems afterwards. The creative act is not an act of creation in the sense of the
Old Testament. It does not create something out of nothing; it uncovers, selects,
re-shuffles, combines, synthesizes already existing facts, faculties, skills. The more
familiar the parts, the more striking the new whole.

-- Koestler

Suppose a large collection of these heuristic strategies has been assembled (e.g., by analyzing
a great many discoveries, and writing down new heuristic rules whenever necessary).
Instead of using them to explain how a given idea might have evolved, one can imagine
starting from a basic core of knowledge and "running" the heuristics to generate new
concepts. We're talking about reversing the process described In the last section: not how to
explain discoveries, but how to make them.

Such syntheses are precisely what AM does. The program consists of a large corpus of

primitive mathematical concepts, each with a few associated heuristics 4 . AM's activities all
serve to expand AM itself, to enlarge upon a given body of mathematical knowledge. To
cope with the enormity of the potential "search space" Involved, AM uses its heuristics as
Judgmental criteria to guide development in the most promising direction. It appears that
the process of inventing worthwhile new concepts can be guided successfully using a
collection of a few hundred such heuristics.

Each concept is represented as a frame-like data structure with 25 different fatets or slots.
The types of facets include: Examples, Definitions, Generalizations, D( izin/Range, Analogies,
Interestingness, and many others. Modular representation of concepts provides , convenient
scheme for organizing the heuristics; for example, the following strategy fits into the
Examples facet of the Predicate concept: "If, empirically, 10 times as many elements fail some
predicate P, as satisfy it, then some generalization (weakened version) of P might be more
interesting than P". AM considers this suggestion after tryi:ng to fill in examples of each

Plus noticing that multiplication is associative and commutative

4 Stuation/action nAM, which function as locat pl ibl, move genhrator*". Some suggest tasks for the system to carry
out, som suggest ways of satisfying a given task, etc

Typically, 'new" meow now to AM, not to Mankind; and 'worthwhile" can only be judged in hindsight.
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predicatee.

AM is initially given a collection of 115 cote concepts, with only a few facets filled in for
each. Its sole activity is to choose some facet of some concept, and fill in that particular slot.
In so doing, new notions will often emerge. Uninteresting ones are forgotten, mildly
interesting ones are kept as parts of one facet of one concept, and very interesting ones are
granted full concept-module status. Each of these new moddles has dozens of blank slots,
hence the space of possible actions (blank facets to fill in) grows rapidly. The same
heuristics are used both to suggest new directions for investigation, and to limit attention:
both to sprout and to prune.

1.2.3. Results

The particular mathematical domains in which AM operates depend upon the choice of
initial concepts. Currently, AM begins with nothing but a scanty knowledge of concepts
which Piaget might describe as prenumerical: Sets, substitution, operations, equality, and so
on. In particular, AM is not told anything about proof, single-valued functions, or
numbers.

From this primitive basis, AM quickly discovered 7 elementary numerical concepts
(corresponding to those we refer to as natural numbers, multiplication, factors, and primes)
and wandered around in the domain of elementary number theory. AM was not designed
to prove anything, but it did conjecture many well-known relationships (e.g., the unique
factorization theorem).

AM was not able to discover any "new-to-Mankind" mathematics purely on its own, but has
discovered several interesting notions hitherto unknown to the author. A couple bits of new
mathematics have been inipired by AM.2 A synergetic AM-human combination can
sometimes produce better research than either could alone.8 Although most of the concepts
AM proposed and developed were already very well known, AM defined some of them in
novel ways (e.g., prime pairs were defined by restricting addition to primes; that is, for
which primes p,q,r is it possible that p4q-r?9 ).

Everything that AM does can be viewed as testing the underlying body of heuristic rules.
Gradually, this knowledge becomes better organized, its implications clearer. The resultant
body of detailed heuristics may be the germ of a more efficient programme for educating

i.
In fact, after AM attempts to find examples of SET-EQUALITY, so few are found that AM decides to generalizoe that

predicate. The result is the creation of a now predicate which means "Hs-theoame-length-ae" -- i.e., a
rudimentary precursor to natural numbers.

Dicovsring* a concept means that (1) AM recognized it as a distinguished entity (a g, by formulating its definition) and
also (2) AM decided it was worth investigating (either because of the interesting way it was formed, orbecause of surprising preliminary empirical results)

JThis is supported by Golernter's experinces with his Igeometry prog~ram-l Wh~ie lecturing about how it maight prove a

certain theorem about isosceles triantles, he come up with a now, cute proof. Similarly, Guard end Eastman
noticed an intermediate result of their SAM resolution theorem prover, and wisely interpreted it as a
hontriviel result in lattice theory (now known as SAM's lemma).

The answer is that either p or q must be 2, and thet the other two primes are a prime pair -- ie., they differ by Iwo.

I,
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math students than the current dogma'0 .

Another benefit of actually constructing AM is that of experimentation: one can vary the
concepts AM starts with, vary the heuristics available, etc., and study the effects on AM's
behavior. Several such experiments were performed. One involved adding a couple dozen
new concepts from an entirely new domain: p!?ne geometry. AM busied itself exploring
elementary geometric concepts, and was almost as productive there as in its original domain.
New concepts were defined, and new conjectures formulated. Other experiments indicated
that AM was more robust than anticipated; it withstood many kinds of "de-tuning". Others
demonstrated the tremendous impact that a few key concepts (e.g., Equality) had on AM's
behavior. Several more experiments and extensions have been planned for the future.

1.2.4. Motivation loptionall

We need a super-mathematics in which the operations are as unknown as the
quantities they operate on, and a super-mathematician, who does not know what
he is doing when he performs these operations.

-- Eddington

Although the motivation for carrying out this research of course preceded the effort, I have
delayed until this section a discussion of why this is worthwhi!e, why it was attempted.

First there was the inherent interest of getting a handle on scientific creativity. AM is partly
a demonstration that some aspects of creative theory formation can be demystified, can be
modelled as simple rule.governed behavior.

Related to this is the potential for learning from AM more about the processes of concept
formation. This was touched on previously, and several experiments already performed on
AM will be detailed later.

Third, AM itself may grow into something of pragmatic value. Perhaps it will become a
useful tool for mathematicians, for educators, or as a model for similar systems in more
"practical" fields. Perhaps in the future we scientists will be able to rely on automated
assistants to carry out the "hack" phases of research, the tiresome legwork necessary for
"secondary" creativity.

Historically, the domain of AM came from a search for a scientific field whose activities had
no specific goal, and in which natural language abilities were unnecessary. This was to test
out the BEINGs [Lenat 75bJ ideas for a modular representation of knowledge.

10 Currently, an educator tu1:8s the very best work any mathematician has ever done, polishes it until its brilliance it
blinding, 'hen presents it to the student to induce upon. Many individuals (eg, Knuth and Polys) have
pointed out this blunder. A few (og., Papert at MIT, Adams at Stanford) are experimentint with more
realistic strategies for "teaching" creativity. See the references by these authors in the bibliography.
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It would be unfair not to mention the usual bad reasons for this research: the "Look ma., no
hands" syndrome, the Al researcher's classic maternal urges, ego, the usual thesis drives, etc.

1.2.. Conclusions

AM is forced to judge a priori the value of each new concept, to lose interest quickly in
concepts which aren't going to develop into anything. Often, such judgments can only be
based on hindsight. For similar reasons, AM has difficulty formulating new heuristics
which are relevant to the new concepts it creates. Heuristics are often merely compiled
hindsight. While AM's "approach" to empirical research may be used in other scientific
domains, the main limitation (reliance on hindsight) will probably recur. This prevents
AM from progressing indefinitely far on its own.

This ultimate limitation was reached. AM's performace degraded more and more as it
progressed further away from its initial base of concepts. Nevertheless, AM demonstrated
that selected aspects of creative discovery hi elementary mathematics could be adequately
represented as a heuristic search process. Actually constructing a computer model of this
activity has provided an experimental vehicle for studying the dynamics of plausible
empirical inference.

1.3. Ways of viewing AM as some common proces

This section will provide a few metaphors: some hints for squeezing AM into paradigms
with which the reader might be familiar. "'r example, the existence of heuristics in AM is
functionally the same as the presence of domain-specific information in any knowledge-
based system.

Consider assumptions, axioms, definitions, and theorems to be syntactic rules for the
language that we call Mathematics. Thus theorem-proving, and the whole of textbook
mathematics, is a purely syntactic process. Then the heuristic rules used by a
mathematician (and by AM) would correspond to the semantic knowledge associated with
these more formal methods.

just as one can upgrade natural-language-understanding by incorporating semantic
knowledge, so AM is only as successful as the heuristics it knows.

Four more ways of "viewing" AM as something else will be provided: (i) AM as a hill-
climber, (ii) AM as a heuristic search program, (iii) AM as a mathematician, and (iv) AM
as a thesis.

1.3.1. AM as Hill-climbing

Let's draw an analogy between the process of developing new mathematics and the familiar
-rocess of hill-climbing. We may visualize AM as exploring a space using a measuring or
evaluation" function which imparts to it a topography.
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Consider AM's core of very simple knowledge. By compounding its known concepts and
methods, AM can explore beyond the frontier of this foundation a little wherever it wishes.
The incredible variety of alternatives to investigate includes all known mathematics, much
trivia, countless deadends, and so on. The only "successful" paths near the core are the
narrow ridges of known mathematics (plus perhaps a few as-yet-undiscovered isolated
peaks).

How can AM walk through this immense space, with any hope of following the few, slender
trails of already-established mathematics (or some equally successful new fields)? AM must
do hill-climbing: As new concepts are formed, decide how promising they are, and always
explore the currently most-prbrnising new concept. The evaluation function is quite
nontrivial, and this thesis may be viewed as an attempt to study and explain and duplicate
the Judgmental criteria people employ. Preliminary attempts i  at codifying such
"mysterious" emotive forces as intuition, aesthetics, utility, richness, lnterestingness,
relevance... indicated that a large but not unmanageable collection of heuristic rules should
suffice.

The important visualization to make is that with proper evaluation criteria, AM's planar
mass of interrelated concepts is transformed into a three-dimensional relief map: the knowrd
lines of development become mountain ranges, soaring above the vast flat plains of trivia
and inconsistency below.

Occasionally an isolated hill is discovered near the core, t2 certainly whole ranges lie
undiscovered for long periods of timet3 , and the terrrain far from the initial core is not yet
explored at all.

1.3.2. AM as Heuristic Search

As the title of this section - and this thesis - proclaims, AM is a kind of "heuristic search"
program. That must mean that AM is exploring a particular "space," using some informal
evaluation criteria to guide it.

The flavor of search which is used here is that of progressively enlarging a tree. Certain
"evaluation-function" heuristics are used to decide which node of the tree to expand next,
and other guiding rules are then used to produce from that node a few interesting successor
nodes. To do mathematical research well, I claim that it is necessary and sufficent to have
good methods for proposing new concepts from existing ones, and for deciding how
interesting each "node" (partially-studied concept) is.

AM is initially supplied with a few facts about some simple math concepts. AM then

The. took the form of informal simulations. Although far from controlled experiments, they indicated the feasability of
attempting to create AM, by yielding an approximete figure for the amount of informal knowledg ouch s
system would need

12 E.g., Conway'o numbers, as described in [Knuth 741
Eg., non-Euclideon geometries weren't thought of until 184&
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explores mathematics by selectively enlarging that basis. One could say that AM consists of
an active body of mathematical concepts, plus enough "wisdom" to use and develop them
effectively. For "wisdom", read "heuristics". Loosely speaking, then, AM Is a heuristic search
program. To see this more clearly, we must explain what the nodes of AM's search space
are, what the successor operators or links are, and what the evaluation function is.

AM's space can be considered to consist of all nodes which are consistent, partially-filled-in
concepts. Then a primitive "legal move" for AM would be to (i) enlarge some facet of some
concept, or (i) create a new, partially-complete concept. Consider momentarily the size of

. ithis space. If there were no constraint on what the new concepts can be, and no informal
knowledge for quickly finding entries for a desired facet, a blind "legal-move" program
would go nowhere - slowly! One shouldn't even call the activity such a program would be
doing "math research."

The heuristic rules are used as little "plausible move generators". They suggest wr1ich facet
of which concept to enlarge next, and they suggest specific new concepts to create. The only

- ' activities which AM will consider doing are those which have been motivated for some
specific good' 4 reason. A global agenda of tasks Is maintained, listing all the activities
suggested but not yet worked on.

AM has a definite algorithm for rating the nodes of its space. Many heuristics exist merely
to estimate the worth of any given concept. Other heuristics use these worth ratings to
order the tasks on the global agenda list. Yet AM has no specific goal criteria: it can never
"halt", never succeed or fail in any absolute sense. AM goes on forever

Consider Nilsson's descriptions of depth-first searching and breadth-first searching ([Nilsson
71]). He has us maintain a list of "open" nodes. Repeatedly, he plucks the top one and
expands it. In the process, some new nodes may be added to the Open list. In the case of
depth-first searching, they are added at the top; the next node to expand is the one most
recently created; the Open-list is being used as a push-down stack. For breadth-first search,
new nodes are added at the bottom; they aren't expanded until all the older nodes have
been; the Open-list is used as a queue. For heuristic search, or "best-first" search, new nodes
are evaluated in some numeric way, and then "merged" Into the already-sorted list of Open
nodes.

This process is very similar to the agenda mechanism AM uses to manage its search. This
will be discussed in detail in Chapter S. Each entry on the agenda consists of three parts:
(i) a plausible task for AM to do, (ii) a list of reasons supporting that task, and (iII) a
numeric estimate of the overall priority this task should have. When a task is suggested for

-i -. -: some reason, it is added to the agenda. A task may be suggested several times, for different
- -. reasons. The global priority value assigned to each task Is based on the combined value of

its reasons. The control structure of AM Is simply to select the task with the highest
" :priority, execute It, and select a new one. The agenda mechanism appears to be a very well-

suited data structure for managing a "best-first" search process.

f14 O course, AM thinks a reason is "good" if -- and only if -- it was told that by a heuristic rule; so those rules hadK better

be platsble, orefirably the ones actually used by the experts.
Technically, forever is about 100,000 list cells and a couple cpu hours.

"S %'
x' .

-----------------------------
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Similar control structures were used in LT [Newell, Shaw, & Simon 57], the predictor part
of Dendral [Buchanan et ai 69), SIMULA-67 [Dahl 681, and KRL (Bobrow & Winograd
77]. The main difference is that in AM, symbolic reasons are used (albeit in trivial token-
like ways) to decide whether - and how much - to boost the priority of a task when it Is
suggested again.

There are several difficulties and anomalies in forcing AM Into the heuristic search
paradigm. In a typical heuristic search (e.g., Dendral [Feigenbaum et al 71), Meta-Dendral
(Buchanan et al 72), most game-playing programs [Samuel 67)), a "search space" is defined
implicitly by a "legal move generator". Heuristics are present to constrain that generator so
that only plausible nodes are produced. The second kind of heuristic search, of which AM
is an example, contains no "legal move generator". Instead, AM's heuristics are used as
plau.ible move generators. Those heuristics themselves Implicitly define the possible tasks
AM might consider, and all such tasks should be plausible one. In the first kind of search,
removing a heuristic widens the search space; In AM's kind of search, removing a heuristic
reduces it.

Another anomaly Is that the operators which AM uses to enlarge and explore the space o.7
concepts are themselves mathematical concepts (e.g., some heuristic rules result in the
creation of new heuristic rules; "Compose" is both a concept and an operation which results
in new concepts). Thus AM should be viewed as a mass of knowledge which enlarges itself
repeatedly. Typically, computer programs keep the information they "discover" quite
separate from the knowledge they use to make discoveries

Perhaps the gratst difference between AM ard typical heuristic search procedures Is that
AM has no well-defined target concepts or target relationships. Rather, its "goal criterion" -
its sole aim - is to maximize the interestingness level of the activities it performs, the
priority ratings of the top tasks on the agenda. It doesn't matter precisely which definitions
or conjectures AM discovers - or misses - so long as It spends its time on plausible tasks.
There is no fixed set of theorems that AM should discover, so AM is not a typical problem-
solver. There is no fixed set of traps AM should avoid, no small set of legal moves, and no
winning/losing behavior, so AM is not a typical game-player.

For example, no stigma is attached to the fact that AM never discovered real numbers 7 ; It

was rather surprising that AM managed to discover natural numbers! Even if It hadn't
done that, it would have been acceptable s if AM had simply gone off and developed ideas
in set theory.

Of course this is often because the two kinds of knowledge are very different. For a chess-player, the first kind is

"good board positions," and the second is "strategies for making a good move," Theorem-provers are an
exceptiorn They produce a new theorem, and then use it (almost like a new operator) in future proofs. A
program to learn to play checkers [Samuel 67) has this same flavor, thereby indicating that this 'self-help'
property is not a function of the task domain, net simply a characteristic of mathematics.

There are many "nice" things which AM didn't -- and can't -- do. eg., devising tsometric concepts from its initial simple
set-theoretic knowledge. See the discussion of the limitations of AM, Section 7.2.

Accepta le to whom? Is there really a domain-invariant criterion for Judging the quality of AM's actione Seo the
discussions in Section 7.1

f1
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1.3.3. AM as a Mathematician L

Before diving into the innards of AM, let's take a moment to discuss the totality of the
mathematics which AM carried out. Like a contemporary historian summarizing the work
of the Babylonian mathematicians, we shan't hesitate to use current terms and criticize by
current standards.

AM began its investigations with scanty knowledge of a few set-theoretic concepts (sets,
equality of sets, set operations). Most of the obvious set-theory relations (e.g., de Morgan's
laws) were eventually uncovered; since AM never fully understood abstract algebra, the
statement and verification of each of these was quite obscure. AM never derived a formal
notion of infinity, but it naively established conjectures like "a set can never be a member of
itself", and procedures for making chains of new sets ("insert a set Into itself"). No
sophisticated set theory (e.g., diagonalization) was ever done.

After this initial period of exploration, AM decided that "equality" was worth generalizing,
and thereby discovered the relation "same-size-as". "Natural numbers" were based on this,
and soon most simple arithmetic operations were defined.

Since addition arose as an analog to union, and multiplication as a repeated substitution

followed by a generalized kind of unioninglg it came as quite a surprise when AM noticed
that they were related (namely, N+N-2xN). AM later re-discovered multiplication in three
other ways: as repeated addition, as the numeric analog of the Cartesian product of sets,
and by studying the cardinality of power sets20 . These operations were defined in different
ways, so it was an unexpected (to AM) disrnvery when they all turned out to be equivalent.
These surprises caused AM to give the concept 'Times' quite a high Worth rating.

Exponentlation was defined as repeated multiplication. Unfortunately, AM never found any
obvious properties of exponentiation, hence lost all interest in it.

Soon after defining multiplication, AM investigated the process of multiplying a number by
itself: squarIng. The inverse of this turned out to be interesting, ard led to the definition of
square-root. AM remained content to play around with the concept of integer-square-root.
Although it isolated the set of numbers which had no square root, AM was never close to
discovering rationals, let alone irrationals.

Raising to fourth-powers, and fourth-rooting, were discovered at this time. Perfect squares
and perfect fourth-powers were isolated. Many other numeric operations and kinds of
numbers were isolated: Odds, Evens, Doubling, Halving, etc. Primitive notions of numeric
inequality were defined but AM never even discovered Trichotomy.

The associativity and commutativity of multiplication indicated that it could accept a BAG

-19
9 Take two bags A and B. Replace each element of A by the big B. Remove one level of parentheses by taking the union of

all elements of the transfigured bag A. Then that now bag will have as many elements as the product of the
lengths of the two original bags.

The size of the sat of all subsets of S is 2S. Thus the power set of AUB has length equal to the Product of the lengths
of the power sets of A and B individually (assuming A and B are diesoust).

-4
i"Fl.. ,. . + .,.,. . .,. ,. - ., ,. ., .. ...,,: ,','. .-- . ; . .'
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of numbers as its argument. When AM defined the inverse opration corresponding to
Times, this property allowEd the definition to be: "any bag of numbers (> 1) whose product is
x". This was just the notion of factoring a number x. Minimally-factorable numbers
turned out to be what we call primes. Maximallyfactorable numbers were also thought to
be interesting.

Prime pairs were discovered in a bizarre way: by restricting addition (its arguments and its

values) to Primes.2t AM conjectured the fundamental theorem of arithmetic (unique
factorization into primes) and oldbach's conjecture (every even number >2 is the sum of
two primes) in a surprisingly symmetric way. The unary representation of numbers gave
way to a representation as a bag of primes (based on unique fac.1rization), but AM never
thought of exponential notation. 22 Since the key concepts of remainder, greater-than, gcd,
and exponentiation were never mastered, progress in ntmber theory was arrested.

When a new base of geometric concepts was added, AM began finding some more general
associations. In place of the strict definitions for the equality of lines, angles, and triangles,
came new definitions of concepts we refer to as Parallel, Equal-measure, Similar, Congruent,
Translation, Rotation, plus many which have no common name (e.g. the relationship of two
triangles sharing a common angle). A cute geometric Interpretation of Goldbach's
conjecture was found23 . Lacking a geometry "model" (an analogic representation like the
one Gelernter emloyed), AM was doomed to failure with respect to proposing anly
plausible geometric conjectures.

Similar restrictions due to poor "visualization" abilities would crop up in topology. The
concepts of continuity, Infinity, and measure would have to be fed to AM before it could
enter the domains of analysis. More and more drastic changes in its initial base would be
required, as the desired domain gets further and further from simple finite set theory and
elementary number theory.

21 That is, consider the set of triples p,q,r, all primes, for which p~q.r. Then one of them must be '2", and the other two
must therefore form a prime pair.

22 A tangential note- All of the discoveries mentioned #bove were made by AM working by itself, with a human being
observing its behavior, If the level of sophistication of AM's concepts were higher (or the level of
sophietiction of its users were lower), then it might be worthwhne to develop a nice user--system
interface. The user in that cee could -- nd ought to -- work riht hlonl with AMd a c o-researcher.

Given all angles of a prime number of degrees, (0,1,2,3,5,7,1 l,..,179 degrees), then any angle between 0 and 180
degrees can be approximated (to within a egre) so the sum of two of those angles.

L:. ,-- --. -. - . . -,- ..
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1.3.4. AM as a Thesis roptionall

Walking home along a deserted street late at night, the reader may imagine
himself to feel in the small of his back a cold, hard object; and to hear the words
spoken behind him, 'Easy now. This is a stick-up. Hand over your money. What
does the reader do? He attempts to generate the utterance. He says to himself,
now if I were standing behind someone holding a cold, hard object against his
back, what would make me say that? K'hat would I mean by it? The reader is
advised tmat he can only arrive at the deep structure of this book, and through the
deep structure the semanttcs, if he attempts to generate the book for himself. The
author wihes him luck.

U-Lnderhoim

Don't be scared by the weight of the document you're now hotding. If you flip to page 165,
you'll see that the last two-thirds are just appendices.

Each chapter is of roughly equal importance, which explains the huge variation in length.
Start looking over Chapter 2 right away: it contains a detailed example of what AM does.
Since you're reading this sentence now, we'll assume that you want a preview of what's to
come in the rest of this document.

Chapter 3 covers the top-level control structure of the system, which is based around the
notion of an 'agenda' of tasks to perform. In Chapter 4 the low-level control structure Is
revealed: AM Is really guided by a mass of heuristic rules of varying generality. Chapter 5
contains more than you want to know about the representation of knowledge in AM. The
diagram showing some of AM's starting concepts (page 105) is worth a look, even out of
context.

Most of the results of the project are presented in Chapter 6. In addition to simply 'running'
AM, several experiments have been conducted with it. Tt's awkward to evaluate AM, and
therefore Chapter 7 is quite long and detailed.

The appendices provide material which supplements the text. Appendix 2 contains a
description of all the initial concepts, some examples of how they were coded into Lisp, and
a partial list of the concepts AM defined and investigated along the way. Appendix 3
exhibits all 242 heuristics that AM is explicitly provided iAth. Appendix 4 is essentially a
math article, about the major discovery that AM motivated: maximally-dIvisIble numbers.
Finally, Appendix 5 contains traces of AM in action: a long prose description, a long task-
by-task description, and a long undoctored transcript excerpt. Appendix I hasn't been

* mentioned yet, and forms the subject of the remainder of this section.

This thesis - and its readers - must come to grips with a very interdisciplinary problem.
For the reader whose background is in Artificial Intelligence, most of the system's actions -
the "mathematics" it does - may seem Inherently uninteresting. For the mathematician, the
word "LISP" signifies nothing beyond a speech Impediment (to Artificial Intelligence types it

......... .................................................



Chapter I AM: Discovery in Mathematics as Heuristic Search -13-

also connotes a programming impediment). If I dan't describe "LISP" the first time I
mention it, a large fraction of potential readers will never realize that potential. If I do stop
to describe LISP, the other readers will be bored.

In an attempt not to lose readers due to Jargon, two glossaries of terms have been compiled.
Appendix 1.1 (p. 165) contains capsule descriptions of the mathematical terms, Ideas, and
notations used in this thesis. Appendix 1.2 renders the analogous service for .- rttficial
Intelligence Jargon and computer science concepts.

t .

K2

**I-
.. . .. . . . . . . . . . . . .



.7 V- 77 777,4 -7 W-_VV_7 S rr 1 3r7 Vk .,--'r-n--wmre. - t L~

-14-

S

Chapter 2. An Example: Discovering Prime Numbers

This chapter will present an example of AM in action. an excerpt from the output of AM,
as it investigates some concepts.

After a brief discussion of AM's control structure in Section 2.1, the reader will be told
what the point of this example Is and Is not. Section 2. provides a few eleventh-hour
hints at decoding the example.

The excerpt itself follows in Section, 2.4. It skips the first half of the session, and picks up
at a point just after AM has defined the concept "Divisors-of". Soon afterward, AM defines
Primes, and begins to find interesting conjectures related to them. The excerpt goes on to
show how AM conjectured the fundamental theorem of arithmetic and Goldbach's
conjecture. AM derived the notion of partitioning a collection of n objects into smaller
bandles, but failed to find any interesting conjectures about that process. Instead, AM was
side-tracked Into the (probably) fruitless Investigation of numbers which can be represented
as the sum of two primes in one unique way.

The finl section of this chapter will recap this example the way a math historian might
,x report it.

2.1. Discussion of the AM Program

2.1.1. Representation

AM is a program which expands a knowledge base of mathematical concepts. Each concept
is stored as a particular kind of data structure, namely as a collection of properties or
"facets" of the concept. For example, here is a miniature example of a concept':

22

r The vqht arrow (1") In the box on the next page is the symbol for "implies*. 'Nos.' is 3n abbreviation for "Numbers. The
vertical bar '1 i6 a symbol for the pred;ate 'divides evenly into'; the hook *" is a symbol for the predicate
,the negation of". W indicates exclusive or, and the symbol "V" is read "for all". Please consult the
glossary, Appendix 1.1, for fuller discussion of these, plus other math terms like "Prime pairs'.

.........................................................
...............
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NAME: Prime Numbers

DiEFINITIONS:
ORIGIN: Number-of-divisors-of(x) x 2
PREDICATE-CALCULUS: Prime(x) z (Yz)(zlx -o zal 0 zsx)
ITERATIVE: (for xl): For I from 2 to Sqrt(x), (ilx)

EXAMPLES: 2, 3, 5, 7, 11, 13, 17
BOUNDARY: 2, 3
BOUNDARY-FAILURES: 0, 1
FAILURES: 12

GENERALIZATIONS: Nos., No. with an even nc,. of divisors, Nos. with a prime no. of divisors

SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniquely-addables

CONJECS: Unique factorization, Goldbach's conjecture, Extremes of Number-of-divisors-of

INTU'S: A metaphor to the effect that Primes are the building blocks of all numbers

ANA! OGIES:
Maximally-divisible numbers are converse extremes of Number-of-divisors-of
Factor a non-simple group into simple groups

INTERESTs Conjecturis tying Primes to TIMES, to Divisors-of, to closely related operations

WORTH: 800
II

"Creating a new concept" is a well.defned activity: it involves setting up a new data
structure like the one above, and fEll:ng in entries for some of its facets or slots. Filling in a
particular facet of a particular concept is also quite well-defined, and is accomplished by
executing a collection of relevant heuristic rules. This process will be described in great
detail in later chapters.

2.1.2. Agenda and Heuristics

An agenda of plausible tasks is maintained by AM. A typical task is "Fill-in examples of
Primes". The agenda may contain hundreds of entries such as this one. AM repeatedly
selects the top task from the agenda and tries to carry it out. This is the whole control
structure! Of course, we must still explain how AM creates plausible new tasks to place on
the zgenda, how AM decides which task will be the best one to execute next, and how it
carries out a task.
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If the task is "Fill in new Algorithms for Set-union", then satisfying It would mean actually
synthesizing some new procedures, some new LISP code capable of forming the union of
any two sets. A heuristic rule is relevant to a task iff executing that rule brings AM closer
to satisfying that task. Relevance is determined a priori by where the rule is stored. A rule
tacked onto the Domain/range facet of the Compose concept would be presumed relevant to
the tak "Check the Domain/range of InsertoDelete".

Once a task is chosen from the agenda, AM gathers some heuristic rules which might be
relevant to satisfying that task. They are executed, and then AM picks a new task. While
a rule is executing, three kinds of actions or effects can occur:

(i) Facets of some concepts can get filled in (e.g., examples of primes may actually be found
ar.d ta:ked onto the "Examples" facet of the "Primes" concept). A typical heuristic rule
which might have this effect is:

To fill in examples of X, where X is a kind of Y (for some more general concept Y),
Check the examples of Y; some of them may be examples of X as well.

For the task of filling in examples of Primes, this rule would have AM notice that
Primes is a kind of Number, and therefore look over all the known examples of
Number. Some of those would be primes, and would be transferred to the Examples
facet of Puimes.

(i) New concepts may be created (e.g., the concept "primes which are uniquely representable
as the sum of two other primes" may be somehow be deemed worth studying). A
typical heuristic rule which might result in this new concept is:

If scme (but not most) examples of X ore also examples of Y (for some concept Y),
Create a new concept defined as the intersection of those 2 concepts (X and Y).

Suppose AM has already isolated the concept of being representable as the sum of two
primes In only one way (AM actually calls such numbers "Uniquely-prime.addable
numbers"). WIen AM notices that some primes are in this set, the above rule will
create a brand new concept, defined as the set of numbers which are both prime and
uniquely prime addable.

(i) New tasks may be adde' to the agenda (e.g., the current activity may suggest that the
following task is worth considering: "Generalize the concept of prime numbers"). A
typical heuristic rule which might have this effect Is:

If very few examples of X are found,
Then add the following task to the agenda: "Generalize the concept X".

Of course, AM contains a precise meaning for the phrase "very few". When AM looks
for primes among examples of already-known kinds of numbers, it will find dczens of
non-examples for every example of a prime It uncovers. "Very few" is thus niaturally

(.K%
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implemented as a %tatistical confidence level 2.

The concept of an agecid-a is certainly not new: schedulers have been around for a long
time. But one import,.. ,eature of AM's agenda scheme is a new idea: attaching - and
using - a list of quasl-sy.mbolic3 reasons to each task which explain why the task is worth
considering, why it's plausible. It Is the responsibility of the heuristic rules to include reasons
for any tasks they propose. 4 For example, let's reconsider the heuristic rule mentioned in (iii)
above. It really looks more like the following:

If very few examples of X are found,
Then add the following task to the agenda: "Generalize the concept X", for th. following

reason: "X' are quite rare; a slightly less restrictive concept might be more
interesting".

If the same task is proposed by several rules, then several different reasons for it may be
present. In addition, one ephemeral reason also exists: "Focus of attention". Any tasks

, '" which are similar to the one last executed get "Focus of attention" as a bonus reason. AM
0_ uses all these reasons, e.g. to decide how to rank the tasks on the agenda. The
W: "intelligence" AM exhibits is not so much "what it does", but rather the order in which it

arranges its agenda 5. AM uses the list of reasons in another way: Once a task has been
selected, the quality of the reasons is used to decide how much time and space the task will
be permitted to absorb, before AM quits and moves on to a new task. This whole
mechanism will be detailed in Section 3.3.2, on Page 33.

2.2. What to get out of -- and NOT get out of -- this example

V. The purpose of the example which begins on page 20 is to convey a bit of AM's flavor.

After reading through it, the reader should be convinced that AM is not a theorem-prover,
nor is it randomly manipulating entries in a knowledge base, nor is it exhaustively
manipulating or searching. AM is carefully growing a network of data structures
representing mathematical concepts, by repeatedly using heuristics both (a) for guidance in
choosing a task to work on next, and (b) to provide methods to satisfy the chosen task.

2 The ratio o examples found to non-examples stumbled over lies between .00' and .05. Philosophers outraged by this may

be somewhat appeased by knowledge that large changes in the precise numbers very rarely alter AM's
behavior

Each reason is an English sentence. Wiile AM can tell whether two given reasons coincide, it can't actually do any internal
processing on them. If this lack of intelligence had proved to be a limiting problem, then more work would
have been expended on giving AM some such abilities.

An alternat,ve scheme, perhaps even a bit more human-like, would be to (perhaps only occaiionally) allow a buret of
poorly-motivated tasks to be proposed, and then use some pruning criteria to weed out the obvious losers.
During this time, AM could type out to the user (who otherwise would be closely monitoring its activities) a

Forexmpecute anthropomorphic phrase like I'm now sitting back and puffing on my pipe, lost in contemplation."

.For example, alternating a randomly-choon task and the 'best" task (the one AM chose to do) only slows the system
., down by a factor of 2, yet it totally destroys its credibility as a rational researcher (as udged by the
_ human user of AM). This is one conclusion of experiment 2 (see Section 6.2.2, pale 129).

.-,. .. # # # # # #
. . . . . . . - . - - . - . *- .. . .-
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"The following points are important but can't be conveyed by any lone example:

(I) Although AM appears to have reasonable natural language abilities, this is a typical Al
illusion: most of the phrases AM types are mere tokens, and the syntax which the user
must obey is unnaturally constrained. For the sake of clarity, I have "touched up" some
of the wording, indentation, syntax, etc. of what AM actually outputs, but left the spirit
of each phrase intact. As the reader becomes more familiar with AM, future examples
can be "unretouched". If he wishes, he may glance at Appendix 5.3, which shows
some actual listings of AM in action.

(ii) The reader should be skeptical of the generality of the program; is the knowledge base
"Just right" (i.e., finely tuned to elicit this one chain of behaviors)? The answer is

- "No"6. The whole point of this project is to show that a relatively small set of general
heuristics L.an guide a nontrivial discovery process. Each activity, each task, was
proposed by some heuristic rule (like "look for extreme cases of X") which was used
time and time again, in many situations. It was not considered fair to insert heuristic
guidance which could only "guide" In a single situation.

This kind of generality can't be shown convincingly in one example. Nevertheless,
even within this small excerpt, the same line of development which leads to
decomposing numbers (using TIMES-') and thereby discovering unique factorization,
also leads to decomposing numbers (using ADD-') and thereby discovering Goldbach's
conjecture. The same heuristic which caused AM to expect that unique factorization
will be useful, also caused AM to suspect that Goldbach's conjecture will be useless.

Let me reemphasize that the "point" of this example is not the specific mathematical
concepts, nor the particular chains of plausible reasoning AM produces, nor the few flashy
conjectures AM spouts, but rather an illustration of the kinds of things AM does.

2.3. Deciphering the Example

Recall that in general, each task on the agenda will have several reasons attached to it. In
the example excerpt, the reasons for each task are printed just after the task is chosen, and
before it's executed.

AM numbers its activities sequentially. Each time a new task is chosen, a counter is
Incremented. The first task in the example excerpt is labelled ** TASK 65 **, meaning that
the example skips the first 64 tasks which AM selects and carries out. The reason simply is
that the development of simple concepts related to divisibility will probably be more
intelligible and palatable to the reader, than AM's early ramblings in finite set theory.

. The dosn of AM was finely tuned so that the answer to this question would be "No". Ponder that onel
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In the example itself, several irrelevant tasks have been excised7. About half of those
omitted tasks were interesting in themselves, but all of them were tangential or unrelated to
the development shown. The reader can tell by the global task numbering how many were
skipped. For example, notice that the excerpt jumps from Task 67 to Task 79.

To help gauge AM's abilities, the reader may be interested to know that AM defined
"Natural Numbers" during Task 44, and "TIMES" was defined during Task 57. AM
started with no knowledge of numbers, and only scanty knowledge of sets and set-operations.
Task 3, e.g., was to fill in examples of Sets.

The concepts that AM talks about are self.explanatory - by and large. Below are discussed
some nonstandard ones.

BAG is a kind of list structure, a bunch of elements which are unordered, but one in which
multiple copies of the same element are permitted. One may visualize a paper bag filled
with cardboard letters. Technically, we shall say that a set is not considered to be a bag. A
bag is denoted by enclosure within parentheses, just as sets are within braces. So the bag
containing X and four Y's might be written (X Y Y Y Y), and would be considered
indistinguishable from the bag (Y Y Y X Y).

Number will mean (typically) a positive integer.

TIMES-' is a particular relation. For any number x, TIMES' (x) is a set of bags. Each
bag contains some numbers which, when multiplied together, equal x. For example,
TIMES'(18) - { (18) (2 9) (2 3 3) (3 6) ). Checking, we see that multiplying, e.g., the
numbers in the bag (2 3 3) together, we do get 2x2x3-18. TIMES' (x) contains all possible
such bags (containing natural numbers > 1).

ADD-' is a relation analogous to TIMES-'. For any number x, ADD'1 (x) is also a set of

bags. Each bag contains a bunch of numbers which, when added together, equal x. For
example, ADD'(,) - { (4)(1 1 1 1) (1 I 2) (1 3) (2 2) 1. ADD'1 (x) contains all possible such
bags (containing numbers >0); it finds all possible partitions of x.

Divisors-of is a more standard relation. For any number x, Divisors.of(x) is the set of all
positive numbers which divide evenly Into x. For example, Divisors-of(18) - (1 2 3 6 9 18).

The definitions for most of the mathematical terms used in the excerpt can be found in the
Glossary (Appendix 1.1). Whenever there is a conflict between "computer science jargon"
and "math jargon", I have opted for the latter. So, e.g., all "functions" are necessarily single.
valued for each member of their domain.

AM is an interactive compute!r program. It prints out phrases indicating what it is doing at

*each moment, and a human being, referred to as the User, watches AM's activities. At any
moment, the user can interrupt AM to ask questions or re-direct its energies. In the excerpt,
the user never re-directs AM, although he does occasionally ask AM to rename some
concept and to explain its behavior (e.g., just after ** TASK 106 **). For the benefit of the
reader, I have bold-faced all the user's comments.

This Is fair, despite the rt-slts of Experiment 2 (see Section 6.22) because the remaining tasks clump together in
-twos, threes, etc; they ;r uninterrupted lines of research (eg., Tasks 65-67), osparated by very large

aps (eg., the jump from Task 67 to 79).
N
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My pesonal notes and comments occur right-justified, in italics.

2.4. The Example Itself

** Task 65: **
Filling in examples of the following concept: "Divisors-of".

3 Reasons: (1) No known examples for Divisors-of so far.
(2) TIMES, which is related to Divisors-of, is now very interesting.
(3) Focus of attention: AM recently defined Divisors-of.

26 examples found, in 9.2 seconds. e.g.: Divisors-of(6)-{1 2 3 6).

.4,.
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** Tak 66: 8*
Considering numbers which have very small sets of Divisors-of (i.e., very few divisors).

2 Reasons: (1) Worthwhile to look for extreme cases.

(2) Focus of attention: AM recently worked on Divisors-of.

Filling in examples of numbers with 0 divisors.

0 examples found, in 4.0 seconds.
Conjecture: no numbers have 0 divisors.

Filling in examples of numbers with I divisors.
1 examples found, in 4.0 seconds. e.g.: Divisors-of(1)-{1).
Conjecture: I is the only number with I divisor.

Filling in examples of numbers with 2 divisors.
V40 24 examples found, in 4.0 seconds. e.g.: Divisors-of(13)-{! 13).

No obvious conjecture. This kind of number merits more study.
Creating a new concept: "Numbers-with-2-divisors".

AM had Previously derived the notion of singleton,
doubleton, etc. Above, AM was actually defining, e.g., the
set of numbers which gets mapped into a doubleton of
numbers, by the operation Divisors-of. I took the liberty
of translating this into the above form, which uses, e.g.,
the number "2".

Filling in examples of numbers with 3 divisors.
11 examples found, in 4.0 seconds. e.g.: Divisors-of(49)={1 7 49).
All numbers with 3 divisors ire also Squares. This kind of number merits more study.
Creating a new concept: "Numbers-with-3-divisors".

How did AM notice that conjecture? It took a random
17 example of Numbers-with-..divisiors, say 49. Then it

asked what other known concepts "49' was an example
of. The two answers were: Odd-numbers and Perfect-
squares. AM then tested these conjectures on the other
ten examples Just found. The only surviving conjecture

was that all numbers-with-3-divisors are also perfect-
squares.

?'". 
'
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~Took67:*
Considering the square-roots of Numbers-with-3-divisors.

2 Reasons: (11) Numbers -with-3-divsors are unexpectedly also perfect Squares.
(2) Focus of attention: AM recently worked on Numbers-with-3-divisors.

All square-roots of Numbers -wit h-3-divisors seem to be Numbers-with-2-divisors.

e.g., Divisors-of( Square -root(1 69)) Divisors-of(13) - {± 13).
Formulating the converse to this statement. Empirically, it seems to be true.

The square of each Number -O'th-2-divisors seems to be a Number -wit h-3-divisors.
This is very unusual. It is not plausibly a coincidence. (Chance of coincidence is < .001)

Boosting interestingness factor of the concepts involved:
lnterestingness factor of "Divisors-of" raised from 300 to 400.
lnterestingness factor of "Numbers-with-2-divisors" raised from 100 to 600.
lnterestingness factor of "Numbers-with-3-divisors" raised from 200 to 700.

USER: Call the set of numbers wtth 2 divisors "Primes".

**Task 68:.*
Considering the squares of Numbers-with-3-divisors.

2 Reasons: (1) Squares of Numbers-with-2-divisors were interesting.
(2) Focus of attention: AM recently worked on Numbers-with-3-divlsors.

This gap in the sequencing - from task 67 to task 79 -

eliminates some tangential and boring tasks. See page
19 for an explanation.
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*s Task 79: 8*
Examining TIMES'(x), looking for patterns involving its values.

2 Reasons: (1) TIMES " is related to the newly-interesting concept "Divisors-of".
(2) Many examples of TIMES " are known, to induce from.

Looking specifically at TIMES'(12), which is ( (12) (2 6) (2 2 3) (3 4)).
13 conjectures proposed, after 2.0 seconds.
e.g., "TIMESI(x) always contains a bag containing oaly even numbers'.
TcSting the conjectures on other examples of TIMES 1.

5 false conjectures deal with even numbers.
AM will sometime consider the restriction of TIMES "' to even numbers.

- : Only 2 out of the 13 conjectures are verified for all 26 known examples of TIMES-:

Conjecture 1: TIMES'1(x) always contains a singleton bag.
e.g., TIMES- ( 2), which is (12) (2 6) (2 2 3) (3 4) ), contains (12).
e.g., TIMES' 1(13), which is { (13) ), contains (13).

Creating a new concept, "Single-times".
Single-times is a relation from Numbers to Bags-of-numbers.
Single-times(x) is all bags in TIMES'(x) which are singletons.
e.g., Single-times(12)-{ (12)).
e.g., Single-times(13)-f (13) }.

Conjecture 2: TIMES(x) always contains a bag containing only primes.

e.g., TIMES 1(12), which is (12) (2 6) (2 2 3) (3 4) ), contains (2 2 3).
e.g., TIMES'(13), which is (13) ), contains (13).

Creating a new concept, "Prime-times".

Prime-times is a relation from Numbers to Bags-of-numbers.
Prime-times(x) is all bags in TIMESI(x) which contain only primes.
e.g., Prime-times(12)-{ (2 3 3)}.
e.g., Prime-times(13)-{ (13) 1.

1%.2
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** Task SO: **
Considering the concept "Prime-times".

2 Reasons: (1) Conjecs about Prime-times will tell much about Primes and TIMES 1.
(2) Focus of attention: AM recently defined Prime-times.

Looking specifically at Prime-times(48), which is [ (2 2 2 2 3)}.
4 conjectures proposed, after .6 seconds.
e.g., "x Is never inside any member of Prime-times(x)",
Testing them on other examples of Prime-times.

Only I out of the 4 conjectures are verified for all 23 known examples of Prime-times:

Conjecture 1: Prime-times(x) is always a singleton set.
That is, Prime-times is a function, not just a relation.
e.g., Prime-times(48), which is { (2 2 2 2 3) }, is a singleton set.
e.g., Prime-times(47), which is ( (47) }, is a singleton set.
This holds for all 17 known examples of Prime-times. (Chance of coincidence is .0001)
This fails for 2 of the boundary cases (extreme numbers): 0 and 1.
Conjecture Is amended: Each number >1 is the product of a unique bag of primes.

I suspect that this conjecture may be very useful.8

USER: Call this conjecture "Unique factorization conjecture*.

o

To show that AM isn't really always right on the mark,
the next sequence of tasks includes a crime of omission
(ignoring the concept of Partitions) and a false start
(worrying about numbers which can be represented as the
sum of two primes in precisely one way). Notice the
skip here; I tasks have been omitted.

How did AM know this? One of the (unfortunately fewl) mets-heuristics in AM said the following: "When using the 'look

at the inverse of extreme items under the operation f' rule, Tack the following note onto the
Interest facet of the new concept which it created- 'Conjectures involving this concept and f (or
f-) are natural, interesting, and probably useful.' - Now the concept PRIMES was defined
using the 'sxtrerr' heuristic rule, ,,ith f-Oavizors-of. When PRIMES was first created, the meta-rule we just
presented ticked the following note onto Primes.Interest 'Conjectures involving Primes and

division (or multiplication) are natural, interesting, and probably useful.: Th the
unique factorizetion conjecture triggers this feature, whereas Godbch'$ conjecture wouldn't.

--z_
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** Task 84: **
Examining ADD'(x), looking for patterns involving its values.

2 Reasons: (1) ADD"' is analogous to the newly-interesting concept "TIMES 1".
(2) Many examples of ADD"1 are known, to induce from.

Looking specifically at ADD 1(6), which Is{( I I 1 1) (1 111 2) (111 3) ( 1 2 2)
(1 1 4)(U 2 3)(0 5) (2 22) (2 4)(3 3)(6)).

17 conjectures proposed, after 3.9 seconds.
e.g., "ADD t (x) always contains a bag of primes7.
Testing them on other examples of ADD - '.
Only I I out of the 17 conjectures are verified for all 19 known examples of ADD-Y:
3 out of the 11 conjectures were false until amended.

Conjecture 1: ADD(x) never contains a singleton bag.

Conjecture 2: ADD'1(x) always contains a bag of size 2 (also called a "pair" or a "doubleton").
e.g., ADD'(6) contains (1 5), (2 4), and (3 3).
e.g., ADD'(4) contains (1 3), and (2 2).

Creating a new concept, "Pair-add".
Pair-add is a relation from Numbers to Pairs-of-numbers.
Pair-add(x) is all bags in ADD'(x) which are doubletons (i.e., of size 2).
e.g., Pair-add(12)-{ (1 11) (2 10) (3 9) (4 8) (5 7) (6 6)}.
e.g., Pair-add(4)-{ (1 3) (2 2)1.

Conjecture 3: ADD' 1(x) always contains a bag containing only l's.

Conjecture 10: ADD'I(x) always contains a pair of primes.
This conjecture is false. Conjecture is amended:
"ADD(x) usually (but not always) contains a pair of primes."
e.g., ADD'i(10) contains (3 7), and (5 5).
e.g., ADD'(4) contains (2 2).
e.g., ADDI(1 1) does not contain a pair of primes.

Creating a new concept, "Prime-add".
Prime-add is a relation from Numbers to Pairs-of-numbers.
Prime-add(x) is all bags in ADDI 1(x) which are pairs of primes.
e.g., Prime-add(12)={ (5 7)).
e.g., Prime-add(lO)-f (3 7) (5 5)}.
e.g., Prime-add(11) - {

00'
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** Task 106: L
Considering the set of numbers for which Prime-add is defined (has non-empty volue).

1 Reason: (1) Prime-add often has non-empty value. Worth isolating that case.
Warning: no task on the agenda has an interestingness value above 200!!!

Creating a new concept "Prime-addable".
Prime-addable is a kind of Number. x is Prime-addable if Prime-add(x) is non-empty.
Will spend 5.0 seconds filling in examples of Prime-addable.
18 examples found. Here are some of them: 456 7 89 10 12 13 14 17 16 18.
Empirically, all even numbers are also in this set (ignoring boundary cases: 0 2 4 6).
So conjectured. Danger: must examine boundary cases: the numbers 0, 2, 4, and 6.
Two exceptions noticed. The only exceptions are the smallest boundary cases: 0, 2.
Conjecture is amended: All even numbers >2 are the sum of two primes.

Warning: I expect this conjecture will be cute but useless.

USER: Why?

Because the concept of "Primes" originally arose as extreme cases of Divisors-of. The more
closely an operation X is related to the concept Divisors-of, the more natural will be any
conjecture involving both that operation X and Primes. E.g., conjectures involving both
Primes and Times will be natural and useful. But this conjecture, which Involves Primes and
ADD-', will be cute but useless, since the relation "ADD " " is unrelated to the relation
"Divisors-of".

End of explanation.

USER: Call this conjecture "Goldbach's conjecture".

2$ Task 107: **
Considering the set of numbers for which the relation Prime-add is single-valued.

3 Reasons: (1) Prime-add often has singleton value. Worth isolating that case.
(2) Restricted to this set, Prime-add would be a function.
(3) Focus of attention: AM recently worked on Prime-add.

Creating a new concept "Uniquely-prime-addable".
"Uniquely-prime-addable" is a kind of Number.
x is Uniquely-prime-addable if Prime-add(x) is a singleton.
Will spend 10.0 seconds filling in examples of Uniquely-prime-addable.
11 examples found. Here are some of them: 4 5 78 91213.
No obvious conjecture derived empirically.

Will forget "Uniquely-prime-addable numbers", if no Ties found in near future.
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2,5. Recapping the Example

Let's once again eavesdrop on a mathematician, as he describes to a colleague what AM
did.

This example was preceded by the momentous discoveries of multiplication and division.
Several interesting properites of these operations were noticed. The first task which was
illustrated (** Task 65 **) involves exploring the concept of "divisors of a number"
(meaning all positive integers which divide evenly into the given number). After tiring of
finding examples of this relation, AM investigates extreme cases: that is, it wonders which
numbers have very few or very many divisors.

AM thus discovers Primes in a curious way. Numbers with 0 or I divisor are essentially
nonexistent, so they're not found to be interesting. AM notices that numbers with 3 divisors
always seem to be squares of numbers with 2 divisors (primes). This raises the
interesting-ness of several concepts, including primes. Soon (** TASK 79 **), another
conjecture involving primes is noticed: Many numbers seem to factor into primes. This
causes a new relation to be defined, which associates to a number x, all prime factorizations
of x. The first question AM asks about this relation is "is it a function?". This question is
the full statement of the unique factorization conjecture: the fundamental theorem of
arithmetic. AM recognized the value of this relationship, and assigned it a high
interestingness rating.

In a similar manner, though with lower hopes, it noticed some more relationships involving
primes, including Goldbach's conjecture. AM quite correctly predicted that this would turn
out to be cute but of no future use mathematically.

The last activity mentioned (** TASK 107 **) shows AM examining a rather nonstandard
concept: "numbers which can be written as the sum of a pair of primes, in only one way".
These are termed "uniquely-prime-addable" numb's. It was mildly unfortunate that AM
gave up on this concept before noticing that ,-2 is uniquely-prime-addable, for any prime
number p, and that in fact these are the only odd uniquely-prime-addable numbers. The
session was repeated once, with a human user telling AM explicitly to continue studying this
concept. AM did in fact construct "Uniquely-prime-addable-odd-numbers", and then notice
this relationship. Here we see an example of unstable equilibrium: if pushed slightly this
way, AM will get very interested and spend a lot of time working on this kind of number.
Since it doesn't have all the sophistication (i.e., compiled hindsight) that we have, it can't
know instantly whether what it's doing will be fruitless.
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Chapter 3. Control Structure

'Objectivel' given, 'Important' problems may arise fin math/. But even then the
mathematician is essentially free to take it or leave it and turn to something else,
while an 'important' problem in (any other sciencel Is usually a conflict, a
contradiction, which 'must' be resolved. The mathematician has a wide choice of
which way to turn, and he enjoys a very considerable freedom in what he does.

-- von Neumann

AM is one of those awkward programs whose representations only make sense if you
already understand how they will be operated on. A discussion of AM's control structure
(this chapter and the next) must thus precede a discussion of concepts and how they are
represented (Chapter 5). Section 2.1 gave the reader a sufficient knowledge of AM's
"anatomy" to follow these chapters. Thus armed with a cursory knowledge of the "statics" of
AM, we shall proceed to describe in detail its "dynamics".

Section 3.1 will give the reader a feeling for the immensity of AM's search space. This is

the "problem". The next section will give the top-level "solution": the flow of control is
governed by a job-list, an agenda of plausible tasks. Section 3.3 will present some details of
this global control scheme.

Chapter 4 deals with the way AM's heuristics operate; this could be viewed as the "low-
level" or local control structure of AM. Chapter 5 contains some detailed information
about the actual concepts (and heuristics) AM starts with, and a little more about their
design and representation. The reader is also directed to Appendix 5, which presents
several detailed examples of AM "in action".

3.1. AM's Search

To develop mathematics, one must always labor to substitute ideas for calculations.

-- Dirichlet

Let's first spend a paragraph reviewing how concepts are stored. AM contains a collection

.... .. . ... , . .... .:...,.- ... , ..- ,. .. ..-..-....- . ,/ ,. .. '.. -, ,,,. -. '.,, ; .- .. . .. .; . - .. : .: " '- .'. ." -" " . . i-
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of data structures, called concepts. Each concept is meant to coincide intuitively with one
mathematical idea (e.g., Sets, Union, Trichotomy). As such, a concept has several aspects or
parts, called facets (e.g., Examples, Definitions, Domain/range, Worth). If you wish to think
of a concept as a "frame", then its facets are "slots" to be filled in. Each facet of a concept
will either be totally blank, or else will contain a bunch of entries. For example, the
Algorithms facet of the concept Union may point to several equivalent LISP functions, each
of which can be used to form the union of two sets'. Even the "heuristic rules" are merely
entries on the appropriate kind of facet (e.g., the entries on the Interest facet of the
Structure concept are rules for judging the interestingness of Structures2 ).

.-.. -At any moment, AM contains a couple hundred concepts, each of which has only some of its
facets filled in. AM starts with 115 concepts, and grows to about 300 concepts before
running out of time/space. Most facets of most concepts are totally blank. AM's basic
activity is to select some facet of some concept, and then try to fill in some entries for that
slot3 . Thus the primitive kind of "task" for AM is to deal with a particular facet/concept
pair. A ,ypical task looks like this:

Check the entries on the "Domain/range" facet of the "Bag-Insert" concept

If the average concept has ten or twenty blank facets, and there are a couple hundred
concepts, then clearly chere will be about 20x200-4000 "fill-in" type tasks for AM to work
on, at any given moment. If several hundred facets have recently been filled in, there will
be that many "check-entries" type tasks available. Executing a task happens to take around

"- . ten or twenty cpu seconds, so over the course of a few hours only a small percentage of these
tasks can ever be executed. 4

Since most of these tasks will never be explored, what will make AM appear smart - or
stupid - are its choices of which task to pick at each moment.5 So it's worth AM's spending
a nontrivial amount of time deciding which task to execute next. On the other hand, it had
better not be too much time, since a task does take only a dozen seconds.6

One question that must b1e answered Is: What percentage of AM's legal moves (at any

The reasons for having multiple algorithms is that sometimes AM wilt want one that is fast, sometimes AM will be more
concerned with economizing on storage, sometimes AM will want to "analyze" an algorithm, and for that
purpose it must be a very un-optimized function, etc.

2 A typical such rule is: *A .,ructure is very interesting if all its elements are miNly interesting in precisely the same way."
3 This is not quite complete In addition to filling in entries for a given facet/concept pair, AM may wish to check it, split it

up, reorganize it, etc
4 The precise "18 seconds average" figure is not important. All heuristic-search programs suffer this same handicap: As the

depth to which they've searched increases, the percentage of nodes (at or above that level) which have
been examined decreases exponentially (assuming the branching factor b is strictly larger than unity)

5 This is true of all heuristic search programs The branchisr the search, the more it applies.

The answer is that AM spends this "deciding" time not just before a task is Picked, but rather each time a task is added
to the agenda A little under I cpu second is spent, on the average, to place the task properly on the
stands, to ssign it a meningful numeric priority value. So "action time" is roughly one order of magnitude
lerger than "deciding time".

:i
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typical moment) would be considered intelligent choices, and what percentage would be
irrational? The answer comes from empirical results. The percentages vary wildly
depending on the previous few tasks. Sometimes, AM will be obviously "in the middle" of
a sequence of tasks, and only one or two of the legal tasks would seem plausible. Other
times, AM has just completed an investigation by running into dead-ends, and there may be
hundreds of tasks it could choose and not be criticized. The median case would perhapspermit about 6 of the legal tasks to be judged reasonable.

It is important for AM to locate one of these currently-plausible tasks, but it's not worth
spending much time deciding which of them to work on next. AM still faces a huge search:
find one of the 6 winners out of a few thousand candidates.

Its choice of tasks is made even more important due to the 10-second "cycle time" - the time
to Investigate/execute one task. A human user is watching, and ten seconds is a nontrivial
amount of time to him. He can therefore observe, perceive, and analyze each and every
task that AM selects. Even just a few bizarre choices will greatly lower his opinion of AM's
intelligence. The trace of AM's actions is what counts, not its final results. So AM can't
draw much of its apparent intelligence from the speed of the computer.

Chess-playing programs have had to face the dilemms of the trade-off between "intelligence"
(ioresight, inference, processing,...) and total number of board situations examined. In chess,
the characteristics of current-day machines, language power vs. speed, and (to some extent)
the limitaticns of our understanding of how to be sophisticated, have to date unfortunately
still favored fast, nearly-blind7 search. Although machine speed and LISP slowness may
allow blind search to win over symbolic inference for shallow searches, it can't provide any
more than a constant speed-up factor for an exponential search. Inference is slowly gaining
on brute force,8 and must someday triumph.

"L. Since the number of "legal moves" for AM at any moment is in the thousands, it is

unrealistic to consider "systematically"9 walking through the entire space that AM can reach.
In AM's problem domain, there is so much "freedom" that symbolic Inference finally can
win over the "simple but fast" exploration strategy' °.

A-A

3.2. Constraining AM's Search

is, using a very simple statik evaluation function.

E g, e*- [Berliner 741 There, searching is used mainly to verify plausible moves (a convergent process), not to discover
them (a bushier search).

9
g 1, exhaustively, or using eA minimsing, etc

This is the author's opinion, partially supported by the results of AM Paul Cohen disagrees, feeling that machine speed
should be the key to an Momated mathematician's success

I -'
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There exist too many combinations to consider all combinations of existing entities;
the creative mind must only pro pose those of potential interest.

-. oincare'

A great deal of heuristic knowledge is required to constrain the necessary processing
effectively, to zero in on a good task to tackle next. This is done in two stages.

1. A list of plausible facet/concept pairs is maintained. Nothing can get onto this list
unless there is some reason why filling in (or checking) that facet of that concept
would be worthwhile.

2. All the plausible tasks on this "Job list" are ranked by the number and strength of
the different reasons supporting them. Thus the facet/concept pairs near the top of
the list will all be very promising tasks to work on.

The first of these constraints is akin to replacing a !egal move generator by a plausible
*move generator. The second kind of constraint is akin to using a heuristic evaluation

function to select the best move from among the plausible ones. I

The job-iist or agenda is a data structure which is a natural way to store the results of these
procedures. it is (I) a list of all the plausible tasks which have been generated, and (2) it is
kept ordered by the numeric estimate of how worthwhile each task is. A typical entry on
the agenda might look like this:

Fill in the EXAMPLES facet of the PRIMES concept.

I Reasons for filling in this facet

.-

I. No examples of primes are known so far.
2. Focus of attention: AM just defined Primes.

I"Overall value of these reasons

* j 250

Pest Al program* (., [Samuel 671) have indicated that constraining generation (1) is more importont than sophisticated
ordering of the resultant candidates (2). This was confirmed by the experiments performed on AM.
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The actual top-level control structure is simply to pluck the top task from the agenda and
execute it. That is, select the facet/concept pair having the best supporting reasons, and try
to fill In that facet of that concept.

While a task is being executed, some new tasks might get proposed and merged into the
agenda. Also, some new concepts might get created, and this, too, would generate a flurry of
new tasks.

After AM stops filling in entries for the facet specified in the chosen task, it removes that
task from the agenda, and moves on to work on whichever task is the highest.rated at that
time.

The reader probably has a dozen good questions in mind at this point (e.g., How do the

reasons get rated?, How do the tasks get proposed?, What happens after a task is
selected?,..). The next section should answer most of these. Some more Judgmental ones
(How dare you propose a numeric calculus of plausible reasoning?. If you slightly dce-tune
all those numbers, does the system's performance fall apart?...) will be answered In Chapter
7.

3.3. The Agenda

Creative energy is used mainly to ask the right question.

-- Halmos

3.3.1. Why an Agenda?

This subsection provides motivation for the following one, by arguing that a job-list scheme
is a natural mechanism to use to manage the task-selection problem AM faces. If that seems
obvious to you, feel free to skip ahead to section 3.3-.2, page 33.

Recall that AM must zero in on one of the best few tasks to perform next, and it repeatedly
makes this choice. At each moment, there might be thousands of directions to explore
(plausible tasks to consider).

If all the legal tasks were written out, and reasons were thought up to support each one,
then perhaps we could order them by the strength of those reasons, and thereby settle on
the "best" task to work on next. In order to appear "smart" to the human user, AM should
never execute a task having no reasons attached.

Some magical function will be assumed to exist, which provides a numeric rating, a priority
value, for any given task. The function looks at a given facet/concept pair, examines all the
associated reasons supporting that task, and computes an estimate of how worthwhile it
would be for AM to spend some time now working on that facet of that concept.

1'7
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So AM will maintain a list of those legal tasks which have some good reasons tacked onto
them, which justify wl- each task should be executed, why it is plausible. At least
implicitly, AM has a numeric rating for each ask. The obvious control algorithm is to
choose the task v lth the highest rating, and work on that one next. --

Assuming the tasks on this list are kept ordered by this numeric rating, Lhen AM can just
repeatedly pluck the highest task and execute it. While it's executing, some new tasks might
get proposed and added to the list of tasks. Reasons are kept tacked onto each task on this
list, and form the basis for the numeric priority rating. __

Give or take a few features, this notion of a "job-list" is the one which AM uses. It is also :-i

called an agenda.'2 "A task on the agenda" is the same as "a job on the job-list" is the same
as "a facet/concept pair which has been proposed" is the same as "an active node !n the
search space". Henceforth, I'll use the following all interchangeab!y: task, facet/concept pair,
node, job. This should break up the monotony .

The flavor of agenda-list used here Is similar to the control structure of HEARSAY-I1
[Lesser/Fennell/Erman/Reddy 75). Vast numbers of tasks are proposed and added to the
job-list. Occasionally, when some new data arrives, some task is repositioned

3.3.2. Details of the Agenda scheme Id

At each moment, AM has many plausible tasks (hundreds or even thousands) which have 17:
been suggested for some good reason or other, but haven't been carried out yet. Each task tt
is at the level of working on a certain facet of a certain concept: filling it in, checking it, etc.
Recall that each task also has tacked onto It a list of symbolic reasons explaining why the
task Is worth doing.

It. addition, a number (between 0 and 1000) Is attached to each reason, representing some
absolute measure of the value of that reason (at the moment). One global formula14

combines all the reasons' values into a single priority value for the task as a whole. This
overall rating is taken to indicate how worthwhile it would be for AM to bother executing
that task, how interesting the task would probably turn out to be. The "intelligence" of
AM's selection of task is thus seen to depend on this one formula. Yet experiments show
that its precise form is not important. We conclude that the "intelligence" has been pushed
down into the careful assigning of reasons (and their values) for each proposed task.

12 Borrowed from Kaplan's term for the job-list present in KRL (see [Bobrow & Winograd 77]). For an earlier general

discussion of agendas, see (Knuth 681
13 and cover my sloppiness. Seriously, thanks to English, each of these terms will conjure up a slightly different image; a

"job" is something to do, a "node" is an item in a search space, "facet/concajt pair" reminds you of the
format of a task

14 Here is that formula: Worth(J) • IISQRT(SUM Ri2)l x I 0.2xWorth(A) * 0,3xWorth(F) + O.5xWorth(C), where J - job to be
judged - (Act A, Facet F, Concept C), and {Ri) are the ratings of the reasons supporting J. For the sample

job pictured in the box below, A-Fillin, F.Examples, C-Setls, (Ri}-(lO0,100,200). The formula will be c J

rpctsd- and ;%pistd -. in Soction 4.2, on pMe 40.

'A
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A typical entry on the agenda might look like this:

TASK: Fill-in examples of Sets
PRIORITY: 300
REASONS:

100: No known examples for Sets so far.
100: Failed to fillin examples of Set-union, for lack of examples of Sots
200: Focus of attention: AM recently workad on the concept of Set-union

Notice the similarity of this to the initial few lines which AM types just after it selects a Job
to work on.

The flow of control is simple: AM picks the task with the highest priority value, and tries to
execute It. As a side effect, new Jobs occasionally get added to the agenda while the task is
being executed.

The global priority value of the task also indicates ;tow much time and space this task
deserves. The sample task above might rate 20 cpu seconds, and 200 list cells. When either
of these resources is used up, AM terminates work on the task, and proceeds to pick a new
one. These two limits will be referred to in the sequel as "timespace quanta" which are
allocated to the chosen task. Whenever several techniques exist for satisfying some task, the
remaining time/space quanta are divided evenly among those alternatives; i.e., each method
is tried for a small time. This policy of parceling out time and space quanta is called
activation energy" in (Hewitt 76) and called "resource.limited processes" in [Norman &

Bobrow 75]. In the case of filling in examples of sets, the space quantum (200 cells) will be
used up quickly (long before the 20 seconds expire).

There are two big questions now:
1. Exactly how is a task proposed and ranked?

How is a plausible new task first formulated?
How do the supporting reasons for the task get assigned?
How does each reason get assigned an absolute numeric rating?
Docs a task's priority value change? When and how?

2. How does AM execute a task, once it's chosen?
Exactly what can be done during a task's execution?

The next chapter will deal with both of these questions. A detailed discussion of difficulties
and limitations of these ideas can be found in Section 7.2, on page 156.

I-
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Chapter 4. Heuristic Rules

Assume that tomehow AM has selected a particular task from the agenda - say "Fill-in
Examples of Primes". What precisely does AM do, in order to execute the task? How are
examples of primes filled in?

The answer can be compactly stated as follows:
"AM selects relevant heuristics, and executes tAem."

This really lust splits our original question Into two new ones: (I) How are the relevant
heuristi:s selected, and (ii) What does it mean for heuristics to be executed (e.g., how does
executing a heuristic rule help to fill in examples of primes?).

These two topics (in reverse order) are the two major subjects of this chapter. Although
several examples of heuristics will be given, the complete list is relegated to Appendix S.

The first section explains what heuristic rules look like (their "syntax", as it were). The next
three sections illustrate how they can be executed to achieve their desired results (their
"semantics").

Section 4.5 explains where the rules are stored and how they are accessed at the appropriate

times.

Finally, the initial body of heuristics is analyzed. The informal knowedge they contain is
categorized and described. Unintentionally, the distribution of heuristics among the
concepts is quite nonhomogeneous; this too is described in Section 4.6.

4.1. Syntax of the Heuristics

Let's start by seeing what a heuristic rule looks like. In general (see [Davis & King 751 for
historical references to production rules), it will have the form

If <situational fluent>
Then <actions>

As an illustration, here is a heuristic rule, relevant when checking examples of anything:

There they are condensed and phrased in English. The reader wishing to see examples of the heuristics as they actually

were coded in LISP should glonce at Appendix 2.3.
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If the current task is to Check Examples of any concept X,
and (Forsome Y) Y Ir a genoralization of X,
and Y has at least 10 examples,
and all examples of V are also examples of X,

Then print the following conjecture: X is really no more specialized than Y,
and add It to the Examples facet of the concept named "Conjectures",%1 and add the following task to the agenda: "Check examples of Y", for the reason: "Just

as Y was no more general than X, one-of Generalizations(Y) may turn out to
'"' be no more general than Y", with a rating for that reason computed as the

average of: IlExamples(Generalizations(Y)l, IlExamples(Y)II, and
Priority(Current task).

As with production rules, and fc -- ! grammatical rules, e%-%h of AM's heuristic rules has a
left-hand-side and a right-hand-side. On the left is a test to see whether the rule is
applicable, and on the right is a list of actions to take if the rule applies. The left-hand-side
will also be called the IF-part, the predicate, the preconditions, left side, or the situational
fluent of the rule. The right-hand-side will sometimes be referred to as the THEN-part, the
response, the right side, or the actions part of the rule.

4.1.1. Syntax of the Left-hand Side

The situational fluent is a LISP predicate, a function which always returns True or False
(in LISP, it actually returns either the atom T or the atom NIL). This predicate may

.:.- investigate facets of any concept (often merely to see whether they are empty or not), use theresults of recent tests and behaviors (e.g., to see how much cpu time AM spent trying to

work on a certain task), etc.

The left side is a conjunction of the form Pl A P2 A... All the conjuncts, except the very
: '- first one, are arbitrary LISP predicates. They are only constrained to obey two

commandments:
1. Be quick! (return either True or False in under 0.1 cpu seconds)
2. Have no side effects! (destroying or creating list structures or Lisp functions, resetting

variables)

Here are some sample conjuncts that might appear inside a left-hand side (but not as the
very first conjunct)

• More than haif of the current task's time quantum is already exhausted,..

* There are some known examples of Structures,..

, Some generalization of the current concept (the concept mentioned as part of the
current task) has an empty Examples facet,..

" The space quantum of the current task is gone, but its time allocation is less than 10%
used up,..

" A task recently selected had the form "Restructure facet F of concept X", where F is
any facet, and X is the current concept,...

-. - --

a. -.
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• The user has used this system at least once before,...

" It's Tuesday,...

The very first conjunct of each left-hand side is special. Its syntax is highly constrained. It
specifies the domain of applicability of the rule, by naming a particular facet of a particular
concept to which this rule is relevant.

AM uses this first conjunct as a fast "pre-precondition", so that the only rules whose left-
hand sides get evaluated are already known to be somewhat relevant to the task at hand. In
fact, AM physically attaches each rule to the facet and concept mentioned in its first
conjunct.2 This will be discussed lh more detail in Section 4.5, "Gathering relevant
heuristics". This first conjunct will always be written out as followk, in this document
(where A, F, and C are specified explicily):

The current task (the one just selected from the agenda) Is o! the form "Do action A
to the IF facet of concept C"

This can be viewed as the "syntax" of the very first conjunct on each rule's left-hand side.
Here are two typical examples of allowable first conjuncts:

0 The current task (the one last selected from the agenda) is of the form "Check the
Domain/range facet of concept X", where X is any operation

• The current task is of the form "Fillin the examples facet of the Primes concept"

These are the only guidelines which the left-hand side of a heuristic rule must satisfy. Any
LISP predicate which satisfies these constraints is a syntactically valid left-hand side for a
heuristic rule. It turned out later that this excessive freedom made It difficult for AM to
inspect and analyze and synthesize its own heuristics; such a need was not foreseen at the
time AM was designed.

Because of this freedom, there is not much more to say about the left-hand sides of rules.
As the reader encounters heuristics in the next few sections, he should notice the
(unfortunate) variety of conjuncts which may occur as part of their left-hand sides.

4.1.2. Syntax of the Right-hand Side

"Running" the left-hand-side means evaluating the series of conjoined little predicates there,
to see if they all return True. If so, we say that the rule "triggers". In that case, the right-
hand-side is "run", which means executing all the actions specified there. A single heuristic
rule may have a list of several actions as its right-hand-side. The actions are executed in
order, and we then say the rule has finished running.

Only the right-hand-side of a heuristic rule is permitted to have side effects. The right side
of a rule is a series of little LISP functions, each of which is called an action.

2 Sometimes, I will mention where a certain rule is attached; in that case, I can omit explicit mention of the first conjunct.
Convere6ly, if I include that conjunct, I needn't tell you whei the rule is stored.

% % _
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Semantically, each action performs some processing which is appropriate in some way to the
kinds of situations in which the left-hand-side would have triggered. The final value that
the action function returns is irrelevant.

Syntactically, there is only one constraint which each function or "action" must satisfy: Each
action has one of the following 3 side-effects, and no other side-effects:

1. It suggests a new task for the agenda.
2. It causes a new concept to be created.
3. It adds (or deletes) a certain entry to a particular facet of a particular concept.

To repeat: the right side of a rule contains a list of actions, each of which is one of the
above three types. A single rule might thus result in the creation of several new concepts,
the addition of many new tasks to the agenda, and the filling in of some facets of some
already-existing concepts.

These three kinds of actions will now be discusmed in the following three Actions.

4.2. Heuristics Sugee New Task_q

This section discusses the "proposing a new task" kind of action.

Here is the basic idea in a jiutshe!l: The left-hand-side of e rule triggers. Scattered among
the "things to do" in its right-hand-side are some suggestions for future tasks.'These new
tasks are then simply added to the agenda list.

4.2.1. An Illustration: "Fill in Generalizations of Equality"

If a new task is suggested by a heiristic rule, ther, that rule must specify how to assemble
the new task, how to get reasons fcr It, and how to evaluate those reasons. For example,
here is a typical heuristic rule which proposes a n!w task to add to the agenda. It says to
generalize a predicate if it is very rarely3 satisfied:

If Tho current a;k was (Fi!i-in examples of X)i
and X is a prodicate,
and more than 100 Item.p ore known In hre domain of X,
and at l4ast iO cpu seconds were spent trying to randomly instantiate X,
and the ratio of successes/failures is both >0 and less than .05

Then add the following tosk to the agenda: (Fill-irn generalizations of X), for the following
reason:

The most suspicious part of the situational flus' (the IF-part) is the number "05". Where did it come from? Hint: if sl
humans had f fingers, this woud probably be 005 in base f. Seriously, one can change this vahie (to .01 or
to 25) with virtually no chAnge ir, AM's behavior. This is the conclusion of experiment 3 (tee Section
623) Such empirical juetification is one important reason for actually writing and running large programs
like AR

-'-
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"Y, is rareily setisfied; a slightly less restrictive concept might be more interesting".
Thin r oor's rating is computed as three times the ratio of nonexamples/examples

f'ound.

Even this Is one full step above the actual LISP implementation, where "X is a predicate"
would be coded as "(MEMBER X (EXAMPLES PREDICATE))". The function EXAMPLES(X)
rummages a bout looking for already-existing examples of X. Also, the LISP code contains
information for normalizing all the numbers produced, so that they will lie in the range 0-
1000.

Let's examine an instance of where this rule was used. At some point, AM chose the task
"Fillin examples of List-equality". One of the ways it filled in examples of this predicate was
to run it on pairs of randomly-chosen lists, and observe whether the result was True or
False4 . Say that 244 random pairs of lists were tried, and only twice was this predicate
satisfied. Sometime later, the IF part of the above heuristic is examined. All the conditions
are met, so It "triggers". For example, the "ratio of successes to failures" is just 2/242, which
is clearly greater than zero and less than 0.05. So the right-hand-side (THEN-part) -of the
above rule is executed. The right-hand side initiates only one action: the task "Fillin
generalizations of List-equality" is added to the agenda, tagged with the reason "List-equality
is rarely satisfied; a slightly less restrictive concept might be more interesting", and that
reason is assigned a numeric rating of Sx(242/2) - S63.

Notice that the heuristic rule above supplied a little function to compute the value of the
reason. That formula was: "three times the ratio of examples/nonexamples found".5

Functions of this type, to compute the rating for a reason, satisfy the same constraints as the
left-hand-side did: the function must be very fast and it must have no side effects. The
"intelligence" that AM exhibits In selecting which task to work on ultimately depends on the
accuracy of these local rule evaluation formulae. Each one Is %o specialized that it is "easy"
for it to give a valid result; the range of situations it must judge is quite narrow. Note that
these little formulae were hand-written, Individually, by the author. AM wasn't able to
create new little reason-rating formulae.

The reason-rating function is evaluated at the moment the job is suggested, and only the
numeric result is remembered, not the original function. In other words, we tack on a list of
reasons and associated numbers, for each job on the agenda. The agenda doesn't maintain
copies of the reason-rating functions which gave those numbers. This simplification is used
merely to save the system some space and time.

Let's turn now from the reason-rating formulae to the reasons themselves. Each reason
supporting a newly-suggested job is simply an English sentence (an opaque string, a token).
AM cannot do much intelligent processing on these reasons. AM is not allowed to inspect
parts of it, parse it, transform it, etc. The most AM can do is compare two such tokens for
equality. Of course, It is riot to hard to imagine this capability extended to permit AM to

The True ones became examples of List-equality, and the pairs of lists which didn't satisfy this predicate became known as

non-examples (failures, foiblee,..). A heuristic similar to this *random instantistion" one is illustrated in
Section 44, on page 4&

In actuality, this would be checked to ensure that the result hie* between 0 and 1000.



Chapter 4 AM: Discovery in Mathematics as Heuristic Search -40-

syntactically analyze such strings, or to trivially compute some sort of "difference" between
two given reasons.6 Each reason is assumed to have some semantic impact on the user, and L
is kept around partly for that purpose.

Each reason will have a numeric rating (a number between 0 and 1000) assigned to it
locally, by the heuristic rule which proposed the task for that reason. One global formula
will then combine all the reasons' ratings into one single priority value for the task.

4.2.2 The Ratings Caine

In general, a task on the agenda list will have several reasons in support of it. Each reason
consists of an English phrase and a numeric rating. How can a task have more than one
reason? There are two contributing factors: (i) A single heuristic rule can have several
reasons in support of a job it suggests, and (ii) When a rule suggests a "new" task, that very
same task may already exist on the agenda, with quite distinct reasons tacked on there. In
that case, the new reason(s) are added to the already-known ones.

One globa, formula looks at all the ratings for the reasons, and combines them into a single L
priority value for the task as a whole. Below is that formula, in all its gory detail:

Worth(J) • IISQRT(SUM Ri2 )I x I .2xWorth(A) .3xWorth(F) * .SxWorth(C)]

Where J a job to be judged s (Act A, Facet F, Concept C)
and {Ri} are the ratings of the reasons supporting J.

For example, consider the job J - (Check examples of Primes). The act A would be
"Check", which has a numeric worth of 100. The facet F would be "Examples", which has
a numeric worth of 700. The concept C would be "Primes", which at the moment might
have Worth of 800. Say there were jour reasons, having values 200, 300, 200, and 500.
The double lines "11...11" indicate normalization, which means that the final value of the
square-root must be between 0 and i, which is done by dividing the result of the Square-
root by 1000 and then truncating to 1.0 if the result exceeds unity.

In this case, we first compute Sqrt(2002 . 3002 . 2002 . 5002) - Sqrt(420,000), which is
about 648. After normalization, this becomes 0.648. The expression in square brackets in
the formula 7 is actually computed as the dot-product of two vectors8 ; in this case it is the
dot-product of (100 700 800) and (.2 .3 .5), which yields 630. This is multiplied by the
normalized Square-root value, 0.648, and we end up with a final priority rating of 408.

The four reasons each have a fairly low priority, and the total priority of the task is

It is in fact trivial to IMAGINE it. Of course DOING it is quite a bit less trivial. In fact, it probably is the toughest of all the

'open research problems" I'll propose.

Namely, [ O.2xWorth(A) # O.3xWorth(F) # O.5xWorth(C) .
8 Namely, <Worth(A), Worth(F), Worth(C)> and < .2, 3, .5 >. The dot-product of <*a a2 s3..> and <hi b2 b3...> is defined

as (al x bl) (2 x b2) (3 x b3) *_

I:t:t:?? - : ::-T'i ? ?' ----- T :".-t:- : ' : .'? .?:-. ; ..::--- T 't '- . - "'':-:?" L-,-:..-': .
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therefore not great. It is, however, higher than any single reason multiplied by 0.648. This
is because there are many distinct reasons supporting it. The global formula uniting these
reasons' values does not simply take the largest of them (ignoring the rest), nor does it
simply add them up.

The above formula was intended originally as a first pass, an ad hoc guess, which I expected
I'd have to modify later. Since it has worked successfully, I have not messed with it. There
is no reason behind It, no justification for taking dot-products of vectors, etc. I concluded,
and recent experiments tend to confirm, that the particular form of the formula is
unimportant; only some general characteristics need be present:

1. The priority value of a task is a monotone increasing function of each of its reasons'
ratings. If a new supporting reason is found, the task's value is increased. The
better that new reason, the bigger the increase.

2. If an already-known supporting reason is re-proposed, the value of the task is not
increased (at least, it's not increased very much). Like humans, AM is fooled
whenever the same reason reappears in disguised form.

3. The priority of a task involving concept C should be a monotone increasing
function of the overall worth of C. Two similar tas!s dealing with two different
concepts, each supported by the same list of reasons and reason ratings, should be
ordered by the worth of those two concepts.

I believe that all of these criteria are absolutely essential to good behavior of the system.
Several of the experiments discussed later bear on this question (See Section 6.2, page
125). Note that the messy formula given on the last page does incorporate all 3 of these
constraints. In addition, there are a few features of that formula which, while probably not
necessary or even desirable, the reader should be informed of explicitly:

1. The task's value does not depend on the order in which the reasons were discovered.
This is not true psychologically of people, but it is a feature of the particular
priority-estimating formula initially selected.

2. Two reasons are either cons~aered identical or unrelated. No attempt is made to
reduce the priority value because several of the reasons are overlapping
semantically or even just syntacticaly. This, too, is no doubt a mistake.

3. There is no need to keep around all the individual reasons' rating numbers. The
addition of a new reason will demand only the knowledge of the number of other
reasons, and the old priority value of the task.

4. A task with no reasons gets an absolute zero rating. As new reasons are added, the
priority !cowly increases toward an absolute maximum which is dependent upon
the overall worth of the concept and facet involved.

There is one topic of passing interest which s;ould be covered here. Each possible Act A
(e.g., Fillin, Check, Apply) and each possible facet F (e.g., Examples, Definition, Name(s)) is
assigned a fixed numeric value (by hand, by the author). These values are used inside the
formula on the last page, where it says 'Worth(A)' and 'Worth(F)'. They are fairly resistant
to change, but certain orderings should be maintained for best results. E.g., "Examples"
should be rated higher than "Specializations", or else AM may whirl away on a cycle of
specialization long after the concept has been constrained into vacuousness. As for the Acts,
their precise values turned out to be even less Important than the Facets'.

Now that we've seen how to compute this priority value for any given task, let's not forget
what it's used for. The overall rating has two functions: Tv



Chapter 4 AM: Discovery in Mathematics as Heuristic Search -42-

(I) The tasks on the agenda list are ordered by their ratings, and AM always chooses
the top task. Thus this rating determines which task to execute next. This is not an
ironclad policy: In reality, AM prints out the top few tasks, and the user has the
option of interrupting and directing AM to w,)rk on one of those other tasks
instead of the very top one.

(11" Once a task is chosen, its overall rating determines how much time and space AM
will expend on it before quitting and moving on to a new task. The precise
formulae Rre unimportant. Roughly, the 0-1000 rating is divided by ten to
determine how much time to allow, in cpu seconds. The rating is divided by two to
determine how much space to allow, in list cells.

4.3. Heuristics Create New Concepts

Recall that a heuristic rule's actions are of three types:
1. Suggest new tasks and add them to the agenda.
2. Create a new concept.
3. Fill in some entries for a facet of a concept.

- This subsection discusses the second activity.

~.. Here is the basic idea in a nutshell: Scattered among the "things to do" in the right-hand-
side of a rule are some requests to create specific new concepts. For each such request, the
heuristic rule must specify how to construct it. At least, the rule must specify ways of
assembling enough facets of the new concept to disambiguate it from all the other known
concepts. Typically, the rule will explain how to fill in the Definition of - or an Algorithm
for - the new concept. After executing these instructions, the new concept will "exist", and
a few of its facets will be filled in, and a few new jobs will probably exist on the agenda,
indicating that AM might want to fill in certain other facets of this new concept In the near
future.

4.3.1. An Illustration: Discovering Primes

Here is a heuristic rule that results in a new concept being created:

If the current task was (Fill-in examples of F),
and F is an operation from domain space A into range space 8,

' and more than 100 items are known examples of A (in the domain of F),
and more than 10 range items (in B) were found by applying F to these domain items,
and at least I of these range items is a distinguished member (esp: extremum) 9 of B,

, Then (for each such distinguished member 'b'(8) create the following new concept:

This Is handled as follows: AM takes the given list of range items It eliminates any which are not interesting (according to
Interests(B)) or extreme (an entry on B.Exs-Bdy, the boundary examples of B). Finally, all those extreme

,0 ,range items are moved to the front of this list. AM begins walking down this list, cresating new concepts
according to the rule Sooner or later, a timer (or a storage-spce-walcher) will terminate this costly
activity. Only the frontmost few range items on the list will have generated new concepts. So "especic'ly"
really just means priority consideration.
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Name: F-Inverse-of-b
Definition: X W ( F(x) is b )
Generalization: A
Worth: Average(Worth(A), Worth(F), Worth(B), Worth(b), llExamples(B)II)
Interest: Any conjecture involving both this concept and either F or Inverse(F)

In case the user asks, the reason for doing this is: "Worthwhile investigating those A's which
have an unusual F-value, namely, those whose F-value is b"

The total amount of time to spend right now on all of these new concepts is computed as:
Half the remaining cpu time in the current task's time quantum.

The total amount of space to spend right now on each of these new concepts Is computed as:
The remaining space quantum for the current task.

Although some examples of F-inverse-of-b might be easily obtained (or already known) at
the moment of its creation, the above rule doesn't specifically tell AM how to fill in that
facet. 'The very last line of the heuristic indicates that a few cpu seconds may be spent on
just this sort of activity: filling in facets of the new concept which, though not explicitly
mentioned in the rule, are easy to fill in now. Any facet X which didn't get filled in "right
now' will probably cause a new task to be added to the agenda, of the form: "Fillin facet X of
concept F-inverse-of-b". Eventually, AM would choose that task, and spend a large
quantum of time working on that single facet.

Heuristics for the new concept are quite hard to fill in. This was one of AM's most serious
limitations, in fact (see Chapter 7). Above, we see a trivial kind of "heuristic schema" or
template, which gets instantiated to provide one new, specialized heuristic about the new
concept. That new heuristic tells how to judge the interestingness of any conjecture which
crops up involving this new concept. Whenever such conjectures get proposed, they are
evaluated by calling on just such heuristics.

Now let's look at an instance of when this heuristic was used. At one point, AM was
working on the task "Fill-in examples of Divisors-of".

This heuristic's IF-part was triggered because: Divisors-of is an operation (from Numbers to
Sets of numbers), and far mort" than 100 different numbers are known, and more than 10
different sets of factors were found altogether, and some of them were distinguished by
being extreme kinds of sets: empty-sets, singletons, doubletons and tripletons.

After its left side triggered, the right 1e of the heuristic rule was executed. Namely, four
new concepts were created immediately. Here is one of them:

(.2
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Name: Divisors-of-Inverse-of-Doubleton
Definition: X (x) (Divisors-of(x) is a Doubleton)
Generalization: Numbers
Worth: 100
Interest: Any conjecture involving both this concept and either Divisors-of or Times

This is a concept representing a certain class of numbers, In fact the numbers we call
primes. The heuristic resets a certain variable, so that in case the user interrupts and asks
Why?, AM informs him:

"This concept was created because it's worthwhile Investigating those numbers which
have an extreme divisors.of value; in this case, numbers which have only two divisors".

AM was willing to spend half the remaining quantum of time allotted to "Fillin examples of
Divisors-of" on these four new concepts |o

The heuristic rule Is applicable to any operation, not just numeric ones. For example, when
AM was filling in examples of Set-Intersection, it was noticed that some pairs of sets were
mapped Into the extreme kind of set Empty-set. The above rule then had AM define the
concept of Disjointness: pairs of sets having empty intersection.

4.3.2. The Theory of Creating New Concepts

All the heuristic rule must do Is to fill in enough facets so that the new concept is
disambiguated from all the others, so that it is "defined" clearly. Should AM pause and fill
in lots of facets at that time? After all, several pieces of information are trivial to obtain at
this moment, but may be hard to reconstruct later (e.g., the reason why C was created). On
the other hand, filling in anything without a good reason is a bad idea (it uses up time and
space, and it won't dazzle the user as a brilliant choice of activity).

So the universal motto of M is to fill in facets of a new concept If - and only if - that
filling-in activity will be mi.ch easier at that moment than later on.

In almost all cases, the following facets | will be specified explicitly in the heuristic rule, and
thus will get filled in right away: Definitions, Algorithms, Domain/range, Worth, plus a tie to

10 Some trivial details. One-eighth of the remaining time is spent on each of these 4 concepts: Numbsrs-with-O-divisors,
Numbre-with-l-divisor, Numbers-wth-2-divisors, Numbsrs-wilh-3-divisors. The originatl time/space limits
were in reality about 25 cpu seconds and 800 list cells, and at the moment this heuristic was called, only
about 10 seconds and 600 cells remained, so el. the concept Primes was allotted only 1.2 cpu seconds to
"get off the ground". This was no problem, as it used far less than that. The heuristic rule states that each
of the four new concepts may use up the full remaining space allocation (600 celia), and, e.g., Primes
needed only a fraction of that initially.j The reader may with to glance ahead to Section 5.2, page 67 to note the full range of facets that any concept may

possess: what their names are, and the kind of information that is stored in each.
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some related concept (e.g., if the new concept is a generalization of Equality, then we can
trivially fill in an entry on its Specializations facet: "Equality".)

On the other hand, the following facets will not be trivial to fill in: Conjectures, Examples,
Generalizations, Specializations, and Interestingness. For example, filling in the
Specializations facet of a new concept may involve creating some new concepts; finding some
entries for its Conjectures facet may involve a great deal of experimenting; finding some
Examples of it may involve twisting its definition around or searching. None of these is
easier to do at time of creation than any other time, so it's deferred until some reason for
doing it exists.

For each such "time-consuming" facet F, of the new concept C, one new task gets added to
the agenda, of the form "Fill in entries for facet F of concept C", with reasons of the form
"Because C was just created," and also "No entries exist so far on C.F" 2 . Most of the tasks
generated this way will have low priority rating, and may stay near the bottom of the
agenda untiliunless they are re-suggested foi a new reason.

Using the Primes example, from the last subsection, we see that a new task like "Fillin
specializations of Primes" was suggested with a low rating, and "Fillin examples of Primes" was
suggested with a mediocrel 3 rating. The ratings of these tasks increase later on, when the
same tasks are re-proposed for new reasons.

4.3.3. Another Illustration: Squaring a number

Let's take another simple (but not atypical) illustration of how new concepts get created.
(The reader may skip this subsection; It contains more details about how AM actually sets
up new concepts.)

Assume that AM has recently discovered the concept of multiplication, which it calls
"TIMES," and AM decides that it is very interesting. A heuristic rule exists which says:!4

If a newly-interesting operation F(x,y) takes a pair of N's as arguments,
Then create a new concept, a specialization of F, called F-Itself, taking just one N as

argument, defined as F(x,x), with initial worth Wcrth(F).

the case of F - TIMES, we see that F takes a pair of numbers as Its arguments, so the
heuristic rule would have AM create a new concept called TIMES-Itself, defined as TIMES-

12 C.F is an abbreviation for facet F of concept C

13 Not a low a rating as the task just mentioned Why? Each possible facet has a worth rating which is fixed once and for
all As an illustration, we mention that the facet Examples is rated much higher than Specializations. Why is
this? Because looking for examples of a concept is often a good expenditure of time, producing the raw
data on which empirical induction thrives. On the other hand, each specialization of the new concept C would
itelf be a brand new concept. So filling in entries for the Specializations facet would be a very explotivd
process.

By glancing back at the Primes example, two subsections ago, pige 42, you can imagine what this rule actually looked
like There Is nothing to be gained by stretching it out in all te glory, hence rye taken the liberty
condensing it, inserting pronouns, etc.

________7,
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Itself(x) * TIMES(x,x). That is, create the new concept which is the operation of squaring a
number.

What would AM do in this situation? The global list of concepts would be enlarged to
include the new atom "TIMES-Itself", and the facets of this new concept would begin to be
filled in. The following facets would get filled in almost instantly:

NAME: TIMES-Itseif

DEFINITIONS:

ORIGIN: ,(x,y) [TIMES.DEFN(x,x,y)]

ALGORITHMS: x) [TIMES.ALG(x,x)]

DOMAIN/RANGE: Number -4 Number

GENERALIZATIONS: TIMES

WORTH: 600

The name, definition, domain/range, generalizations, and worth are specified explicitly by
the heuristic rule.

The lambda expression stored under the definition facet is an executable LISP predicate,
which accepts two arguments and then tests them to see whether the second one is equal to
TIMES-Itself of the first argument. It performs this test by calling upon the predicate
stored under the definition facet of the TIMES concept. Thus TIMES-Itself.Defn(4,16) will
call on TIMES.Defn(4,4,16), and return whatever value that predicate returns (in this case,
it returns True, since 4x4 does equal 16).

A trivial transformation of this definition provides an algorithm for computing this
operation. The algorithm says to call on the Algorithms facet of the concept TIMES. Thus
TIMES.Itself.Alg(4) is computed by calling on TIMES.Aig(4,4) and returning that value
(namely, 16).

The worth of TIMES was 600 at the moment TIMES-Itself was created, and this becomes
the worth of TIMES-Itself.

TIMES-Itself is by definition a specialization of TIMES, so the SPECIALIZATIONS facet
of TIMES is incremented to point to this new concept. Likewise, the
GENERALIZATIONS facet of TIMES-Itself points to TIMES.

Note how easy it was to fill in these facets now, but how difficult it might be later on, "out of
context". By way of contrast, the task of, e.g., filling in Specialtzgtons of TIMES-Itself will

• -" be no harder later on than it is right now, so we may as well defer It until there's a good

V ; . . . . . .
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reason for it. This task will probably be added to the agenda with so low a priority that
AM will never get around to it, unless some new reasons for it emerge.

The task "Fill-in examples of TIMES-Itself" is probably worthwhile doing soon, but again it
won't be any harder to do at a later time than it is right now. So it is not done at the
moment; rather, it is added to the agenda (with a fairly high priority).

Incidentally, the reader may be interested to know that the riext few tasks AM selected (in
reality) were to create the inverse of this operation (i.e., integer square-root), and then to
create a new kind of number, the ones which can be produced by squaring (i.e., perfect
squares). Perfect squares were deemed worth having around because Integer-square-root is
defined precisely on that set of integers.

4.4. Heuristics Fill in Entries for a Specific Facet

The last two subsections dealt with how a heuristic rule is able to propose new tasks and
create new concepts. This section will illustrate how a rule can find some entries for a given
facet of a specific concept.

Typically, the facet/concept involved will be the one mentioned in the current task which
was chosen from the agenda. If the task "Fillin Examples of Set-union" were plucked from the
agenda, then the "relevant" heuristics would be those useful for filling in entries for the
Examples facet of the Set.union concept.

There is an important class of exceptions to this, however: conjectures. Some rules will
specify plausible relationships to look for; if found, they constitute a new conjecture. For
example, the reader will see in Section 4.4.4, on page 52, that the unique factorization
theorem is proposed merely as an observation of the form "The range of operation F is not
just B but rather the more specialized concept BB". The particular case of the unique
factorization theorem leads to this statement: "The range of Prime-factoringst 5 is not just
'Sets' but rather 'Singletons'." In fact, this whole conjecture is recorded by merely replacing
<Number-+Set> by <Number-4Singleton> as an entry on the Domain/range facet of the
concept Prtme.factorings.

The reader may be surprised to learn that the only kind of conjecture AM can make is of
that form (add a new entry to some facet of some concept)'6 . Apparently, this is sufficient to
plausibly notice and state most interesting conjectures. Good definitiois make the sta,.ements
of theorems short and simple.' 7

15 Prime-factoring(s), also called Prime-times(s), is the set of all biag.of-primes whose product is x; i.e., all ways of

factoring x into primes.
l6 That's why "conjecturing' m classified under the "add-an-entry" type of heuristic rule action.

17 Exercise for the doubting reader: State the uniqlue factorization theorem in purely set-theoretic terms. S(riously, one

important way that definitions are invented is to see what bulky construct in a theorem can be collapsed into
e single term Typically one hopes that the term will be used elsewhere, of course.
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We'll take thee two kinds of "filling in entries" one at a time: first the standard "find an
entry for the facet of tie concept mentioned in the current task", followed by the Interesting
but rarer activity of "looking for a conjecture".

4.4.1. An Illustration: "Fill in Examples of Set-union"

Recall that a task is typically of the form "Fill in facet F of concept C". How can executing
relevant heuristic rules satisfy such a task? This subsection illustrates how a heuristic rule
might be executed to find some entries for the facet designated by the current task.

A typical heuristic, attached tn the concept Activity, says:

If the current task is to fill in examples of the activity 18 F,
One way to get them is to run F on randomly chosen examples of the domain of F.

Of course, in the LISP implementation, this situation-action rule Is not coded quite so
neatly. it would be more faithfully translated as follows:

If CURRENT-TASK matches (FILLIN EXAMPLES F-anything)),
and F isa Activity,

Then carry out the following procedure:
1. Find the domain of F, and call it D;
2. Find examples of D, and call them E;
3. Find en algorithm to compute F, and call it A;
4. Repeatedly:

4a. Choose any member of E, and call it El.
4b. Run A on El, and call the result X.
4c. Check whether <El,X> satisfies the definition of F.
4d. If so, then add <El -* X> to the Examples facet of F.
4e. If not, then add <El - X> to the Non-examples facet of F.

Let's take a particular instance where this rule would be useful. Say the current task is "Fillin
examples of Set-union". The left-hand-side of the rule is satAwfied, so the right-hand-side is
run.

Step (1) says to locate the domain of Set-union. The facet labelled Domain/Range, on the
Set-union concept, contains the entry (SET SET 4 SET), which indicates that the domain is
a pair of sets. That is, Set-union is an operation which accepts (as its arguments) a pair of
sets, and returns (as its value) some new set.

Since the domain elements are sets, step (2) says to locate examples of sets. The facet
labelled Examples, on t.,e Sets concept, points to a list of about 30 different sets. This
includes {Z}, {A,B,C,D,E), {), {A,{{B}})....

Step (3) involves nothing more than accessing some randomly-chosen entry on the
Algorithms facet of Set-union. One such entry is a recursive LISP function of two
arguments, which halts when the first argument is the empty set, and otherwise pulls an

*Activity" iea goneral concept which irtcludes operations, predicates, relations, functions, etc
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element out of that set and SET-INSERT's It into the second argument, and then recurses
on the new values of the two sets. For convenience, we'll refer to this algorithm as UNION.

We then enter the loop of Step (4). Step (4a) has us choose one pair of our examples of
sets, say the first two {Z} and {A,B,C,D,E}. Step (4b) has us run UNION on these two sets.
The result is {A,B,C,D,E,Z}. Step (4c) has us grab an entry from the Definitions facet of
Set-union, and run it. A typical definition is this formal one:

(), (SI 52 S3)
(AND

(For all x in SI, x is in S3)
(For all x in S2, x is in S3)
(For all x in 53, x is in SI or x is in S2))

It is run on the three arguments S1.{Z), S2-{A,B,C,D,E}, S3-{A,B,C,D,E,Z). Since it returns
"True", we proceed to Step (4d). The construct <{Z), {A,B,C,D,E} -+ {A,B,C,D,E,ZJ> is added
to the Examples facet of Set-union.

At this stage, control returns to the beginning of the Step (4) loop. A new pair of sets Is
chosen, and so on.

But when would this loop stop? Recall that each task has a time and a space allotment
(based on Its priority value). If there are many different rules all claiming to be relevant to
the current task, then each one Is allocated a small fraction of those time/space quanta.
When either of these resources is exhausted, AM would break away at a "clean" point (just
after finishing a cycle of the Step (4) loop) and would rr on to a new heuristic rule for
filling in examples of Set-union.

This concludes the demonstration that a heuristic rule really can be executed to produce the
kinds of entities requested by the current task.

4.4.2. Heuristics Propose New Conlectures

We saw in the sample excerpt (Chapter 2) that AM occasionally notices some unexpected
relationship, and formulates it into a precise conjecture. Below is an example of how this is
done. As you might guess from the placement of this subsection, 19 the mechanis is our
old friend the heuristic rule which fills in entries for certain facets.

In fact, a conjecture evolves through four stages:
1. A heuristic rule looks for a particular kind of relationship. This will typically be of

the form "X is a Generalization of Y", or "X is an example of Y", or "X is the
same as Y", or "FI.Defn(X,Y)" where Fl is an active concept AM knows about, or

9 or recall from the opening remarke of Section 4.4
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"IF l.Defn(Y,X)" 0.
2. Once found, the relationship is checked, using supporting contacts. A great deal of

empirical evidence must favor it, and any contradictory evidence must be
"explained away" somehow.

3. Now it is believed, and AM prints it out to the user. It is added as a new entry to
the Conjecs facet of both concepts X and Y. It is also added as an entry to the
Examples facet of the Conjecture concept.

4. Eventually, AM will get around to the task "Check Examples of Conjecture", or to the
task "Check Conjecs of X". If AM had any concepts for proving conjectures, they
would then be invoked. in the current LISP implementation, these are absent.
Nevertheless, several "checks" are performed: () see if any new empirical evidence
(pro or con) has appeared recently; (i) see if this conjecture can be strengthened;
(ii) check it for extreme cases, and modify it if necessary; (iv) Modify the worth
ratings of the concepts involved in the conjecture.

The left-hand-side of such a heuristic rule will be longer and more complex than most other
kinds, but the basic activities of the right-hand-side will still be filling in an entry for a
particular facet.

* The entries filled in will include: (i) a new example of Conjectures, (Ui) a new entry for the
Conjec facet of each concept involved in the conjecture, (ii) if we're claiming that concept
X is a generalization of concept Y, then "X" would be added to the Generalizations facet of
Y, and "Y" added to the Specializations facet of X, () if X is an Example of Y, "X" is
added to the Examples facet of Y, and "Y" is added to the ISA facet of X.

The right-hand-side may also involve adding new tasks to the agenda, creating new
concepts, and modifying entries of particular facets of particular concepts. As is true of all
heuristic rules, both sides of this type of conjecture-perceiving rule may run any little
functions they want to: any functions which are quick and have no side effects (e.g.,
FORALL tests, PRINT functions, accesses to a specified facet of some concept).

4.4.5. An Ijiustration: "All primes except 2 are odd"

As an illustration, here is a heuristic rule, relevant when checking examples of any concept:

-20

; ,,. , 20These lost Iwo soy that F I M),Y, anid that F I( -X, respectively.
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If the current task is to Check Examples of X,
and (Forsome Y) Y is a generalization of X,
and Y has at least 10 examples,
and all examples of Y (ignoring boundary cases) are also examples of X,

Then print the following conjecture: X is really no more specialized than Y,
and add it to the Examples facet of Conjectures,
and if the user asks, inform him that the evidence for this was that all IlExamples(Y)I Y's

(ignoring boundary examples of Y's) turned out to be X's as well,
and Check the truth of this conjecture on boundary examples of Y,
and add "X" to the Generalizations facet of Y,
and add "Y" to the Specializations facet of X,
and (if there is an entry in the Generalizations facet of Y) add the following task to the

agenda "Check examples of Y", for the reason: "Just as Y was no more
general than X, one-of Generalizations(Y) may turn out to be no more
general than Y", with a rating for that reason computed as:

0.4xllExamples(Generalizations(Y))II
0.3xllExamples(Y)lI
0.3xPriority(Current task).

Lei's take a particular instance where this rule would be useful. Say the current task is
"Check examples of Odd-primes". The left-hand-side of the rule is run, and is satisfied when
the generalization Y is the concept "Primes". Let's see why this is satisfied.

One of entries of the Generalization facet of Odd-primes is "Primes". AM grabs hold of
the 30 examples of primes (located on the Examples facet of Primes), and removes the ones
which are tagged as boundary examples ("2" and "3"). A definition of Odd-prime numbers
is obtained (Definitions facet of Odd-primes), and it is run on each remaining example of
primes (5, 7, 11, 13, 17, ...). Sure enough, they ail satisfy the definition. So all primes
(ignoring boundary cases) appear to be odd. The left-hand-side of the rule is satisfied.

At this point, the user sees a message of the form "Odd-primes is really no more specialized
than Primes". If he interrupts and asks about It, he is told that the evidence for this was
that all 30 primes (ignoring boundary examples of primes) turned out to be Odd-primes.

Of the boundary e'.amples (the numbers 2 and 3), only the integer "2" fails to be an odd-
prime, so the the user is notified of the finalized conjecture: "All primes (other than '2') are
also odd-primes". Tnls is added as an entry on the Examples facet of the concept named
'Conjectures.
Before beginning all this, the Generalizations facet of Odd-primes pointed to Primes. Now,
this rule has us add "Primes" as an entry on the Specializations facet of Odd-primes. Thus

Primes is both a generalization and a specialization of Odd-primes (to within a single stray
exception), and AM will be able to treat these two concepts as if they were merged together.
They are still kept separate, however, in case AM ever needs to know precisely what the
difference between them is, or in case later evidence shows the conjecture to be false21.

21 When space is exhausted, one emergency measure AM takee i to destructively coalesce a pair of concepts XY where X

is both a generalization of and a specialization of Y, even dt there are a couple "boundary" exception*

,
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The final action of the right-hand-side of this rule is to propose a new task (if there exist
some generalizations of the concept Y, which in our case is "Primes"). So AM accesses the
Generalizations facet of Primes, which is "(Numbers)". A new task is therefore added to the
agenda: "Check examples of Primes", with an associated reason: "Just as Primes was no more
general than Odd-primes, so Numbers may turn out to be no more general than Primes".
The reason is rated according to the formula given in the rule; say it gets the value 500.

To make this example a little more interesting, let's suppose that the task "Check examples of
Primes" already existed on the agenda, but for the reasoln "Many examples of Primes have
been found, but never checked", with a rating for the reason of 100, and for the task as a
whole of 200. The global task-rating formula then assigns the task a new overall priority of
600, because of the new, fairly good reason supporting it.

When that task is eventually chosen, the heuristic rule pictured above (at the beginning of
this subsection) will trigger and will be run again, with X-Prtmes and Y-Numbers. That is,
AM will be considering whether (almost) all numbers are primes. The left-hand-side of the
heuristic rule wili quickly fail, since, e.g., "6" is an example of Numbers which does not
satisfy the definition of Primes.

4.4.4. Another illustration: Discovering Unique Factorization
Below is a heuristic rule which is a key agent in the process of "noticing" the fundamental
theorem of arithmetc 22 . (The reader may skip this subsection; it contains more details

about how AM actually proposed conjectures).

If F(a) is unexpectedly a B,
Then maybe (Vx) F(x) is a B.

Below, the same rule is given in more detail. The first conjunct on the IF-part of the
-. heuristic rule indicates that it's relevant to checking examples of any given operation F. A

typical example is selected at random, say F(x),y. Then y is examined, to see if it satisfies
any more 3trlngent properties than those specified in the Domain/range facet of F. That is,
the Domain/range facet of F contains an entry of the form A4B; so if x is an A, then all we
.re guaranteed about y is that it is an example of a B. But now, this heuristic is asking if y
isn't really an example of a much more specializec, concept than B. If it is (say it's an
example of a BB), then the rest of the examples of F are examined to see if they too satisfy

- ~,. this same property. If all examples appear to map from domain set A Into range set BB
(where BB is much more restricted than the set B specified originally in the Domain/range
facet of F), then a new conjecture is made: the domain/range of F is really A-+BB, not A-+B.
Here Is that rule, in crisper notation:

p1,.2

22 The un;que factorization conjecture any positive integer n can be represented as the product of prime numbers in

'%': ~.precisely one way (to within reorderingi of those prime factors) Thus 28 W 2x2x7, and we don't
* distinguish between the factorization (2 2 7) and (2 7 2).

-.,- .<. ,.,
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* If the current task is to Check Examples of the operation F,
and F is an operation from domain A into range B,
and F has at least 10 examples,
and a typical one of these examples is "<x-y>" (so x(A and y(B),
and (Forsome Specialization BB of B), y is a BB.
and all examples of F (ignoring boundary cases) turn out to be BB's,

Then print the following conjecture: "F(a) is always a B8, not simply a B",
and add it to the Examples facet of Conjectures concept,
and add "<A -+ BB>" as a new entry to the Domain/range facet of F, replacing

"<A--)B>",
and if the user asks, inform him that the evidence for this was that all IlExamples(F)II
and examples of F (ignoring boundary examples) turned out to be BB's,
and check the truth of this conjecture by running F on boundary examples of A.

ra . Let's see how this rule was used in one instance. In Task 79 in the sample excerpt in

Chapter 2, AM defined the concept Prime-times, which was a function transforming any

number n into the set of all factorizatior,s of n into primes. For example, Prime-
times(12)-{(2 2 3)), Prime-times(I3)-{(13)}. The domain of F-Prime-times was the concept
Numbers. The range was Sets. More p,,ecisely, the range was Sets.of-Bags-of-Numbers, but
AM didn't know that concept at that time.

The above heuristic rule was applicable. F was Prime-times, A was Numbers, and B was
Sets. There were far more than 10 known examples of Prime-times in action. A typical
example was this one: <21 -+ {(3,7)}>. The rule now asked that 1(3,7)) be fed to each
specialization of Sets, to see if it satisfied any of their definitions. The Specializations facet

1 of Sets was acccessed, and each concept pointed to was run (its definition was run) on the
argument "{(3,7)}". It turned out that Singleton and Set-of-doubletons were the only two
specializations of Sets satisfied by this example. At this moment, AM had narrowed down
the potential conjectures to these two:

1. Prime-times(x) is always a singleton set.
2. Prime-times(x) is always a set of doubletons.

Each example of Prime-times was examined, until one was found to refute each conjecture
(for example, <84{(2,2,2))> destroys conjecture 2). But no example was able to disprove
conjecture I. So the heuristic rule plunged forward, and printed out to the user "A new
conjecture: Prime.times(n) is always a singleton-set, not simply a set". The entry
<Numbers-.Singleton-sets> was added to the Domain/range facet of Prime-times, replacing
the old entry <NumbersSets>.

Let's digress for a moment to discuss the robustness of the system. What if this heuristic
C were to be excised? Could AM still propose unique factorization? The answer is yes, there

are other ways to notice it. If AM has the concept of a Function23 , then a heuristic rule like
the one in the previous subsection (page 50) -will cause AM to ask if Prime-times is not
merely a relation, but also a Function.

23 A single-valued relation That is, for any domain element x, F(x) contains pr iualy one member. ft is never empty (is,
undefined), nor is it ever larger than a singleton is, multiple-vakiad).
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The past few sections should have convinced the reader that isolated heuristic rules really
can do all kinds of things: propose new tasks, create new concepts, fill in entries for specific
facets (goal-driven), and look for conjectures (data-driven empirical induction). The rules
appear fairly general24 - though that must be later verified empirically. They are
redundant in a pleasing way: some of the most "important", well-known, and interesting
conjectures can (apparently) be derived in many ways. Again, we'll have to check this
experimentally.

4.5. Gathering Relevant Heuristics

Each concept has facets which contain some heuristics. Some of these are for filling in,
some for checking, some for deciding interestingness2 , some for noticing new conjectures,
etc.

AM contains hundreds of these heuristics. In order to save time (and to make AM appear
more rational), each heuristic should only be tried in situations where It might apply, where
it makes sense.

How is AM able to zero in on the relevant heuristic rules, once a task has been selected
from the agenda?

4.5.1. Domain of Applicability

The secret is that each heuristic rule !s sto"ed somewhere a propos to its "domain of
applicability". This "proper place" is determined by the first conjunct in the left-hand side
of the rule.

What does this mean? Consider this heuristic:

If the current task is to fill in examples of the operation F, <=
and some examples of the domain of F are known,

Then one way to get examples of F is to run F on randomly chosen examples of the domain
of F.

This is a reasonable thing to try - but only in certain situations. Should 4 be tried when
the current task is to check the Worth facet of the Sets concept? No, it would be irrational.
Of course, even if It were tried then, the left-hand-side would fail very quickly. Yet some
cpu time would have been used, and if the user were watching, his opinion of AM would

24 is, applicable in many situations It would be worse than useless if a rule existed which could lead to a single discovery

like "Fibonacci series" but never lead to any other discoveries. The reasons for demanding generality are
not oily "fairness', but the nsielhts which occur when it is observed that several disparate concepts were

-" all motivated by the same general principle (e g, "looking for the inverse image of extreme")
25 The reader has already seen several heuristics useful for filling in and check,ng facets; here is one for judging

interestingness' an entry on the Interest facet of Compose says that a composition AoB is more interesting
if the range of B equals the domain of A,, than if if they only partially overlap.

. -
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decrease.
26

That particular heuristic has a precise domain of applicability: AM should use it whenever
the current task is to fill in examples of an operation, and only in those kinds of situations.

The key observation is that a heuristic typically applies to all examples of a particular
concept C. In "he case we were considering, C=Operation. Intuitively, we'd like to tack that
heuristic onto the Examples facet of the concept Operation, so it would only "come to mind"
in appropriate situations. This is in fact precisely where the heuristic rule is stored.

Initi.dny, the author identified the proper concept C and facet F for each heuristic H which

AM possessed, and tacked H onto CF2 7. This was all preparation, completed long before
AM started up. Each heuristic was tacked onto the facet which uniquely indicates its
domain of applicability. The first conjunct of the IF-part of each heuristic indicates where
it is stored and where it is applicable. Notice the little arrow (<=) pointing to that conjunct
above. .

While AM is running, it will choose a task dealing with, say, facet F of concept C. AM
must quickly locate the heuristic rules which are relevant to satisfying that chosen task.
AM simply locates all concepts which claim C as an example. If the current task were
"Check the Domain/range of UnionoUnion" 29, then C would be UnionoUnion. Which concepts
claim C as an example? They include Compose-with.Self, Composition, Operation, Active,
Any-concept, and Anything. AM then collects the heuristics tacked onto facet F (in this
case, F is Domain/range) of each of those concepts. All such heuristics will be relevant. In
the current case, some relevant heuristics might be garnered from the Domain/range facet of
the concept Operation. Any heuristic which can deal with the Domain/range facet of any
operation can certainly deal with UnionoUnion's Domain/range. A typical rule on
Operation.Domain/range.Check ° would be this one:

If a Dor/ran entry of F is of the form <D D D... -+ R), where R is a generalization of
0,

Then test whether the range might not be simply D.

Suppose one entry on UnlonoUnion.Dom/ran was '<Nonempty-sets Nonempty-setsNonempty-sets -# Sets>'. Then this last heuristic rule would be relevant, and would have

AM ask the plausible question: Is the union of three nonempty sets always nonempty? The

26 This notion of worrying about a human user ,,o is observing AM run in real time may appear to be quite language- and
machine-dependent An increase in speed of a couple orders of magnitude would radically Mter the
qualitative appearance of AM. In Chapter 7, however, the reader will grasp how difficult it is to
objectively rate a system like AM For that reason, all measures of judgment must be respected. Also, to
the actual human being using the system this really is one of the most important measures.

27 Recall that C.F is an abbreviation for facet F of concept C
28 In the LISP implementation, theic first conjuncte are omitted, since the placement of a heuristic serves the same

29 purpose at if it had some "pre-preconditions" (like these first conjuncte) to determine relevance quickly.
This operation is defined as UnionoUnion(x,yz) - (x u y) u z. It accepts 3 sete as arguments, and returns a new

set as its value.
30 the 'Check' subfocwt of the 'Domain/range' facet of the 'Operation' concept.

L : .,. . . . -.. . . . . . . . - . . . . . , . . . . . - . . . .. . - - . - - . . . . . .
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answer is affirmative, empirically, so AM modifies that Domain/range entry for
UnionoUnion. AM would ask the same question for Intersectolntersect. Although the
answer then would be 'No', It's still a rational inquiry. If AM called on this heuristic rule
when the current task was "Fillin specializations of Bags", it would clearly be an irrational act.
The domain of applicability of the rule is clear, and is precisely fitted to the slot where the
rule is stored (tacked onto Operation.Domain/range).

To recap the basic idea: when dealing with a task "Do act A on facet F of concept C", AM
must !ocate: aii the concepts X claiming C as an example. AM then gathers the heuristics
tacked onto X.F.A, for each such general concept X. All of them - and only they - are
relevant to satisfying that task.

So the whole problem of locating relevant heuristics has been reduced to the problem of
efficiently finding all concepts of which C is an example (for a given concept C). This

. process is called "rippling away from C in the ISA direction", and forms the subject of the
next subsection.

4.5.2. Rippling

Given a concept C, how can AM find all the concepts which claim C as an example?

The most obvious scheme is to store this information explicitly. So the Examples fac,,t of Cwould point to all known examples of C, and the Isa facet of C would point to all known

concepts claiming C as one of their examples. Why not just do this? Because one can
substitute a modest amount of processing time (via chasing links around) for the vast
amount of storage space that would be needed to have "everything point to everything".

Each facet contains only enough pointers so that the entire graph of Exs/Isa and Spec/Genl
links could be reconstructed if needed. Since "Genl"31 is a transitive relation, AM can
compute that Numbers is a generalization of Mersenneaprimes, if the facet Mersenne-
primes.Genl contains the entry "Odd.primes", and Odd-primes.Gen' contains a pointer to

- -. "Primes", and Primes.Genl points to "Numbers". This kind of "rippling" activity is used to
efficiently locate all concepts related to a given one X. In particular, AM knows how to
"ripple upward in the Isa direction", and quickly3 2 locate all concepts which claim X as one
of their examples.

It turns out that AM cannot simp!y call for X.Isa, then the Isa facets of those concepts, etc.,

31 "Genl" is an abbreviation for the Generalizations facet of a concept. aimlaorly, "Spec" means Specializations, Exs means

Examples, etc. "6a" is the converse facet to Exe; is, A ( BExs if f B ( Alsi. Saying "Gen is transitive" Just
means the following if A is a generalization of B, and B of C, then A is also a generalization of C.' 32 With about 200 known concepts, with each loa facet and each Gent facet pointing to about 3 other concepts, about 25
hnks will be traced along in order to locate about a doze,, final concepts, each of which claims the given one
as an example This whole rippling process, traci- 25 linkages, uses loes than 01 cpu seconds, in

compiled Interlisp, on a KI-10 type PDP-0.

L.% .
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because Isa is not transitive33 . For the interested reader, the algorithm AM uses to collect
Isa's of X is given below.34

1. All generalizations of the given concept X are located. AM accesses X.Genl, then
the Gen] facets of those concepts, etc.

2. The "Isa" facet of each of those concepts is accessed.
3. AM locates all generalizations of these newly-found higher-level concepts. This is

the list of all known concepts which claim X as one of their examples.

In regular form, one might express this rippling recipe more compactly as:
GenI*(la(GenI*(X))). There is not much need for a detailed understanding of this process,
hence It will not be delved into further In this thesis. This section probably already
contains more than anyone would want to know about rippling.34

4.5.3. Ordering the Relevant Heuristics

Now that all these relevant heuristics have been assembled, in what order should A.M
execute them?35 It is important to note that the heuristics tacked onto very general conceptswill be applicable frequently, yet will not be very powerful. For example, here is a typical
heuristic rule which is tacked onto the Examples facet of the very general concept Any-
concept:

If the current task is to fill in examples of any concept X,
Then one way to get them is to symbolically instantiate36 a definition of X.

It takes a tremendous amount of inference to squeeze a couple awkward examples of
Intersectolntersect out that concept's definition. Much time could be wasted doing so 3 7.

If x is& y, end y isa z, then x is (generally) NOT a z. This is due to the intraneitivity of "member-of". Generalization is
transitive, on the other hand, because "subset-of" is transitive.

34 For the very interested reader, i is explained in great detail in file RIPPLEfdis,dbl at SAIL This file has been
permanently archived at SAIL.

The discussion below assumes that the heuristcs don't interact with each other; I.*, that each one may act independently
of all others. The validity of this simplification is tested empirically (see Chapter 6) and discussed
theoretically (see Chapter 7) later.

36 "Symbolic instantiation" is a euphemism for a bag of tricks which transform a declarative definition of a concept into
particular entities satisfying that definition. The only constreint on the tricks is that they not actually run
the definition One such trick might be: if the definition is recursive, merely find some entity that satisfies
the base step. AM's symbolic instantiation tricks are too hand-crafted to be of great interest, hence this willnot be covered any more deeply here. The interested reader is directed to the pioneering work by

(Lombardi A Raphael 641, or the more recent literature on these techniques applied to automatic program
verification (e.1, (Moore 75)).

Incidentally, this Hustrotes why no single heuristic should be allowed to monopolize the processing of any one task.
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just as general heuristics are weak but often relevant, specific heuristics are powerful but
rarely relevant. Consider this heuristic rule, which is attached to the very specific concept
Compose-with-Self:

If the current task is to fill in examples of the composition FoF,
Then include any fixed-points of F.

For example, since Intersect(phi,X) equals phi, so must IntersectoIntersect(phi,X,Y). 38 .
Assuming that such examples exist already on Intersect, this heuristic will fill in a few
examples of Intersectointersect with essentially no prucessing req ured. Of course the
domain of applicability of this heuristic is minuscule.

As we expected, the narrower its domain of applicability, the more powerful and efficient a
heuristic is, and the less frequently it's useful. Thus in any given situation, where AM has
gathered many heuristic rules, it will probably be best to execute the most specific ones first,
and execute the most general ones last.

Below are summarized the three main points that make up AM's scheme for finding
relevant heuristics in a "natural" way and then using them:

1. Each heuristic is tacked onto the most general concept for which it applies: it is
given as large a domain of applicability as possible. This will maximize its
generality, but leave its power untouched. This brings it closer to the "ideal"
tradeoff point between these two quantities.

2. When the current task deals with concept C, AM ripples away from C and quickly
locates all the concepts of which C is an example. Each of them will contain
heuristics relevant to dealing with C.

3. AM then applies those heuristics in order of increasing generality. You may wonder
how AM orders the heuristics by generality. It ttrns out that the rippling process
automatically gathers heuristics in order of increasing generality. In the LISP
system, each rule ;s therefore executed as soon as it's found. So AM nevers wastes
time gathering heuristics it won't have time to execute.

4.6. AM's Starting Heuristics

This section will briefly characterize the collection of 242 heuristic rules which AM was
originally given. A complete listing of those rules is found in Appendix 3; the rule
numbers below refer to the numbering given in that appendix.

38 phi is anothsf name for the empty set, also written (1 This last sentence thus says that since ) fl X - {, then ({n n
X) n Y must also equal {}
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4.6.1. Heuristics Grouped by the Knowledge They Embod,

Many heuristics embody the belief that mathematics is an empirical Inquiry. That is, one
approach to discovery is simply to perform experiments, observe the results, thereby gather
statistically significant amounts of data, Induce from that data some new conjectures or new
concepts worth isolating, and then repeat this whole process again. Some of the rules which
capture this spirit are numbers 21, 43-57, 91, 136-139, 146-148, 153-154, 212-216, 225,
and 241. As one might expect, most of these are "Suggest" type rules. They indicate
plausible moves for AM to make, promising new tasks to try, new concepts worth studying.
Almost all the rest are "Fillin" type rules, providing empirical methods to find entries for a
specified facet.

Another large set of heuristics is used to embody - or to modify - what can be called
"focus of attention". When should AM keep on the same track, and when not? The first
rules expressing varying nuances of this Idea are numbers 1-5. The last such rules are
numbers 209-216. Some of these rules are akin to goal-setting mechanisms (e.g., rule 141).
In addition, many of the "Interest" type rules have some relation to keeping AM Interested
in recently-chosen concepts (or: in concepts related to them, e.g. by Analogy, by Genl/Spec,
by Isa/Exs,...).

The remaining "Interest" rules are generally some re-echoing of the following notion: X is
interesting if F(X) has an unexpected (interesting) value. For example, in rule 26, "F(X)"
is just "Generalizations of X". In slightly more detail, the principle characteristics of
interestingness are:

* symmetry (e.g., In an expanding analogy)
* coincidence (e.g., In a concept being re-discovered often)
9 appropriateness (e.g., in choosing an operation H so that GoH will have nicer

Domain/Range characteristics than G itself did)
, recency (see the previous paragraph on focus of attention)
- individuality (e.g., the first entity observed which satisfies some property)

.sefulness (e.g., there are many conjectures involving It)
* association (i.e., the given concept is related to an interesting one)

One group of heuristic rules embeds syntactic tricks for generalizing definitions (Lisp
predicates), specializing them, instantiating them, symbolically evaluating them, Inverting
them, rudimentarily analyzing them, etc. For example, see rules 31 and 89. Some rules
serve other syntactic functions, like ensuring that various limits aren't exceeded (e.g., rule
15), that the format for each facet is adhered to (e.g., rule 16), that the entries on each
facet are used as they are meant to be (e.g., rules 9 and 59), etc. Many of the "Check"
type heuristics fall into this category.

Finally, AM possesses a mass of miscellaneous rules which evade categorization. See, e.g.,
rules 185 and 236. These range from genuine math heuristics (rules which lead to discovery
frequently) to simple data management hacks.

No detailed analysis has been performed on the set of heuristics AM possesses, as of the
time of writing of this thesis.
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4.6.2. Heuristics Grouped by How Specific They Are

Another dimension of distribution of heuristics, aside from the above functional one, is
simply that of how high up in the Genl/Spec tree they are located. The table beloy
summarizes how the rules were distributed in that tree:

LEVEL elL 1Con:1 a w/Hour i Hours Av Avi w/Hour a Filh_. n Su a Check a int

0 Anything 1 1 10 10.0 10.0 0 5 0 5
1 Any-Concept 1 1 110 110.0 110.0 39 30 20 21
2 Active 2 2 24 12.0 12.0 7 10 4 3
3 Operation 6 3 31 5.2 10.3 11 3 3 14

>4 Union 100 11 63 0.6 5.7 26 15 8 16

Here is a key to the column headings:
LEVEL: How far down the Gen]/Spec tree of concepts we are looking.
e.g.: A sample concept at that level.
* Con's: The total number of concepts at that level.
0 w/Heur: How many of them have some heuristics.
* Heurs: The total number of heuristics attached to concepts at that level.
Avg: (* Heurs) I (. Concepts); i.e., the mean number of heuristics per concept, at that

level.
Avg w/Heur: (* Heurs) I (* w. Heurs)
* Fillin: Total number of "Fillin" type heuristics at that level.

Sugg: Total number of "Suggest" type heuristics at that level.
* Check: Total number of "Check" type heuristics at that level.
* Int: Total number of "Interestingness" type heuristics at that level.

The heuristic rules are seen not to be distributed uniformly, homogeneously among all the
initial concepts. The extent of this skewing was not realized by the author until the above
table was constructed. A surprising proportion of rules are attached to the very general
concepts. The top 10% of the concepts contain 73% of all the heuristics. One notable
exception is the "Interest" type heuristics: they seem more evenly distributed throughout the
tree of initial concepts. This tends to suggest that future work on providing "meta-
heuristics" should concentrate on how to automatically synthesize those Interest heuristics for
newly-created concepts.

A.'.
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Chapter 5. AM's Concepts

This chapter contains material about AM's anatomy. After a brief overview, we'll look in
detail at the way concepts are represented (Section 5.2). This includes a discussion of each
kind of facet a concept may possess. Wedged in among the implementation details and
formats are a horde of tiny ideas; they should be useful to anyone contemplating working
orn a system similar in design to AM.

The chapter closes by sketching all the knowledge AM starts with. The concepts will be
diagrammed, and will also have a brief description, sufficient for the reader to follow laterchapters without trouble. Instead of using up a large number of pages for an unreadable

listing of all of the specific information initially supplied re each concept, such complete
coverage is relegated to Appendix 2.1.

The next chapter starts on page 114.2

5.1. Motivation and Overview

Each concept consists merely of a bundle of facets. The facets represent the different aspects
of each concept, the kinds of questions one might want to ask about the concept:

How valuable Is this concept?
What is its definition?
If it's an operation, what is legally in its domain?
What are some generalizations of this concept?
How can you separate the interesting instances of this concept from the dull ones?
etc.

Since each concept is a mathemati il entity, the kinds of questions one might ask are fairly
constant from concept to concept. This set of questions might change significantly for a new
domain of concept.

One "natural" representation for a concept in LISP is therefore as a set of attribute/value

That appendix lists each concept, giving a condensed listing of the facts initially given (by the author) to AM about each

facet of that concept. This material is translated from LISP into English and standard math notation. The
appendix mi preceded by an alphabetical index of the concepts and the page number on which they are
presented That index is on page 173. Some unmodified 'concepts" -- still in LISP -a are displayed in
Appendix 23

2 Though devoid of theoretical significance, that sentence has alas proved of high empirical value,

.. . .-4. . . . . . ... . . .,. . . .-- - ' : ' .. . ., ., .- : .- . .. ' - .... -.- . .,. .. ,
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pairs. That is, each concept is maintained as an atom with a property list. The names of the
properties (Worth, Definitions, Domain/Range, Generalizations, Interestingness, etc.)
correspond to the questions above, and the value stored under property F of atom C is
simply the value of the F-facet of the C.concept. This value can also be viewed as the
answer which expert C would give, if asked question F. Or, It can be viewed as the contents
of slot F of frame C.

5.1.1. A Glimpse of a Typical Concept

As an example, here is a stylized rendition of the SETS concept. This is a concept which is
meant to correspond to the notion of a set of elements. The format P: v ,v2.... is used to
indicate th.',t the va,.e of property P is the list vlv 2,... That is, the concept Sets has entries
v l,v2,... for its facet P. For example, according to the box below, "Singleton" is one entry on

the Specializations facet of Sets.

I shall not digress here to explain each of these entries - and what are apparently
omissions. Such things will be done later in this chapter3. For now, just glance at it to get
the flavor of what a concept is like.

The individual facets will be diecussso ore at a time. This particular concept is shown at an intermediate state of being
filled in. Although several facets are blank, many are filled in which were initially empty (eg., Examples). The
reader wishing to see what this concept was like at the time that AM started up should turn ahead to page
211 (inside Appendix 2).43

I
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Name(s): Set, Class, Collection LDefinitions:

Recursive: % (S) (S.l or Set.Definition (Remove(Any-member(S),S))]
Recursive quick: X (S) [Sal) or Set.Definition (CDR(S))]
Quick: X (S) (Match S with l..

Specializations: Empty-set, Nonempty-sot, Set-of-structures, Singleton
Generalizations: UnorderAd-Structur , No-multiple-elements-Structure
Examples:

Typicafl ), (A), IA,B}, (3)

Barely: (), (A, 9, IC, { j I A, C, (3,3,3,9), <4,I,A,{e),A))))
Not-quite: {A,A), O, {BA}
Foible: <4,1,A,I>

C:njec's: All unordered-structures are sets.
Intu's:

Geometric: Vann diagram. (See [Venn 99], or [Skemp 71 .
Analogs: beg, list, oset
Worth: 600
View:

Predicate: X (P) (x(Domain(P) I P(x)}
Structure: X. (S) Enclose-in-brsces(Sort(Remove-multiple-elements(S)))

Suggest: If P is an interesting predicate over X, consider {x(X I P(x)).
In-domain-of: Union, Intersection, Set-difference, Set-equality, Subset, Member
In-range-of: Union, Intersection, Set-difference, Satisfying

To decipher the Definitions facet, there are a few things you must know. An expression of
the form I (x) E)" is called a Lambda expression after Church4, and may be considered
an executable procedure. it accepts one argument, binds the variable "x" to the value of
that argument, and then evaluates "E" (which is probably some expression involving the
variable x). For example, "(;k (x) (x+5))" is a function which adds 5 to any number; If given
the argument 3, this lambda expression will return the value 8.

The second thing you must know is that facet F of concept C will occasionally be
abbreviated as C.F. In those cases where F is "executable", the notation C.F will refer to
applying the corresponding function. So the first entry in the Definitions facet is recursive
because it contains an embedded call on the function Set.Definition. Notice that we are
implying that the name of that lambda expression itself is "Set.Definition".

There are some bizarre implications of this: since there are three separate but equivalent
definitions, AM may choose whichever one it wants when It recurs. AM can choose one via
a random selection scheme, or always try to recur into the same definition as it was just in,
or perhaps suit its ch,;ce to the form of the argument at the moment.

For example, one definition might be great for arguments of size 10 or less, but slow for
bigger ones, and another definition might be mediocre for all size arguments; then AM

Before and 6uring Church, it's called a function, See [Church 41 7.
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should use the mediocre definition over and over again, until the argument becomes smal
enough, and from then on recur only into the fast definition. Although AM embodies this
"smart" scheme, the little comments necessary to see how it does so have be excised from the
version shown above in the box. This will be explained later in this chapter, on page 90.

All concepts possess executable definitions, though not necessarily effective ones. They each
have a LISP predicate, but that predicate is not guaranteed to terminate. Notice that the
definitions for Sets are all definitions of finite sets.5

5.1.2. The main constraint: Fixed set of facets

One important constraint on the representation is that the set of facets be fixed for all the
concepts. An additional constraint is that this set of facets not grow, that it be fixed once
and for all. So there is one fixed, universal list of two dozen. types of facets. Any facet of
any concept must have one of those standard names. All concepts which have some
examples must store them as entries on a facet called Example!; they can't call them
Instances, or Cases, or G00037's. This constraint is known as the "Beings constraint"6 , and
has three important consequences:

1. OUTLINE: First, it provides a nice, distributed, universal framework on which to
display all that is known about a given concept. For example, when AM creates a
new concept like "Square-root", the user can judge how well AM understands that
concept by examining Square-root's property-list (the list of entries for each of its
facets). Similarly, AM can instantly tell what facets are not yet filled in for any
given concept, and this will In turn suggest new tasks to perform. In other words,

-. ~ this constraint helps define the "space" which AM must explore, and makes it
obvious what parts of each concept have and have not yet been investigated.

2. STRUCTURE: The constraint specifies that there be a set of facets, not just one.
This set was made large enough that all the efficiency advantages of a "structured"
representation are preserved (unlike totally uniform representations, e.g. pure
production systems with simple memories as data structures, or predicate calculus).

3. UNIFORMITY: The most important benefit of the Beings constraint arises when
AM7 wants to get a particular question answered - especially if the information

pertains to related concepts. The advantage is that it'll have a very limited
repertoire of questions it may ask, hence there will be no long searching, no
misunderstandings. This is the same advantage that always arises when everyone
uses a common language.

We shall illustrate the last two advantages by using the Sets concept pictured in the box a
couple pages ago. How does AM handle a task of this form: "Check examples of Sets"? AM
accesses the examples facet of the Sets concept, and obtains a bunch of items which are all

5 The third definition, "{ )", may not look tinite, but consider that ellipsis notation is not permitted within any specific set.
6 See [Lser't 75b) Historically, each concept module was called a "BEING".

Actually, the requestor is not "AM" in toto, but rather simply a clause which is a part of a heurictic rule, or a bit of code
embedded within an entry on an executable facet, such as Algorithms

i".'X .' L- - -- '--.
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probably sets. If any Isn't a set, AM would like to make It one, if that involves nothing
difficult. AM locates all the generalizations of Sets8 , and comes up with the list <Sets,
Unordered-Sti'uctures, No-multiple.elements-Structures, 'Structures, Objects, Any-concept,
Anything>. Next, the "Check" facet of each of these is examined, and all its heuristics are
collected. For example, the Check facet of the No.multiple.elements-Structures concept
contains the following entry: "Eliminate multiple occurrences of each element" (of course this
is present not as an English sentence but rather as a little LISP function). So even though
Sets has no entries for Its Check facet, several little functions will be gathered up by the
rippling process. Each potential set would be subjected to all those checks, and might be
modified or discarded as a result.

There is enough "structure" around to keep the heuristic rules relevant to this task isolated
from very Irrelevant rules, and there is enough "uniformity" to make finding those rules
very easy.

The same rippling would be done to find predicates which tell whether a set is interesting
or dull. For example, one entry on the Interestingness facet of the Structure concept says
that a structure is interesting if all pairs of members satisfy the same rare predicate P(x,y)
[for any such P. So a set, all pairs of whose members satisfy "Equality," would be
considered interesting. In fact, every Singleton is an interesting Structure for just that
reason. A singleton might be an interesting Anything because it takes only a few characters
to type It out (thereby satisfying a criterion on Anything.Interest).

To locate all the specializations of Sets, the rippling would go in the opposite direction. For
example, one of the entries on the Specializations facet of Sets is Set-of-structures; one if its
Specialization entries is Set-of-sets. So this latter concept will be caught in the net when
rippling away from Sets in the Specializations direction.

If AM wants lots of examples of sets, it has only to ripple in the Specializations direction,
gathering Examples of each concept it encounters. Examples of Sets-of.sets (like this one:
{A {C,D}}}) will be caught in this way, as will examples of Sets-of-numbers (like this one:

{ 1,4,51), because two specializations of Sets are Sets-of-Sets and Sets-of-Numbers.

In addition to the three main reasons for keeping the set of facets the same for all the
concepts (see previous page), we claimed there were also reasons for keeping that 3et fixed
once and for all. Why not dynamically enlarge it? To add a new facet, its value has to be
filled in for lots of concepts. How could AM develop the huge body of heuristics needed to
guide such filling-in and checking activities? Also, the number of facets Is small to begin
with because people don't seem to use more than a few tens of such "properties" in
classifying knowledge about a conceptl . If the viability of AM seemed to depend on this
ability, I would have worked on it. AM got along fine without being able to enlarge its set
of facets, so no time was ever spent on that problem. I leave it as a challenging, ambitiousopen research problem".

a by "rippling" upward from Sets, in the Genl direction
n We are assuming that AM has run for some time, and already discovered Numbers, and already defined Sete-of-Numbere.
10 This data ts gathered from introspection by myself and a few others, and should probably be tested by performing ome

psychological experiments.

U
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5.1.3. BEINGs Representation of Knowledge

Before discussing each facet in detail, let's interject a brief historic digression, to explain the
origins of this modular representation scheme.

The ideas arose in an automatic programming context, while working out a solution to the
problem of constructing a computer system capable of synthesizing a simple concept-
discrimination program (similar t, r i -ion 1i0]). The scenario envisioned was one of
mutual cooperation among a group of a hundred or so experts, each a specialist in some
minute detail of coding, concept formation, debugging, communicating, etc. Each expert was
modelled by one module, one BEING. Each BEING had the same number of slots (parts,
facets), and each slot was interpreted as a question which that BEING could answer. The
community of experts carried on a round-table discussion of a programming task which was
specified by a human user. Eventually, by cooperating and answering each other's
questions, they hammered out the program he desired. See [Lenat 75b] for details.

The final system, called PUPS, did actually synthesize several large LISP programs,
including many variants of the concept-learning program. This is described fully in [Lenat
75a). Unfortunately, PUP6 had virtually no natural language ability and was therefore

* unusable by an untrained human. Its modal output was "E?".

The search for a new problem domain where this communication difficulty wouldn't be so
severe led to consideration of elementary mathematics.

The other main defect of PUP6 was its narrowness, the small range of 'target' programs
which could be synthesized. PUP6 had been designed with just one target in mind, and
almost all it could do was to hit that target. The second constraint on th. new task domain
was then one of having a non-specific target, a very broad or diffuse goal. This pointed to
an automated researcher, rather than a problem-solver.

These two constraints then were (i) elementary math, because of communication ease, and
(ii) self-guided exploration, because of the danger of too specific a goal. Together, they
directed the author to an investigation which ultimately resulted in the AM project.

5.2,. Facets

How is each concept represented? Without cOziming that this is the "best" or preferred
scheme, this section will treat in detail AM's representation of this knowledge.

We have seen that the representation of a concept can loosely be described as a collection of
facet/value pairs, where the facets are drawn from a fixed set of about 25 total possible
facets.fri -'The facets break down into three categories:

1 . Facets which relate this concept C to some other one(s): Generalizations,
Specializations, Examples, Isa's, In-domain-of, Ir,-range.of, Views, Intu's, Analogies,I-.. Conjec's

2. Facets which contain information intensive to this concept C: Definitions,
Algorithms, Domain/Range, Worth, Interest

4.'i
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3. Sub-facets, containing heuristics, which can be tacked onto facets from either group
above. These include: Suggest, Fillin, Check

Some facets como in several flavors (e.g., there are really four separate facets - not Just one
- which point to Examples: boundary, typical, Just-barely-failing, foibles).

This section will cover each facei in turn. Let's begin by listing each of them. For a chan e
of pace, we'll show a typical question that each one might answer about concept C:11

Name: What shall we call C when communicating with the user?
Generalizations: Which other concepts have less restrictive definitions than C?
Specializations: Which concepts satisfy C's definition plus some additional constraints?
Examples: What are some things that satisfy C's definition?
Isa's: Which concepts' definitions does C Itself satisfy?' 2

In-domain-of: Which operations can be performed on C's?
In-range-of: Which operations result In values which are C's?
Views: How can we view some other kind of entity as If it were a C?
Intu's: What is an abstract, analogic representation for C?
Analogies: Are there similar (though formally unrelated) concepts?
Conjec's: What are some potential theorems involving C?
Definitions: How can we tell if x is an example of C?
Algorithms: How can we execute the operation C on a given argument?
Domain/Range: What kinds of arguments can operation C be executed on? What

kinds of values will it return?
Worth: How valuable is C? (overall, aesthetic, utility, etc.)
Interestingness: What special features make a C especially Interesting?

In addition, each facet F of concept C can possess a few little subfacets which contain
heuristics for dealing with that facet of C's:

F.Fillin: How can entries on C.F be filled in? These heuristics get called on when the
current task is "Fillin facet F of concept X", where X Is a C.

F.Check: How can potential entries on C.F be checked and patched up?
F.Suggest: If AM gets bogged down, what are some new tasks (related to C.F) it might

consider?

We'll now begin delving into the syntax and semantics of each facet, one by one. Future
chapters will not depend on this material. The reader may wish to skip to Section 5.3 (page
105).

5.2.1. Generalizations/Specializations

In this discussion, "C" represents the name of the concept whose facet is beng discussed, and may be read "the given
concept.

12 Notice that C will therefore be an example of each member of lsa's(C).
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Generalization makes possible conscious, controlled, and accurate accomodation of
one's existing schemas, not only in response to the demands for assimilation of
new situations as they are encountered, but ahead of these demands, seeking or
creating new examples to fit the enlarged concept.

-- Skeonp

We say concept A "is a generalization of' concept B iff every example of B is an example of
A. Equivalently, this is true iff the definition of B can be phrased as "; (x) [A.Defn(x) and
P(x)]"; that is, for x to satisfy B's definition, it must satisfy A's definition plus some
additional predicate P. The Generalizations facet of concept C will be abbreviated as
C.Genl.

C.Genl does not contain all generalizations of C; rather, just the "immediate" ones. More
formally, if A is a generalization of B, and B of C, then C.Genl will not contain a pointer to
A. Instead, C will point to B13 .

Here are the recursive equations which permit a search process to quickly find all
generalizations or specializations of a given concept X:

Generalizations(X) a Genl*(X) x {X) U Generalizations(X.Genl)
Specializations(X) a Spec*(X) a {X} U Specializations(X.Spec)

For the reader's convenience, here are the similar equations, presented elsewhere in the text,
for finding all examples of - and Isa's of - X:

Examples(X) • Spec*(Exs(Spec*(X)))
Isa's(X) a Genl*(lsa(Genl*(X)))

The format of the Generalizations facet is quite simple: it is a list of concept names. The
Generalizations facet for Odd-primes might be:

(Odd-numbers Primes)

Div

3,n generol, C.Genl will contain an entry Xl; XI.Gsnl will contain an entry X2; .; Xn.Genl will contain B as one entry; BGenl
will contein Y I;-.; Yn Genl will contain A.
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Here is a small diagram representing generalization relationships. The only lines drawn
represent the pointers found in the Genl facets of these concepts:

Object

Number

ri

Odd-numbers Primes

Odd-pri ms Even-primes

Mersenne-pr imes

Each of those lines represents an arrow which slants upwards, indicating a Genl link. For
example, we see that the Generalizations facet of Odd-primes contains pointers to both
Odd-numbers and to Primes. There is no pointer from Odd-primes upward to Number,
because there is an "intermediate" concept (namely, Primes). There is no pointer from
Mersenne-primes to Object, since a chain of intermediate concepts links them.

The reason for these strange constraints is so that the total number of links can be
minimized. There is no harm if a few redundant ones sneak in. In fact, frequently-used
paths are granted the status of single links, as we shall soon see.

We've been talking about both Specializations and Generalizations as if they were very
similar to each other. It's time to make that more explicit:

|7.' -I.
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Specializations are the converse of Generalizations. The format is the same, and (hopefully)
A is an entry on B's Specializations facet if B is an entry on A's Generalizations facet.

The uses of these two facets are many:
1. AM can sometimes establish independently that A is both a generalization and a

specialization of B; in that case, AM would like to recognize that fact easily, so it
can conjecture that A aid B specify equivalent concepts. Such coincidences are
easily detected as cyles in the Genl (or Spec) graph. In these cases, AM may
physically merge A and B (and all the other concepts in the cycle) into one concept.

2. Sometimes, AM wants to assemble a list of all specializations (or generalizations) of'
X, so that it can test whether some statement which is just barely true (or false) for
X will hold for any of those specializations of X.

3. Sometimes, the list of generalizations is used to assemble a list of isa's; the list of
specializations helps assemble a list of examples.1 4

4. A common and crucial use of the list of generalizations is to locate all the heuristic
rules which are relevant to a given concept. Typically, the relevant rules are those
tacked onto Isa's of that concept, and the list of Isa's is built up from the list of
generalizations of that concept. This was also mentioned on page 56.

5. To incorporate new knowledge. If AM learns, conjectures, etc. that A is a
specialization of B, then all the machinery (all the theorems, algorithms, etc.) for B
become available for working with A.

Here is a little trick that deserves a couple paragraphs of its own. AM stores the answers to
common questions (like "What are all the specializations of Operation") explicitly, by
intentionally permitting redundant links to be maintained. If two requests arrive closely in
time, to test whether A is a generalization of B, then the result is stored by adding "A" as
an entry on the Generalizations facet of B, and adding "B" as a new entry on the
Specializations facet of A. The slight extra space is more than recompensed in cpu time
saved.

If the result were False (A turned out not to be a generalization of B) then the links would
specify that finding explicitly, so that the next request would not generate a long search
again. Such failures are recorded on two additional facets: Genf-not and Spec-not. Since
most concept pairs A/B are related by Spec-not and b) Genl-not, the only entries which get
recorded here are the ones which were frequently called for by AM. If space ever gets tight,
all such facets can be wiped clean with no permanent damage done.

These two "shadow" facets (Genl-not and Spec-not) are not useful or interesting in their own
r;ght. If AM ever wished to know all the concepts which are not generalizations of C, the
fastest way would be to take the set-difference of all concepts and Generalizations(C). Since
they are quite incomplete, Genl-not and Spec-not are used more like a cache memory: they
save time whenever they are applicable, and don't really cost much when they aren't
applicable. Because of their superfluity, these two facets will not be mentioned again. I only
mentioned them above because they do greatly speed up AM's execution time, and because
they may have some psychological analog.

14 This process was clled RIPPLING, and was descriied in Chapter 4. See also footnote 34 in that chapter.
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5.2.2. Examples/Isa's

Usually, to show that a definition implies no contradiction, we proceed by example
we try to make an example of a thing satisfying the definition. We wish to define
a notion A, and we say that, by definition, an A is anything for which certain
postulates are true. If we can demonstrate directly that all these postulates are
true of a certain object B, the definition will be justified; the object B will be an
examc pe of an A.

-- Poincare'

Following Poincare', we say "concept A is an example of concept B" 1ff A satisfies B's
definition.t5 Equivalently, we say that "A isa B". It would be legal (in that situation) for "A"
to be an entry on B.Exs (the Examples facet of concept B) and for "B" to be an entry on
A.Isa (the Isa's facet of concept A). Some earlier mention of the Examples and Isa's facets
can be seen in Chapter 4, page 57.

The Examples facet of C does not contain all examples of C; rather, Just the "immediate"
ones. The examples facet of Numbers will not contain "II" since it is contained in the
examples facet of Odd-primes. A "rippling" procedure is used to acquire a list of all
examples of a given concept. The basic equation i.:

Examples(x) a Specializations(Exs(Specializations(x)))

where Exs(x) is the contents of the examples facet of x. Examples(x) represents the final list
of all known items which satisfy the definition of X. Examples(x) thus must include Exs(x).
Specializations(x) might be more regularly written Spec"(x). That is, all members of x.Spec,
all members of their Spec facet, etc. Note the similarity of this to the formula for Isa's(x),
given on page 57. We could also write the above equation as follows:

Examples(x) a Spec*(Exs(Spec*(x)))

As an illustration, we shall show how AM would recognize that "3" Is an example of
Object:

F: Whet does this mean? B.Dafn is a Lisp predicate, a Lambda expression. If it is fod A as its argument, and it returns True,

we say that A is a B, or that A satisfies B's dofinition If B.Defn returns NIL, we say that A is not a B, or

that A fails B's definition. If B.Dfn runs out of time before returning a T/NIL value, there is no definite
statement of this form we can make In that case, AM might check to see whether A satisfies the definition
of some specialization of B, or whether A fails the definition of some generalization, of B.

.... .... ~ ~ .-.---- -.- , 7
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Object

Number

Odd-numbers Primes

Odd-primes

Mereenne-pr imes

As the graph above shows, AM would ripple in the Spec direction 4 times, moving from
Object all the way to Mersenne-primes; then descend once in the Exs direction, to reach "3";
then ripple 0 more times in the Spec direction. Thus "3" is seen to be an example of
Object, according to the above formula. Similarly, we see that "3" is also an example of
Number, of Primes, of Odd-number, of Odd-primes, and of course an example of

5 .Mersenne-primes.

As with Generalizations/Specializations, the reasons behind the incomplete pointer structure
is simply to save space, and to minimize the difficulty of updating the graph structure

* .-
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whenever new links are found. Suppose a new Mersenne prime1 is computed. Wouldn't it
be nice simply to add a single entry to the Exs facet of Mersenne-primes, rather than to
have to update the Exs pointers from a dozen concepts?

There is no harm if a few redundant links sneak in. In fact, frequently-used paths are
granted the status of single links. If two requests arrive closely in time, to test whether A
isa B, then the result is stored as an entry on the Isa facet of A, and the Exs facet of B. If
the result were False, then the links would specify that, so that the next request would not
generate a long search. In fact, there is a separate facet called Exs-not, and one called Isa-
not. These two shadowy facets are quite analogous to the unmentionable facets "Genl-not"
and "Spec-not", discussed in the previous subsection.

"Isa's" is the converse of "Examples". The format is the same, and (if A and B are both
concepts) A is an entry on B.Isa iff B is an entry on A.Exs. In other words, A is a member
of Examples(B) 1ff B is a member of 1 a's(A). Due to an ugly lack of standardization, non-
concepts are allowed to exist. Thus, "3" is an example of Primes, but is not itself a concept.
Examples of X sometimes are concepts, of course: "IntersectoIntersect" is an example of
Compose-with-self. And Isa's(x) are always concepts. The highest level concept is called
"Anything". Its definition Is the atom T. That Is, ";,(x) T". This high-level concept can claim
everything as its examples.

The uses of the Exs/lIsa's facets are similar to those for Geni/Spec (see previous subsection).

Their formats are quite a bit more complicated than the Genl/Spec facets' formats, when we
finally get to the implementation level, however. There are really a cluster of different facets
all related to Examples:

1. TYPICAL: This is a list of average examples. Care must be taken to include a wide
spectrum of allowable kinds of examples. For "Sets", these would Include sets of
varying size, nesting, complexity, type of elements, etc.

2. BOUNDARY: Items which just barely pass the definition of this concept. This
might include items which satisfy the base step of a recursive definition, or items
which were intuitively believed to be non-examples of the concept. For "Sets", this
might include the empty set.

3. BOUNDARY-NOT: Items which just barely fail the definition. This might include
an item which had to be slightly modified during checking, like {A,B,A} becoming
{A,B}.

4. FOIBLES: Total failures. Items which are completely against the grain of thisconcept. For "Sets", this might include the operation "Compose".

5. NOT: This is the "cache" trick used to store the answers to frequently-asked
questions. If AM frequently wants to know whether X is an example of Y, and the
answer is No, then much time can be saved by adding X as an entry to the Exs-not
facet of Y.

An individual item on these facets may just be a concept name, or it may be more
complicated. In the case of an operation, it is an item of the form <ala 2...-,v>; i.e., actual

16 "Mereenne prime, without a hyphen, refers to a number satisfying certain properties (see glossary. "Mersenne-primes",

with a hyphen, refers to one specific AM concept, a data structure with facets. Each Mersenne prime i* an
example of the concept Mersenne-primes.

I7
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arguments and the value returned. In the case of objects, it is an object of that form. An
Exs facet of the concept Sets might contain (a} as one entry.

Here is a more detailed illustration. Consider the Examples facet of Set-union. It might
appear thus:

TYPICAL: {A)U{A,B)--(A,B};
{A,B)U{A,B)-(A,B);
{A,<3,4,3>,{A,B))U{3,A)-*{A,<3,4,3>,(A,B},3}.

BOUNDARY: ()UX-4X 7
BOUNDARY-NOT: {A,B)U{A,C)-*A,B,A,C);{A,B,C,D}U{E,F,G,H,I,J}-4{A,B,C,E,F,G,H,I,J}

FOIBLES: <2,A,2>
NOT: no entries

The format for Isa's are much simpler: there are only two kinds of links, and they're each
merely a list of concept names. Here is the Isa facet of Set-union:

ISA: (Operation18 DomainaRange-op)
ISA-NOT: (Structure Composition Predicate)

At some time, some rule asked whether Set-union isa Composition. As a result, the negative
response was recorded by adding "Composition" to the Isa-not facet of Set-union, and
adding "Set-union" to the Exs-not subfacet of the Examples facet of the concept
Composition (indicating that Set-union was definitely not an example of Composition, yet
there was no reason to consider it a foible).

5.2.3. In-Domain-of/ln-Range-of

We shall say that A is in the domain of B (written "A In-dom-of B") iff
1. A and B are concepts
2. B isa Operation
3. A is equal to (or at least a specialization of) one of the domain components of the

operation B. That is, B can be executed using any example of A as one of its
arguments.' 9

For example, Odd-perfect-squares is In-dom-of Add, since Odd-perfect-squares is a
specialization of Numbers, and Numbers is one component of the following entry which is

17 Actually, AM is not quite smart enough to use the variable X as shown in the boundary examples. It would simply store a

few instances of this general rule, plus have an entry of the form <Equivalent. Identity(X) and Set-
union(X,{)f> on the Ex* facet of Conjectures. Notice that because of the asymmetric way Set-union was
defined, only one lopsided boundary example was found. If another definition were supplied, the converse
kind of boundary examples would be found.

This entry is redundant.

More formally, we can say that this occurs whenever some entry on the Domain/range facet of B has the form <D I D2

D -a R> with some Di a member of Generahiztions(A). Then A is a epecialization of some domain component

of some entry on B Domain/range.

-...---- -
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located on Add.Domain/range: <Numbers Numbers -+ Numbers>. Since Odd-perfect-squares
is a specialization of Numbers, the operation 'Add' can be executed using any example of
Odd-perfect-squares as its argument.

As another example, Odd-perfect-squares is also In-dom-of Set-insert, one of whose
Domain/range entries is <Anything Sets 4 Sets>. This is because Odd-perfect-squares is a
specialization of Anything. So Set-insert is executed on two arguments, and the first
argument can be any example of Odd-perfect-squares (the second argument must be an
example of Sets).20

Although it can be recomputed very easily, we may wish to record the fact that A In-dom-of
Be by adding the entry "B" to the In-dom-of facet of A. AM may even wish to add this new
entry to the Domain/range facet of B (where A is a specialization of the jth domain
component of B):
< Di D2... Dj. I A Dj.I... Di 4 R>. The two examples given above would produce new

domain/range entries of <Odd-perfect-squares Numbers 4 Numbers> for Add, and <Odd-
perfect-squares Sets - Sets> for Set-insert.

The semantic content of "In-dom-of" is: what can be done to any example of a given
concept C? Given an example of concept C, what operations can be run on that thing?
Here are some illustrations:

"Odd-perfect-squares In-dom-of Set-insert" tells us that Set-insert can be run on any
particular Odd-perfect-square we can grab hold of.

"Operation In-dom-of Compose" tells us that Compose can be run on any operation we
want.

"Dom-Range-operation In-dom-of Compose" tells us that Compose can be run on any
operation which has its range equal to one of its domain components.

"Primes In-dom-of Squaring" tells us that we can apply the operation Squaring to any
particular prime number we wish.

Let us now turn from In-dom-of to the related facet In-ran-of.

We say that concept A is in the range of Be iff B is an Activity2' and A is a specialization
of the range of B. More precisely, we can say that "A In-ran-of B" iff

1. A and B are concepts
2. B isa Operation (i.e., Be is an example of the concept "Operation")
3. Some entry on the Domain/range facet of B has the form <DI D2... Di - R> with R

a generalization of A.

For example, Odd-perfect-squares is In-ran-of Squaring, since (I) both of those are concepts,
(2) Squaring is an operation, (3) one of its Domain/range entries is <Numbers-,Perf-

20 Since Odd-perfect-squares is more closely related to Numbers than %. the concept Anything (half as many Gent links
sway), AM expects that restricting Add to Odd-perfect-squares will probably yield a more promising new
operation then restricting Set-insert to only insert odd perfect squares into sets.

21 i., iff B As: cti', Iff B(Exmp-(Acti'vs), if f Activ.Ofn{)-Trus. Actually, since the range of Predicates is merely
(T,F), we may as well assume that B is an operation, not a predicate. This is in fact assumed, in the text and
in the actual AM system.

7- . - -. . .-
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squar>, and Perf-squares is a generalization of Odd-perfect-squares22.

Here is what the In-ran-of facet of Odd-perfect-squares might look like:

(Squaring Add TIMES Maximum Minimum Cubing)

Each of these operations will - at least sometimes - produce an odd perfect square as its
result.

Semantically, the In-ran-of relation between A and B means that one might be able to
produce examples of A by running opertion B. Aha! This is a potential mechanism for
finding examples of a concept A. All you need do is get hold of In-ran-of(A), and run each
of those operations. Even more expeditious is to examine the Examples facets of each of
those operations, for already-run examples whose values should be tested using A.Defn, to
see if they are examples of A's. AM relies on this in times of high motivation; it is too
"blind" a method to use heavily all the time.

This facet is also useful for generating situations to investigate. Suppose that the
Domain/raroe facet of Doubling contains only one entry: < Numbers 4 Numbers >. Then
syntactically, Odd-numbers is in the range of Doubling. Eventually a heuristic rule may
have AM spend some time looking for an example of Doubling, where the result was an
odd number. If none is quickly found, AM conject,,res that it never will be found. Since
,ne definition of Odd.,,amber(x) is "Number(x) and Not(Even-number(x))", the only non-
odd numbers are even numbers. So AM will increment the Domain/range facet of
Doubling with the entry <Numbers- Even-numbers>, and remove the old entry. Thus Odd-
numbers will no longer be In-dom-of Doubling. AM can of course chance upon this
conjecture in a more positive way, by noticing that all known examples of Doubling have
results which are examples of Even-numbers.23 .

A more productive result is suggested by examining the cases where Odd-perfect-squares
are the result of cubing. The smallest such odd numbers are 1, 729, and 15625. In general,
these numbers are all those of the form (2n+1)6. How could AM notice such an awkward
relationship?

The general question to ask, when A In-ran-of B, is "What is the set of domain items whose
values (under the operation B) are A's?" In case the answer is "All" or "None", some special
modifications can be made to the Domain/range facets and In-dom-of, In-ran-of facets of
various concepts, and a new conjecture can be printed. In other cases, a ne# concept might
get created, representing precisely the set of all arguments to B which yield values in A. If
you will, this is the Inverse image of A, under operation B. In the case of B a predicate,
this might be the set of all arguments which satisfy the predicate.

22 Why? Because General-ions(Odd-perfect-squares) is the set of concepts (Odd-numbers Perf-squares Numbers

Obiects Any-concept Anything), hence contains Perf-squares. So Perf-squares is a generali ation of Odd-
perfect-squares.

23 This positive approach is in fact tho way AM noticed this particular relationship.

6 Wrong That wat an exponent, not a footnote'
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In the case of BCubing and A=Odd.perfect-squares, the heuristic mentioned above will
have AM create a new concept: the inverse image of Odd-perfect-squares under the
operation of Cubing. That is, find numbers whose cubes are Odd-perfect-squares. It is
quickly noticed that such numbers are precisely the set of Odd-perfect-squares themselves!
So The Domain/range facet of Cubing might get this new entry: <Odd-perfect-squares 4
Odd-perfect-squares>. But not all squares can be reached by cubing, only a few of them
can. AM will notice tF-s, and the new range would then be isolated and might be rei,amed
by the user "Perfect-, . - powers". Note that al; this was brought on by examining the In-
ran-of facet of Odd-. ,ct-squares. "Cubing" was just one of the seven entries there.
There are six more :.o;.., to tell in this ti,y nook of AM's activities.

How exactly doe.... ,,o about gathering th- In-ran- u, and In-dom-of lists? Given a
concept C, AM can SLan down the :1obal tree of operations (the Exs and Spec links below
the concept 'Active'). For if C -s not In-dom .11' F, it certainly won't be In-dom-of any L
specialization of F. Similarly, - it can't be produced by F, it won't be produced by any
specialization of F. If you can't g . using Doubling you'll never get it by Quadrupling. So
AM simply ripples around, as usual. The precise code for this algorithm is of little Interest.
There are not that many operations, and it is cheap to tell whether X is a specialization of
a given concept, so even an exhaustive search wouldn't be prohibitive. Finally, recall that
such a search is not done 02l the time. It will be done Initially, pe-haps, but after that the
In-dom-of and In-ran-of networks will only need slight updating now and then.

5.2.4. Views

Often, two concepts A and B will be inequiva',ent, yet there will be a "natural" bijection
between one and (a subset of) the other. For example, consider a finite set S of atoms, and
consider the set of all its subsets, 2S, also called the powter set of S. Now S is a member of,

but not a subset of, 2S (e.g., if S=fx,y,...}, then x is not a member of 2S). On the other hand,
we can identify or view S as a subset by the mapping v-.{v}. Then S is associated with the
following subset of 2S: { {x}, {y).... }. Why would we want to do this? Well, it shows that S is
identified with a proper subset of 2S, and indicates that S has a lower cardinality
(remember: all sets are finite).

As another example, most of us would agree that the set {x, (y), z} ran be associated with
the following bag: (x, (y}, z). Each of them can be viewed as the other. Sometimes such a
viewing is not perfectly natural, or isn't really a bijection: how could the bag (2, 2, 3) be
viewed as a set? Is 12,3} better or worse than ?,{12},3)?

The View facet of a concept C describes how to view instances of another concept D as if
they were C's. For example, this entry on the View facet of Sets explains how to view any
given structure as if it were a Set:

Structure: . (x) Enclose-in-braces(Sort(Remove-multiple-elements(x)))

if given the list ',c ' , ist.0 program would remove multiple elements (leaving
<z,a,c>), sort the structure (making it -a,c,z>), and replace the "<...>" by "{...}", leaving the
final value as {a,c,z}. Note that this transformation is not 1-1; the list <a,c,z> would get
transformed into this same set. On the other hand, it may be more useful than

Li" "" ' '""""""""" '.T- -"- -"." . .' T'"'.": -"-'- .". -" " " '-"--''""'---'] .' - - -'""-" - "'". :-"'" '" -- -".
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transforming the original list into {z,{a,lc,{a}}}} which retains the ordering and multiple
element information. Both of those transformations may be present as entries on the View
facet of Sets.

As it turns out, the View facet of Sets actually contains only the following information:

Structure: , (x) Enclose-in-bracesx)

Thus the Viewing will produce entities which are not quite sets. Eventually, AM will get
will be corrected. One generalization of Sets is No-multiple-elements-Structures, and one of

its entries under Examples.Check says to remove all multiple elements. Similarly,
Unordered-structures is a generalization of Sets, and one of its Examples.Check subfacet
entries says to sort the structure. If either of these alters the structure, the old structure is
added to the Boundary-not subfacet (the 'Just-barely-miss' kind) of Examples facet of Sets.

The syntax of the View facet of a concept C is a list of entries; each entry specifies the name
of a concept, X, and a little program P. If it is desired to view an instance of X as If it were
a C, then program P is run on that X; the result is (hopefully) a C. The programs P are

* opaque to AM; they must have no side effects and Le quick.

Here is an entry on the View facet of Singleton:

Anything: X (x) Set-insert(x, PHI)

In other words, to view anything as a singleton set, just insert it into the empty set. Note
that this is also one way to view anything as a set. As you've no doubt guessed, there is a
genera! formula explaining this:

Views(X) m View(SpecializationsXl)

Thus, to find all the ways of viewing something as a C, AM ripples away from C in the
Spec direction, gathering all the View facets along the way. All of their entries are valid
entries for C.View as well.

In addition to these built-in ways of using the Views facets, some special uses are made in
. individual heuristic rules. Here is a heuristic rule which employs the Viewing facets of

relevant concepts in order to find some examples of a given concept C:

IF the current task is to Fill-in Examples of C,and C has some entries on its View facet,
T.E'"and one of those entries <X,P> indicates a concept X which has some known Examples,
THEN run the associated program P on each member of Examples(X),

and add the following task to the agenda: "Check Examples of C", for the followir,g
reason: "Some very risky techniques were used to find examples of C", and
that reason's rating is computed as: A trageWorth(X), lithe examples of C
found in this mannerl).

Say the ' sk selected from the agenda was "Fill-in Examp;es of Sets". We saw that one

entry on ,ets.View was Structure: X(x) Enclose-in-braces(x). Thus it is of the form <X:P>,

'T
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with X-Structure. The above heuristic rule will trigger if any examples of Structures are
known. The rule will then use the View facet of Sets to find some examples of Sets. So AM
will go off, gathering all the examples of structures. Since Lists is a Specialization of
Structure, the computation of Examples(Structures) will eventually ripple downwards and
ask for Examples of Lists. If the Examples facet of Lists contains the entry <z,a,c,a,a>, then
this will be retrieved as one of the members of Examples(Structure). The heuristic rule takes
each such member in turn, and feeds it to Set.View's little program P. In this case, the
program replaces the list brackets with set braces, thus converting <z,a,c,a,a> to {z,a,c,a,aJ.

In this manner, all the existing structures will be converted into sets, to provide examples of
sets. After all such conversions take place, a great number of potential examples of Sets will
exist. The final action of the right side of the above heuristic rule is to add the new task
"Chock examples of Sets" to the agenda. When this gets selected, all the "slightly wrong"
examples will be fixed up. Fui" example, {z,a,c,a,a} will be converted to {a,c,z}.

If any reliance is made on those unchecked examples, there is the danger of Incorrectly
rejecting a valid conjecture. This is not too serious, since the very first such reliance will
boost the priority of the task "Check examples of Sets", and it would then probably 4e the
very next task chosen.

5.2.5. Intuitions

The mathematician does not work like a machine; we cannot overemp/zatlze the
fundamental role played in his research by a special intuition (frequently wro,.g),
which is noi common-sense, but rather a divination of the regular behavior he
expects of mathematical beings.

-- Bourbaki

This facet turned out to be a "dud", and was later excised from all the concepts. It will be
described below anyway, for the benefit of future researchers. Feel free to skip directly to
the next subsection.

The initial idea was to have a set of a few (3-10) large, global, opaque LISP functions. Each
of these functions would be termed an "Intuition' and would have some suggestive name
like "jigsaw-puzzle", "see-saw", "archery", etc. Each function would somehow mo', I the
particular activity Implied by its name. There would be a multitude of parameter .:hich
could be specified by the "caller" as If they were the arguments of the function. The
function would then work to fill in values for any unspecified parameters. That's all the
furction does. The caller would also have to specify which parameters were to be
considered as the "results" of the function.

For the see-saw, the caller might provide the weight of the left-hand-side sitter, and the final
position of the see-saw, and ask for the weight of the right-hand sitter. The function would
then compute that weight (as any random number greater/less-than the left-hand weight,

. . .
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depending on the desired tilt of the board). Or, the caller might specify the two weights
arid ask for the final position.

x-. The See-saw function is an expert on this subject; it has efficient code for computing any
values which can be computed, and for randomly instantiating any variables which may
take on any value (e.g., the first names of the people doing the sitting). When an individual
call is made on this function, the caller is not told how the final values of the variables were
computed, only what those values end up as.

So the Intuitions were to be experimental laboratories for AM, wherein it could get some
(simulated) real-world empirical data. If the seesaw were the Intuition for ">", and weight
corresponded to Numbers, then several relationships might be visualized intuitively (like the
anti-symmetry of ">"). This is a nice idea, but in practice the only relationships derived in
this way were the ones that were thought up while trying to encode the Intuition functions.
This shameful behavior led to the excision of the Intuitions facets completely from the
system.

As another ex.mple, suppose AM is considering composing two relations R and S. If they
have no common Intuition reference, then perhaps they're not meaningfully composable. If
they do both tie into the same Intuition function, then perhaps that function can tell us
something about the composition. This is a nice idea, but in practice very few prunings
were accomplished this way, and no unanticipated combinations were fused.

Each Intuition entry is like a "way in" to one of the few global scenarios. It can be
characterized as follows:

I. One of the salient features of these entries - and of the scenarios - is that AM is
absolutely forbidden to look inside them, to try to analyze them. They are opaue.
Most Intuition functions use numbers and arithmetic, and it would be pointless to

"-":. 2say that AM discovered such concepts if it had access to those algorithms all along.
2. The second characteristic of an Intuition is that it be falible. As with human

intuition, there is no guarantee that what is suggested will be verified even
empirically, let alone formally. Not only does this make the programming of
Intuition functions easier, it was meant to provide a degree of "fairness" to them.
AM wasn't cheating quite as much if the See-saw function was only antisymmetric
90% of the time.

3. Nevertheless, the intuitions are very sug'estive. Many conjectures can be proposed
only via them. Some analogies (see the next subsection) can also be suggested via
common Intuitions.

After they were coded and running, I decided thae. the Intuition functions were unfair; they
.contained some major discoveries "built-in" to them. They had the power to propose

otherwise-obscure new concepts and potential relationships. They contributed nothing other
than what was originaily programmed into them; they were not synergetic. Due to this

.0 dubious character of the contributions by AM's few Intuition functions, they were removed
from the system. All the examples and all the discoveries listed in this document were made
without their assistance.

We shall now drop this de-implemented idea. J think there is some real opportunity for
research her3. For the benefit of any future researchers in this area, let me point to the

* rexcellent discussion of analogic representations in [Sloman 71).

• o"'
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5.2.6. Analogies

The whole idea of analogy is that 'Effects', viewed as a function of situation, is a
continuous function.

-- Poincaro'

As with Views and Intuitions, this facet is useful for shifting between one part of the
universe and another. Views dealt with transformations between two specific concepts;
Intuitions dealt with transformations between a bunch of concepts and a large standard
scenario which was carefully hand-crafted in advance. In contrast, this facet deals with
transforming between a list of concepts and another list of concepts.

Analogies operate on a much grander scale than Views. Rather than simply transforming a
few isolated items, they initiate the creation of many new concepts. Unlike Intuitions, they
are not limited in scope beforehand, nor are they opaque. They are dynamically proposed.

The concept of "prime numbers" is analogous to the notion of "simple groups". While not
isomorphic, you might guess at a few relationships involving simple groups Just by my

K telling ycu this fact: simple groups are to groups what primes are to numbers.2 4

Let's take 3 elementary examples, involving very fundamental concepts.

1. AM was told how to View a set as if it were a bag.

2. AM was told it could Intuit the relation "" as the predetermined "See.saw" function.

3. AM, by :.self, once Analogized that these two lists correspond:
<Bags Same-length Operations-on-and-into Bags>
<Bags-of-T's Equality Those operations restricted to Bags-of-T's>

The concept of a bag, all of whose elements are "T"'s, is the unary representation of
numbers discovered by AM. When the above analogy (#3) is first proposed, there are many
known Bag-operations25 , but there are as yet no numeric operations26 . This triggers one of
AM's heuristic rules, which spurs AM on to finding the analogues of specific Bag-

24 l a group is not simple, it can be factored Unfortunately, the factorization of a group into simele grups is not unique.
Another analogizing contact For each prime p, we can associate the cyclic group of order p, which is of
court simple AM never came up with the co-cept of simple groups; this is just en illustratic.n for the
sophisticated reader.

is, all entries on In-dom-of(Bag) and In-ran-of(Bag); a few of thes are. Bag-insert, Bag-union, Bag-intersection
26 Examples of Operation whose domain/range contains "Number'.

".-
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operations. That is, what special properties do the bag-operations have when their domains
and/or ranges are restricted from Bags to Bags-of.T's (i.e, Numbers). In this way, in fact,
AM discovers Addition (by restricting Bag-union to the Domain/range <Bags-of-T's Bags.
of-T's - Bags-of-T's>), plus many other nice arithmetic functions.

Well, if it leads to the discovery of Addition, that analogy is certainly worth having. How
would an analogy like that be proposed? As the reader might expect by now, the
mechanism Is simply some heuristic rule adding it as an entry to the Analogies facet of a
certain concept. For example:

IF the current task has just created a canonical specialization C2 of concept Cl, with respect
to operations Fl and F2, [i.e., two members of C2 satisfy F1 iff they satisfy
F2],THEN add the following entry to the Analogies facet of C2:

<Cl l Operations-on-and-onto(C I )>
<C2 F2 Those operations restricted to C2's>

After generalizing "Equality" into the operation "Same-length", AM seeks to find a
canonical27 representation for Bags. That is, AM seeks a canonizing function f, such that
(for any two bags x,y)

Same-length(x,y) iff Equal( f(x), 1(y) ).

Then the range of f would delineate the set of 'canonical" Bags. AM finds such an f and
such a set of canonical bags: the operation f involves replacing each element of a bag by
"T", and the canonical bags are tho.e whose elements are all T's. In this case, the above
rule triggers, with CI=Bags, C2=Bags-o"-T's, FISame-length, F2=Equality, and the analogy
which is produced is the one shown as example .3 above.

The Analogy facets are not implemented in full generality in the existing LISP version of
AM, and for that reason I shall refrain from delving deeper into their format. Since good
research has already been done on reasoning by analogy28, I did not view it as z central
feature of my work. Very little space will be devoted to it in this document.

An important type of analogy which was untapped by AM was that between heuristics. If
two situations were similar, then conceivably the heuristics useful in one situation might be
useful (or have useful analogues) in the new situation. Perhaps this Is a viable way of
enlarging the known heuristics. Such "meta-level" activities were kept to a minimum
throughout AM, and this proved to be a serious limitation.

Let me stress that the failure of the Intuitions facets to be nontrivial was due to the lack of
spontaneity which they possessed. Analogies facets were useful and "fair" since their useswere not predetermined by the author.

27 A natural, standard form All bags differing in only "unimportant" ways should be transformed into the same canonical
form Two bagc 8i an"d 82 which have the same length should get transformed into the same canonical bag.

28 An excellent discussion of reasoning by analogy " found in (Polya 54] Some early work on emulating this was reported

in (Evans 68], a more recent thssit on this top; is [Klh,,g 71].
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5.2.7. Con iec's

Basically, facet Conjec of concept C is a list of relationships which involve C. We shall
discuss its semantics (uses of this facet) before its syntax.

Perhaps the most obvious use for this facet would be to hold conjectures which could not
be phrased simply. Yet it turns out that luckily (I think), all the conjectures "fell out"
naturally as trivial relationships, e.g. simply as arcs in the Geni/SpeclExs/Isas pointer
format. Specifically, the modal conjecture had the form "the range of F is not just C, but
actually S".

r For example, AM restricted TIMES to perfect squares, and noted that the result was not
merely a number but a perfect square each time. The unique factorization theorem was
noticed similarly (the range of Prime-factorings was always a singleton, not mere!y a set).

!n all the cases encountered by AM, there was never any real need for a place to "park" an
awkwardly-phrased conjecture, because no awkward conjecture could ever possibly be noticed.
Why Is this so? AM was constructed explicitly on the assumption that all (enough?)
important theorems could be discovered in quite natural ways, as very simple (already-
known) relationships on aiready-defined concepts. AM embodies several such assumptions
about math research; they are collected and packaged for display in Section 7.2.6, on
page 162.

What else might this facet be useful for, if not the storage of awkwardly-worded
conjectures? It might be a good place to store flimsy conjectures: those which were strong
enough to get considered, yet for which not much empirical confirmation had been done.
This In fact was one important role of this facet.
For example, AM was initially told that there are two specializations of Unordered-

structures, namely Bags and Sets. But AM was not given any examples of any structures at
all. Early on, it chose the task "Fillin examples of Bags" from the agenda. After filling them
in, a heuristic iule had AM consider whether or not this concept of Bags was really any
more specialized than the concept of Unordered-structures. To test this empirically, AM
tried to verify whether or not there were any examples of Unordered-structures that were
not examples of Bags. Failure to find any led to proposing the conjecture "All Unordered-
structures are really Bags". This could have been recorded quite easily: Bags was already
known to be specialization of Unordered-structure, so all AM had to do was tag it as a
generalization as well (add "Bags" to the Generalizations facet of the Unordered-structures
concept). But a heuristic rule which knows about sucl. equivalence conjectures first asked
whether there were any specializations of Unordered-structures which had no known
examples, and fur which AM had not (recently, at least) tried to fill in examples. In fact,
such an entry was "Sets". So the conjecture was stored on the Conjec facet of Unordered-
structures, and a new job was added to the agenda: "Fill in examples of Sets". The reason
was that such examples might disprove this fhmsy conjecture. In fact, the job already
existed on the agenda, so only the new reason was added, and its priority was boosted.
When such examples were tound, they did of course disprove that conjecture: each set was

%%' --
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an Unordered-structure and yet was not a Bag. 29

This last example has suggested another use for this facet: holding heuristic rules which are
relevant to filling in and checking conjectures. For example, the Conjec facet of Operations
has some special heuristics which look for certain kinds of relationships involving any
given operation (e.g., "Pick any example F(x)=y. See what interesting statements can be
made about y. Then try to verify or disprove each one by looking at the values of all the
other known calls on operation F"). The Conjec facet of Any-concept will contain knowledge
which is much more general in scope (e.g., "See whether concept C is an example of some
member of (C.lsa).Spec"). Compose.Conjec will contain more specific heuristics (e.g., "See if
the composition AoB is really no different from B").

Given any concept C, AM will ripple upwards, locating Isas(C), and collect the heuristics
which are tacked onto their Conjec facets. These heuristic rules will then be evaluated (in
order of increasing generality), and some conjectures will probably be proposed, checked,
discarded, modified, etc. In fact, each Conjec facet of each concept can have two separate
subfacets: Conjec.Fillin and Conjec.Check. The former contains heuristics for noticing
conjectures, the second for verifying and patching them up.

* There is yet another use for this facet, one of efficiency of storage. After discovering that
all primes except 2 are Odd-primes, there is very little reason to keep around Odd-primes
as a separate concept from Primes. Yet they are not quite equivalent. Primes.Conjec is a
good place for AM to store the conjecture "Prime(x) implies that x-2 or Odd(x)", and to
pull over to Primes any efficient definition/algorithm which Odd-primes might possess
(patching it up to work for "2"). and then destroy the concept Odd-primes. Another way
out is merely to destroy "Primes", and make 2 a distinguished number tacked onto the Just-
barely-missed subfacet of Odd.primes.Exs (just like "I" is already).

Here is another example: AM discovers that Set-insertoSet-insert is the same as just Set-
insert. That is, if you insert x twice into a set S, it's no different than inserting it just once
(because Sets don't allow multiple copies of the same element). Then there's no longer any
reason for keeping Set-insertoSet-insert hanging around as a separate concept. Instead, just
add a small new entry to Set-insert.Conjec and forget that space-consuming composition
forever.

There is another use of the Conjec facet: untangling paradoxes. It is with no sorrow that I
mention that this facility was never needed by AM: no genuine contradictions ever were
believed by AM. What would one look like? Suppose a chain of Spec links indicates that X
is a specialization of Y, and yet AM finds some example x of X which does not satisfy
Y.Definition). So X is - and is not - a specialization of Y. In such cases, the Conjecs
facets of the concepts involved would indicate which of those Spec links were initially-
supplied (hence unchallengabie), which links were created based on formal verifications
(barely challengable), and which links were established based only on empirical evidence
(yes, these are the ones which would then fade into the sunset). If it has to, AM should be
able. to recall the justification for each new link it created. AM can deduce this by
examining the Conjec facets of the concepts involved.

29Baeg s are not multisets, although those two notions ar@ very closely related to each other, Each set is a multiset by

-* definition; but each set is guaranteed by definition to not be a bag.
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Periodically (at huge intervals) AM chose a task of the form "Check conjecs about C", at
which time all the entries on C.Conjec would be re-examined in light of existing data. Some
would be discarded (perhaps causing some Exs/IsalSpec/Genl links to vanish with them).
Some of the conjectures might be believed much more strongly now (causing some new links
to be recorded). This turned out to be a surprisingly ineffective activity; very few new
revelations were obtained this way. Ultimately, this kind of task was muzzled (AM was
inhibited from doing this).

Theoretically, AM might possess rules which transformed a conjecture into a more efficient
algorithm for an operation, or which used the knowledge contained therein to speed up an
existing algorithm. Another sophisticated use of a conjec would be to set up a new

30representation scheme for a concept

Finally, the Conjec's facet is used as a showcase, to highlight some nice discovery that AM
wants to display. The user can look at the entries on each concept's Conjec facet (after a
long run) and get a better feeling for AM's abilities. If there are several powerful
conjectures listed for concept C, then it appears to the user that AM "understands" the
concept much better than if C.Conjecs is empty.

Let's recapitulate the uses of this facet:
1. Store awkwardly-phrased conjectures: this wasn't really useful.

2. Store flimsy conjectures: apparent relationships worth remembering, yet not quite
believed.

3. Hold heuristics which notice and checkconjectures.
4. Obviate the need for many similar concepts: Collapse the entirp essence of a related

concept into one or two relationships involving this one.

5. Untangling paradoxes: a historic record, which wasn't really used.
.6. Improve existing algorithms, definition testing procedures, representations.

7. Display AM's most impressive observed relationships in a form which is easily
inspectable by the user.

The syntax of this facet is simply a list of conjectures, where each conjecture has the form
of a relationship: (R a b c...d). R is the name of a known operation (in which case, abc... are
its arguments and we claim that d is its value), or R is a predicate (and d is either True or
False), or R is the name of a kind of link (Genl, Spec, Isa, or Exs), and the claim is that a
and b are related by R. Here are three example of conjectures, illustrating the possible
formats:

1. (Compose Set-insert Set-insert Set-insert). This says that if you apply the known
nperation Compose, to the two arguments Set-insert and Set-insert, then the
resultant composition is indistinguishable from Set-insert.

2. (Same-size lnsert(S,S) S False). That is, inserting a set into itself will always (for finite
sets) give you a set of a different length.

3. (Example-of Prime-factorings Function). This conjecture is the unique factorization

a30 eg, after unique factorization is discovered, begin repre- ';ng numbers is a bag of primes: n is represented as the

prime factorization of n This i. exponentially btter thin unary notation ba g-of-T's, AM had a tiny ability
for this kind of ongoing transformation, so crude it's better left undescribed
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theorem. The operation which takes a number n, and finds all prime factorizations
of n, is claimed to be a function, not merely a relation. That is, each n has
precisely one such prime factoring.

5.2.8. Definitions

A typical way to disambiguate a concept from all others is to provide a "definition" for it.3 1

Almost every concept had some entries initially supplied on its "Definitions" facet. The
format of this facet is a list of entries, each one describing a separate definition. A single

w.. entry will have the following parts:
1. Descriptors: Recursivel'.inear/Iterative, Quick/Slow, Opaque/Transparent, Once-

only/Early/Late, Destructive/Nondestructive.
2. Relators: Reducing to the definition of concept X, Same as Y except.... Specialized

version of Z, Using the definition of W, etc.
3. Predicate: A small, executable piece of LISP code, to tell if any given item is an

example of this concept.

The predicate or "code" part of the entry must be faithfully described by the Descriptors,
must be related to other concepts just as the Relators claim. The predicate must be a LISP
function wiich take argument(s) and return either T or NIL (for True/False), depending on
whether or not the argument(s) can be regarded as examples of the concept.

The argument "{A B)" should satisfy the predicate of any valid definition entry of the Sets
concept. This triple of arguments <[A B), (A C), (A B C)> should satisfy any definition of
the Set-union concept, since the third is equal to the Set-union of the first two arguments.

Here is a typical entry from the Definitions facet of the Set-union concept:

Descriptors: Slow, Recursive, Transparent

Relators: Uses the algorithm for Set-insert, Uses the definition of Empty-set,
Uses the definition of Set-equal, Uses the algorithm for Some-member,
Uses the algorithm for Set-delete, Uses the definition of Set-union

Code: ) (A B C)
IF Empty-set.Defn(A) THEN Set-equal.Defn(B,C) ELSE

X 4- Some-member.Alg(A)
-'- --' A 4" Set-delete.Alg(X,A)

B 4" Set-insert.Ag(X,B)
Set-union.DefnlA,B,C)

31 As EPAM studier showed [Feigenbaum 63], on, car! never be sure that this definition will specify the concept uniquely

for all time. In the distant future, eome new concept may differ in ways thought to be ignortble at the
present time.

9-'2
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Let me stress that this is just one entry, from one facet of one concept.

The notation "X ,- Some-member.Alg(A)" means that any one algorithm for the concept
Some-member should be accessed, and then it should be run on the argument A. The result,
which will be an element of A, is to be assigned the name "X". The effect is to bind the
variable X to some member of set A.

In the actual LISP implementation, the ELSE part of the conditional is really coded32 as:

(Set-union.Oefn tSet-delete.Alg (SETQ X (Some-memberAlg A A)
(Set-insert.Alg X B)
C

This particular definition is not very efficient, but it is described as Transparent. That
means it is very well suited to analysis and modification by AM Itself. Suppose some
heuristic rule wants to gerieralize this definition. It can peer inside it, and, e.g., replace the
base step call on Set-equal, by a call on a generalization of Set-equal (say "Same-length" 33).

How could different definitions help here? Suppose there were a definition which first
checked to see if the three arguments were Set-equal to each other, and If so then it
instantly returned T as the value of the definition predicate; otherwise, it recurred into Set-
union.Defn again. This might be a good algorithm to try at the very beginning, but if the
Equality test fails, we don't want to keep recurring into this definition. This algorithm
should thus have a descriptor labelling it ONCE-ONLY EARLY.

A typical kind of entry for the Definitions facet of an operation is to simply call on the
Algorithwm. part of that same concept. Here is such an entry from the Definitions facet of the
Set-union concept:

Descriptors: none

Relators: Uses the definition of Set-equal, Uses the algorithm for Set-union

Code: X (A B C) Set-equa.Doefn(C, Set-union.Alg(A,B))

This definition is a trivial call on the "Algorithms" facet of Set-union. That Is, one way to
test whether C is the set-union of A and B, is simply to run set-union on A and B, and
compare the result against C. The descriptors and relators of the particular algorithm
which is chosen will then be added to the descriptors and relators which exist so far on this
entry. Note that the box above (like the box on the previous page) is simply one entry on
the Definitions facet of the Set-union concept.V_32
32 The expression "(fDefn al *2 ) means 'apply the predicate part of a definition of f, to arguments al, e2,...*. This

definition is to be randomly selected from the entries on the Definition* facet of concept f.
33 For disjoint sets, the new definition would specify the operation which we call "addition"

%-
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There are three purposes to having descriptors and relators hanging around:
1. For the benefit of the user. AM appears more intelligent because it can describe the

kind of definition it is using - and why.
2. For the sake of efficiency. When all AM wants to do is to evaluate Set-union(A,B),

it's best just to grab a fast definition. When trying to generalize Set-union, it's
more appropriate to modify a very clean, transparent definition - even if it is a
slow one.

3. For the benefit of the heuristic rules. Often, a left- or a right-hand-side will ask
about a certain kind of definition. For example, "If a transparent definition of X
exists, then try to specialize X".

Granted that Descriptors and Relators are useful, how do these "meta-level" modifiers get
filled in, for newly-created 34 concepts? All such powers are embedded in the fine structure
of :he heuristic rules. This is true for the Algorithms facet as well, and will be illustrated in
the very next subsection.

Let me pull back the curtain a little further, and expose the actual implementation of these
ideas in AM. The secrets about to be revealed will not be acknowledged anywhere else ill
this document. They may, however, be of interest to future researchers. Each concept may
have a cluster of Definition facets, just as it can have several kinds of Examples facets.
These include three types: Necessary and sufficient definitions, necessary definitions, and
sufficient definitions. These three types have the usual mathematical meanings. All that
has been alluded to before (and after this subsection) is the necc&suff type of definition (x is
an example of C if and only if x satisfies C.Def/necc&suff). Often, however, there will be a
much quicker sufficient definition (x satisfies C.Def/suf, only if x is certainly a C). Similarly,
entries on C.Def/nec are useful for quickly checking that x is not an example of C (to check
this, it suffices to verify that x fails to satisfy a necessary definition of C).

So given the task of deciding whether or not x is an example of C, we have many
alternatives:

1. If x is a concept, see if C is a member of x.ISA (if so, then x is an example of C).
2. Try to locate x within C.Exs. (depending upon the flavor of subfacet on which x is

found, this may show that x is or is not an example of C).
3. If x is a concept, ripple to collect ISA's(x), and see if C is a member of ISA's(x).
4. If there is a fast sufficent definition of C, see if x satisfies it.
5. If there is a fast necessary definition of C, see if x fails it (if so, then x is not an

example of C).
6. If there is a necessary and sufficient definition of C, see whether or not x satisfies

that definition (this may show that x is or is not an example of C).
7. Try to locate x within C.Exs. (depending upon the flavor of subfacet on which x is

found, this may show that x is or is not an example of C).
8. Recur: check to see if x is an example of any specialization of C.
9. Recur: check to see if x is not an example of some generalization of C (if so, then x

is not an example of C),

In fact, there is a LISP function, IS-EXAMPLE, which performs those steps in that order.

Fo initially-supplied definition entries, the author hand-coded thase modifiers.

L*C-
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At each moment, there is a timer set, so even if there is a necessary and sufficient definition
hanging around, it might run out of time before settling the issue one way or the other.
Each time the function recurs, the timer is granted a smaller and smaller quantum, until
finally it has too little to bother recurring anymore. There is a potential overlap of activity:
to see if x is an example of C, the function might ask whether x is or Is not an example of
a particular generalization of C (step 9, above); to test that, AM might get to step 8, and
again ask if x is an example of C. Even though the timer would eventually terminate this
fiasco (and even though the true answer might be found despite this wasted effort) it is not
overly smart of AM to fall into this loop. Therefore, a stack is maintained, of all concepts
whose definitions the IS-EXAMPLE function tried to test on argument x. As the function
recurs, it adds the cvrrent value of C to that stack; this value gets removed when the
recursion pops back to this level, when that recursive call "returns" a value.

5.2.9. Algorithms

Earlier, we said that each concept can have any facets from the universal fixed set of 25
facets. This is not strictly true. Sometimes, a whole class of concepts will possess a certain
type of facet which no others may meaningfully have. If C can have that facet, then so can
any specialization of C. Typically, there will be some concept -. such that the examples of
C are precisely the set of concepts which can possess the new facet. That is, there will be a
domain of applicability for the facet, just as we defined such domains of applicability for
heuristics. For example, consider the "Domain/Range" facet. It is meaningful only to
"operations", but really is an important feature of all operations. Its domain of applicability
is Operation.

The kinds of facets - including all such limited "jargon" facets - is fixed once and for all.
New kinds of facets cannot be conceived and added by AM itself. Nor does AM have any
control over the domain of applicability of each facet.

If desired, one can view all this in a more general light. For each facet f, the only concepts
which can have entries for facet f are examples of some particular concept J(f) - the "J"
stands for "jargon". J(f) is the domain of applicability of facet f. If C is any concept which
is not an example of J(f), then it can never meaningfully possess any entries for that facet f.
For almost all facets f, J(f) is "Any-concept". Thus any concept can possess almost any facet.
For example, J(Defn)-"Any.conceFt", so any concept may have definitions.

There are a few more restricted facets. For example, J(Domain/range)-"Operation". So only
operations can have domain/range facets.35 The concept "Sets", which is not an operation,
can't have a domain/range facet.

Similarly, J(Algorithms)="Actives". This facet is the subject of this section. The Algorithms
facet is present for all - but only for - Actives (predicates, relations, operations).

The representation is, as usual, a list of entries, each one describing a separate algorithm .
single entry will have the following parts:

35 Actually, Predicates also have domain/range facets, even though the Range parts are all necessarily the asme. {T,F}.
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I. Descriptors: Recursive/Linear/iterative, Quick/Slow, Opaque/Transparent,
Once-only/Early/Late, Destructive/Nondestructive.

2. Relators: Reducing to the algorithm for concept X, Same as Y except..., Specialized
version of Z's algorithm, Using the algorithm for W, etc.

3. Program: A small, executable piece of LISP code, for actually running C.

Note the similarity to the format for the Definitions facets of concepts. Instead of a LISP
predicate, howe,er, the Algorithms facets possess a LISP function (an executable piece of
code whose value will In general be other than True/False). That "program" part of the
entry must be faithfully described by the Descriptors, must be related to other concepts just
as the Relators claim, must take argurents and return values as specified in the
Domain/Range facet of C, and when run on any arguments, the resultant <args value> pair
must satisfy the Definitions facet of C.

There is an extra level of sophistication which is available but rarely used in AM. The
descriptors can themselves be small numeric-valued functions. For example, instead of just
including the Descriptor "Quick", and instead of just giving a fixed number for the speed of
the algorithm, there might be a little program there, which looked at the arguments fed to
the algorithm, and then estimated how fast this algorithm would be. The main reason for
not usircy this feature more heavily is that most of the algorithms are fairly fast, and fairly
constant in performance. It would be silly to spend much time recomputing their efficiency
each time they were called. If the algorithm is recursive, this conjures up even sillier
pictures. The main reason in support of using this feature is of course "intelligence": in the
long run, processing a little bit before deciding which algorithm to run has to be the
winning solution. At the moment, it is not yet cost-effective.

Here is a typical entry from the Algorithms36 facet of the Set-union concept:

Descriptors: Slow, Recursive, Transparent

Relators: Uses the algorithm for Set-insert, Uses the definition of Empty-set,
Uses the algorithm for Some-member, Uses the algorithm for Set-insert,
Uses the algorithm for Set-union

Code: > (A B)
IF Empty-set.Defn(A) THEN B ELSE

X 4- Some-member.Alg(A)
A 4" Set-delete.Alg(X,A)
B 4" Set-insert.Ag(X,B)
Set-union.AIg(A,B)

r3g

36 note that i is similar to -- but not idantical to -- the entry shown on page 86, oi a Definition of Set-union.

%.,
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Note that the Descriptors don't say whether this algorithm is destructive37 or not. That
means that this same algorithm can be used either destructively or not, depending on what
AM wants. More precisely, it's up to the algorithms which get called on by ths one. if they
art all chosen to be destructive, so will Set-union. If they all copy their arguments first then
Set-union will not be destructive. For example, note how the algorithm calls on Set-
insert(X,B). If this is destructive, then at the end B will have been physically modified to
contain X; the original contents of B will be lost.

This particular algorithm is not very efficient, but it is described as Transparent. That
means it is very well suited to analysis and modification by AM itself. Suppose some
heuristic rule wants to specialize this algorithm. It can peer inside it, and, e.g., replace the
variable X in (Set-insert X B) by the constant "T".

Why should AM bother storing multiple algorithms for the same concept? Consider this
example again, of Set-union. Suppose there were an algorithm which first checked to see if
the two arguments were Equal to each other, and if so then it instantly returned one of
them as the final value for Set-union; otherwise, it recurred into Set-union.Alg. This might
be a good algorithm to try at the very beginning, but if the Equality test fails, we don't want
to keep recurring into this definition. This algorithm should thus have a descriptor
labelling it ONCE-ONLY EARLY.

Also, there is an iterative algorithm which checks to see if A equals B, and if so then it
returns B. If not, the algorithm proceeds to check that A is shorter than B, and if not it
switches them. Finally, it enters an iterative loop similar to the recursive one above: it
repeatedly transfers an element from A to B, using Some-member, Set-delete and Set-insert.
Tnis iterative loop repeats until A becomes empty. While more efficient than the recursive
one, this definition is less transparent.

L An even more efficient algorithm is provided, but it is totally opaque:

Descriptors: Quick, Non-recursive, Non-destructive, Opaque

Relafors: none

Code: X (A 8) (UNION A 8)

This algorithm calls on the LISP function "UNION" to perform the set-union. It is the
"best" algorithm to choose unless space is critical, in which case a destructive algorithm must
be chosen, or unless AM wishes to inspect it rather than run it, in which case a transparent
one must be picked.

37 A LISP algorithm is destructive if it physically, permanently modifies the list structures it is fed as arguments. Set-
union(A,B) is destructive if -- after running -- A and B don't have the same values they started with The
advantages of destructive operations are increased speed, decreased space used up, fewer assignment
statements. The danger of course is in accidentally destroying some information you didn't mean to.

39 This is a fairly useless new operation, of course. It adds T to B unless A is empty, in which case this operation has no
effect at all.
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All the details about understanding the descriptors and relators are embedded in the fine
structure of the heuristic rules. A left-hand-side may test whether a certain kind of
algorithm exists for a given concept. A right-hand-side which fills in a new algorithm must
also worry about filling in the appropriate descriptors and relators. As with newly created
concepts, such information is trivial to fill in at the time of creation, but becomes much
harder after the fact.

Here is a typical heuristic rule which results in a new entry being added to the Algorithms
facet of the newly-created concept named Compose-Set-Intersect&Set-Intersect:

IF the task is to Fillin Algorithms for F,
and F is an example of Composition
and F has a definition of the form F'GoH,
and F has no transparent, nonrecursive algorithm,

THEN add a new entry to the Algorithms facet of F,
with Descriptors: Transparent, Non-recursive
with Relators: Reducing to G.Alg and H.Alg, Using the Definition of (G.Domain>
with Program: X (II(G.Domain>ll,ll<H.Domain>lI-l ,X)

(SETQ X (H.AIg II<G.Domain>II))
(AND

(<G.Domain>.Defn X)
(G.AIg X II<H.Domain>l-I))

The intent of the little program which gets created is to apply the first operator, check that
the result is in the domain of the second, and then apply the second operator. The
expression IG<G.Domain>l means find a domainlrange entry for G, count how many domain
components there are, and form a list that long from randomly-chosen variable names
(u,v,w,x,y,z).

For the case mentioned above, F - Compose-Set-Intersect&Set-lntersect, G - Set-Intersect,
and H = Set-Intersect. The domain of G is a pair of Sets, so I<G.Domain>I is a list of 2
variables, say (u v). Similarly, !!<H.Domain>I-I is a list of I variable, say (w). Putting all
this together, we see that the new definition entry created for Compose-Set-intersect&Set-
Intersect would look like this:

Descriptors: Non-Recursive, Transparent

Relators: Reducing to Set-intersectAIg, Using the definition of Sets

Code: X (u,v,w,X)
(SETQ X (Set-intersect.AIg u v))

(AND
(Sets.Defn X)

(Set-lntersect.Aig X w)

Let me make clear here one "kluge" of the AM program. At times, AM -will be capable of

producing only a slow algorithm for some new concept C. For example, TIMES'(x) was

V
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originally defined by AM as a blind, exhaustive search for bags of numbers whose product
is x. As AM uses that algorithm more and more, AM records how slow it is. Eventually, a
task is selected of the form "Fillin new algorithms for C", with the two reasons being that the

[ existing algorithms are all too slow, and they are used frequently. At this point, AM should
draw on a body of rules which take a declarative definition and transform it into an
efficient algorithm, or which take an inefficient algorithm and speed it up. Doing a good job
on just those rules would be a mammoth undertaking, and the author decided to omit them.
Instead, the system will occasionally beg the user for a better (albeit opaque) algorithm for
some particular operation. In general, the only requests were for inverse operations, and
even then only a few of them. The reader who wishes to know more about rules for
creating and improving LISP algorithms is directed to [Darlington and Burstall 73). A
more general discussion of the principles involved can be found in [Simon 72).

5.2.10. Domain/Range

Another facet possessed only by active concepts is Domain/Range. The syntax of this facet
is quite simple. It is a list of entries, each of the form < D1 D2... - R >, where there can be
any number of Di's preceding the arrow, and R and all the Di's are the names Uf concepts.
Semantically, this entry means that the active concept may be run on a list of arguments
where the first one is an example of D1, the second an example of D2 , etc., and in that case
will return a value guaranteed to be an example of R. In other words, the concept may be
considered a relation on the cross.product DixD2x...xR. We shall say that the domain of
the concept is DlxD 2x..., and that its range is R. Each Di is called a component of the
domain.

For example, here is what the Domain/Range facet of TIMES might look like:

< Numbers Numbers -4 Numbers >
< Odd-numbers Odd-numbers -# Odd-numbers >
< Even-Numbers Even-Numbers -4 Even-numbers >
< Odd-numbers Even-Numbers -4 Even-Numbers >
< Perf-Squares Perf-Squares -4 Perf-Squares >
< Bags-of-Numbers -4 Numbers >

Here is what the Domain/Range facet of Set-Union might look like:

< Sets Sets 4 Sets >
< Nonempty-sets Sets 4 Non-empty-sets >
< Sets-of-Sets 4 Sets >

5. ____________________________________
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The Domain/Range part is useful for pruning away absurd compositions, and for
syntactically suggesting compositions and "coalescings". Let's see what this means.

Suppose some rule sometime .ried to compose TIMESoSet-union. A rule tacked onto
Compose says to ensure that the range of Set-union at least intersects (and preferably is
equal to) some component of the domain of TIMES. But there are no entities which are
both sets and numbers39; etgo this fails almost instantaneously.

This is too had, since there was probably a good reason (e.g., intuition) for trying this
composition. If the activation energy (priority of the current task) is high enough, AM will
continue trying to force it through. The failure arose because Sets could not be viewed as if
they were Numbers. A relevant rule says:

IF you want to view X's as if they w.re Y's,
THEN seek an interesting operation F from X to Y, to do the viewing.

So AM had to locate any and all operations whose domain/range had an entry of the form
<Sets-4Numbers>. The only such operation known to AM at the time was F-Length. So
the composition produced was TIMES[X, Length(Set-union(Y,Z))].

Notice that if the composition Set-unionoSet-union is proposed, there will be no conflict,
since the range of Set-union obviously intersects one component of the domain of Set-union.
How can AM determine the domain/range of this composition? A rule tacked onto Compose
indicates that if FGoH, and a domain/range entry for G is <A...X...B -4 C>, and an entry
for H is <D...E - Y>, and Y intersects X, then an entry for F's domain/range is <A...D...E ...B
-s C>. That is, the domain of H is substituted for the single component of the domain of G
which can be shown to intersect the range of H. Pu:,.y syntactically, AM can thus compute
some domain/range entries for the composition Set-unionoSet-union.

< Sets Sets -+ Sets> and < Sets Sets -+ Sets> com,,bine to yield < Sets Sets Sets -4 Sets >;
<Non-empty-sets Sets -- Non-empty-sets> and <Sets Sets -4 Sets> combine to yield

<Non-empty-sets Sets Sets -+ Non-empty-sets>:
and so on. Similarly, one can compute an entry for the domain/range facet of the previous
composition of three operations TIM ESoLengthoSet.union:

< Sets Sets -+ Sets), < Sets --4 Numbers>, and < Numbers Numbers -4 Numbers > combine to
yield < Numbers Sets Sets -4 Numbers >

So when computing TIMES( X, Length( Set-union(Y,Z))), both Y and Z can be sets, and X
a number, and the result will be a number.

The claim was also made that Domain/Range facets help propose plausible coalescings. By
coalescing" an operation, we mean defining a new one, which differs from the original one

in that a couple of the arguments must now coincide. For example, coalescing TIMES(x,y)
results in the new operation F(x) defined as TIMES(x,x). Syntactically, we can coal'cce a
pair of domain components of the domain/range facet of an operation if those two r ,main
components are equal, or if one of them is a specialization of the other, or even if they

Why? The number n, to AM, is represented in unary, as a bag of n T's None of these are sets The composition
"TIMESoBAG-UNION" would have made tense to AM, but would hrve been defined only for bagsi-of-T'e Then
TIMESoBAG-UNION(x,y,z) would be just x(y~z).

o I
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merely intersect. In the case of one related to the other by specialization, the more
specialized concept will replace both of them, In case of merely irtersecting, ;.r, extra test will
have to be inserted into the definition of the new coalesced operation.

Given this domain/range entry for Set-insert: < Anything Sets -4 Sets >, we see that it is ripe
for coalescing. Since Sets is a specialization of Anything, the new operation F(x), which is
defined as Set-insert(x,x), will have a domainirange entry of the form < Sets -4 Sets >. That
is, the specialized concept Sets will replace both of the old domain elements (Anything and
Sets). F(x) takes a set x and inserts it into it.;,". Thus F({a,b))u{a,b,{a,b)J. In fact, this new
operation F is very exciting because it always :eems to give a new, larger set than the one
you feed in as the argument.

We have seen how the Domain/range facet. can prune away meaningless coalescings, as well
as meaningless compositions. Any pror,,sed composition or coalescing will at least be
syntactically meaningful. If all compositions are proposed only for at least one good semantic
reason, then those passing the domain/range test, and hence those which ultimately get
created, will all be valuable new concepts. Since almost all coalescings are semantically
interesting, any of them which have a valid Domain/Range entry will get created and
probably will be inte:esti:;g.

This facet is occasionally used to suggest conjectures to investigate. For example, a heuristic
rule says that if the domain/range entries have the form <D D D... -4 genl(D) >, then it's
worthwhile seeing whether the value of this operation doesn't really always iie inside D
itself. This is used right after the BagsoNumbers analogy is found, in the following way.
One of the Bag-operations known already is Bag-union. The analogy causes AM to
consider a new operation, with the same algorithm as Bag-union, but restricted to Bags-of-
T's (numbers in unary representation). The Donmain/range facet of this new, restricted
mutation of Bag-union contains only this entry: <Bags-of-T's Bags-of-T's 4 Bags>. Since
Bags is a generalization of Bags-of-T's, the heuristic mentioned above triggers, and AM sees
whether or not the union of two Bags-of-T's is always a bag containing only T's. It appears
to be so, even in extreme cases, so the old Domainlrange entry is replaced by this new one:
<Bags-of.T's Babs-of-T's 4 Bags-of-T's>. When the user asks AM to call these bags-of-T's
"numbers", this entry becomes <Numbers Numbers -4 Numbers>. In modern terms, then, the
conjecture suggested was th3t the sum of two numbers is always a number.

To sum up this last ability in fancy language, we might say that one mechanism for
proposing conjectures is the prejudicial belief in the :nlikelihood of asymnlery. In this
case, it is asymmetry in the parts of a Domain/range entry that draws attei.:ion. Such
conjecturing can be done by any action part of any heuristic rule; the Conje,- fto.et entries
don't have a monopoly on initiating this type of activity.

5.2.11. Worth

How can we represent the worth of each concept? Here are some possible suggestions:

1. The most intelligent (but most difficult) solution is "purely symbolically". That is, an
individualized description of the good and bad points of the concept; when it is

'2 useful, when misleading, etc.
C2. A simpler solution would be to "standardize" the above symbolic description once
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and for all, fixing a universal list of questions. So each concept would have to
answer the questions on this list (How good are you at motivating new concepts?,
How costly is your definition to excuz? ...). The answers might each be symbolic;

, e.g., arbitrary English phrases.
3. To simplify this scheme even more, we can assume that the answers to each question

F will be numeric-valued functions (i.e, LISP code which can be evaluated to yield a
number between 0 and 1000). The vector of numbers produced by Evaluating all
these functions will then be easy to manipulate (e.g. using dot-product, vector-
product, vector-addition. etc.), arid the functions themselves may be inspected for
ser,antic content. Nevertheless, much content is lost in passing from symbolic
phrases to small LISP functions.

4. A slight simplification of the above would be to just store the vector of numbers
answering the fixed set of questions; i.e., don't bother storing a bunch of programs
which compute them dynamically.

5. Even simpler would be to try to assign a single "worthwhileness" number to each
concept, in lieu of the vector of numbers. Simple arithmetic operations could
manipulate Worth values then. In some cases, this linear ordering seems
reasonable ("primes" really are better than "palindromes".) Yet in many cases we
find concepts which are too different to be so easily compared (eg., "numbers" and
dangles".)

6. The least intelligent solution is none at all: each concept is considered equally
worthwhile as any other concept. This threatens to be combinatorial dynamite.

As we progress along the intelligent---trivial dimension, we find that the schemes get easier
and easier to code, the Worth values get easier and easier to deal with, but the amount of
reliable knowledge packed into them decreases.

Initially, scheme *3 above was chosen for AM: a vector of numeric-valued procedu'ral
answers to a fixed set of questions. Here are those questions, the components of the Worth
vectors for each concept:

1. Overall aesthetic worth.
2. Overall utility. Combination of usefulness, ubiquity.
3. Age. How many cycles since this concept was created?
4. Life-span. Can this concept be forgotten yet?
5. Cost. How much cpu time has been spent on this concept, since its creation?

Notice that in general no constant number can answer one of these questions once and for
all (consider, e.g., Life-span). Each 'answer' had to be a numeric-valued LISP function.

A few question: which crop up often are not present on thi. list, since they can be answered
trivially using standard LISP functions (e.g., "How much space does concept C use up?" can
be found by ,.ailing the fu.nction "COUNT" on the property-list of the LISP atom "C").

Another kind of uestion, which was anticipated and did in fact come up frequently, is of
the form "How' good are the entries on facet F of this concept?", for various values of F.

x Since there are a couple do.zen kinds of facets, this would mean adding a couple dozen more
q..estions to the list. The line must be drawn somewhere. If too much of AM's time is
drained by evaluating where it is already, it can never progress.

"',-1
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The heuristic rules are responsible for initially setting up the various entries ar the Worth
facets of new concepts, and for periodically altering those entries for ali concepts, and for
delving into those entries when required.

Recent experiments have shown (see Experiment I, page 127) there was little change in
behavior when each vector of functions was replaced by a single numeric function (actually,
the sum of the values of the components of the "old" vector of functions). There wasn't even
too much change when this was replaced by a single number. There was a noticeable
degradation (but no collapse) when all the concepts' numbers were set equal to each other
initially.

For the purposes of this document, then (except for this page and the discussion of
Experiment 1), we may as well assume that each concept has a single number (between 0
and 1000) attached as its overall "Worth" rating. This number is set 40 and referenced and
updated by heuristic rules. Experiment I can be considered as showing that a more
sophisticated Worth scheme is not necessary for the particular kinds of behaviors that AM
exhibits.

5.2.12. Interest

Now that we know how how to judge the overall worth of the concept "Composition", le,'s
turn to the question of how interesting some specific composition is. Unfortunately, the
Worth facet really has nothing to say about that problem. The Worth of the concept
"Compose" has little effect on how interesting a particular composition is: "CountoDivisors-
of" is very interesting, and "InsertoMember" 41 is less so. The Worth facets of those concepts
will say something about their overall value. And yet there is some knowledge, some
"features" which would make any composition which possessed them more interesting than a
composition which lacked them:

Are the domain and range of the composition equal to each other?
Are interesting properties of each c,:,,rponent of the composition preserved?
Are undesirable properties lost (i.e., not true about the composition)?
Is the new composition equivalent to some already-known operation?

These hints about "features to look ror" belong tacked onto the Composition concept, since
they modify all compositions. Where and how can this be done?

For this purpose each concept - including "Composition" - can have entries on Its
"Interest" facet. It contains a bunch of features which (if true) would make any particular
example of the current concept interesting.

The format foi the Interest facet is as follows:

< Conflic4l-matrix
<Faiurol, Value,, Reason,, Used,>
<Feature 2, Value 2, Reasun 2, Used2 >

40 The author initially sets this value for the 115 initial concepts. Heuristic rules set it for each concept created by AM.
41 INSERToMEMBER(x,yz). if x(y, then insert 'T into z, else insert 'NIL' into z.

Li K :_______
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<FeajureK, ValueK, Re.tsonK, UsedK)

This is the format of the facet itself, not of each entry. The conflict-matrix is special and
will be discussed below. Each Feature/ValuelReasonlUsed quadruple will be termed an
"entry" on the Interest faret.

Each "Feature," is a LISP predicate, indicating whether or not some interesting property is
satisfied. The corresponding "Value," is a numeric function for computing just how
valuable this feature is. The "Reason," is a token (usually an English phrase) which is
tacked along and moved around, and can be inspected by the user. The "Used i" subpart is

a list of all the concepts whose definitions are known to incorporate42 this feature; all
examples of such concepts will then automatically satisfy this Featurei.

%: For example, here is one entry from the Interest facet of Compose:

FEATURE: Domain(Arg I ):Range(Arg2)
VALUE: .4 * .4xWorth(Domain(Argl )) * .2xPriority(current task)
REASON: "The composition of Argi and Arg2 will map from a set back into that same

set"
USED: Compose-with-sef-Domain=Range-operation, Interesting-compose-4

Just as with Isa's and Generalizations, we can make a general statement about Interest

features:

Any feature tacked onto the Interest facet of an)' member of ISA's(C), also applies to C.

That is, X.Interest is relevant to C iff C is an example of X. For example, any feature
which makes an operation interesting, also makes a composition interesting.

So we'd like to define the function Interests(C) as the union of the Interest features found
tacked onto any member of ISA's(C).43 But sone of these might have already been
conjined to a definition, to form the concept C (or a generalization of C). So all C's will
trivially (by definition) satisfy such features. The USED subparts can be employed to find
such features. In fact, the final value of Interests(C) is the one computed above, using
ISA's(C), but after eliminating all the features whose USED subparts pointed to any

* member of ISA's(C).

This covers the purpose of each subpart of each entry on a typical Interest facet. Now we're
ready to motivate the presence of the Conflict-matrices.

Often, AM will specialize a concept by conjoining onto its definition some features which
would make any example of the concept interesting. So any example of this new specialized

" t1,2 Not SATISFY the feature, Thus the general concept Domain-Range-op incorporates the feature "range(x0s one component
.=domin()" as jut one of the conjuncts i it defintion On the other hand, Set-union satisfies the

feature, since its snie, Sets, really is one component of its domain
Recall that the formula for this is ISA's(C) * Generalizations(Isa(Generalizations(C)))

................................... . . . ........... .. . .
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concept is thus guaranteed to be an interesting example of the old concept. Sometimes,
however, a pair of features are exclusive: both of them can never be sati'fied
simultaneously. For example, a composition can also be interesting if "arg2" is an operation
from Range(argl) into a set which is much more interesting than either Domain(argi) or
Range(argl). Clearly, this feature and the one shown above can't both be true ("x=y" and
x much more interesting than y" can't occur simultaneously). If AM didn't have some

systematic way to realize this, however, it might create a new concept, called Interesting-
composition, defined as any composition satisfying both of those features. But then this
concept will be vacuous: no operation can possibly satisfy that over-constrained definition;
this new concept will have no examples; it is the null concept; it is trivially forgettable.
Merely to think of it is a blot on AM's claim to rationality.

The "Conflict-matrix" is specified to prevent many such trivial combinations from eating up
a lot of A M's time (and, as usual, it helps to make AM appear smarter). If there are K
features present for the Interest facet of the concept, then its conflict-matrix will be a KxK
matrix. In row I, column j of this matrix is a letter, indicating the relationship between
features I and j:

E Exclusive of each other: they both can't be true at the same time.
-4 Implies: If feature i holds, then feature j must hold.
Implied by: If feature j holds, then so does feature i.

= Equal. Feature i holds precisely when feature j holds.
U Unrelated. As far as known, there is no connection between them.

These little relations are utilized by some of the heuristic rules. Here is one such rule. Its
purpose is to create a new, specialized form of concept C, if many examples of C were
previously found very quickly.

IF Current-task is (Fillin Specializations of C)
and IIC.Examplesll>30
and Time-spent-on-C-so-far < 3 cpu seconds,
and Interests(C) is not null,

THEN creat. a new concept named Interesting-C,
Defined as the conjunction of C.Defn and the highest-valued member of Interests(C)

which is U (unrelated) to any feature USED in the definition of C.
and add the following task to the agenda: Fillin examples of Interesting-C, with value

computed as the Value subpart of the chosen feature, ;or this reason: "Any
example of Interesting-C is automatically an interesting example of C".

and add "Interesting-C" to the USED subpart of the entry where that saeture was
originally plucked from.

t )f course, the LISP form of the above rule is really more detailed about what to do, but
ti-., general flavor of the interaction with the Interest facet should come across. As before,
th,. value desired is not C.Interest, but rather the post-rippling value Interests(C). C.Int
co;. %ins a few features pertaining just to C's, but Interests(C) contains man) adJitional
feat -!s which are not limited in scope to merely judging C's, but pertain to a more general
class :, concepts. The quantity 'Time-spent-on-C.so.far' is one component of the Worth

V facet t C; it might just as well have been accessed from some "Past-history" record of AM's
activiti ,.. The numbers in the rile - and every little bit of that rule - were specified ad
hoc by ,1,e author. This is true for each rule initially present in AM. As Section 6.2 will
discuss, Ovi precise numbers don't drastically affect the system's performance.

C..%
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5.2.13. Suggest

This section describes a space-saving "trick", and a "fix-up" to undo some potentially serious
side-effects of that trick. Readers not interested in this level of detail may skip to the next
subsection.

AM maintains a long list of tasks (the agenda), ordered by a global priority rating scheme.
Besides this, AM maintains two threshholds: Do-threshhold and a lower one, Be-threshhold.

When a new task is proposed, if its global priority is below Be-threshhold, then it won't
even be entered on the agenda. This value is set so low that any task having even one
mediocre reason will make it onto the agenda.

After a task is finished executing, the top-rated one from the agenda is selected to work on
next If its priority rating is below Do-threshhold, however, it is put back on the agenda,
and AM complains that no task on the agenda is very interesting at the moment. AM then
spends a minute or so looking around for new tasks, re-evaluating the priorities of the tasks
on the agenda already, etc.

One way to find new tasks (and new reasons for already-existing tasks) is to evaluate the
"Suggest" facets of all the concepts in the system. More precisely, each Suggest facet
contains some heuristics, encoded into LISP functions. Each function accepts a number N
as an argument (representing some minimum value tolerable for a new task), and the
function returns as its value a list of new tasks. These are then merged into the agenda, if
desired.

Semantically, each function is one heuristic rule for suggesting a new task which might be
very plausible, promising, and a propos at the current time. For example, here is one entry
from the Suggest facet of Any-concept:

IF there are no examples for concept C filled in so far,
THEN consider the task "Fiilin examples of C", for the following reason: "No examples

of C filled in so far", whose value is half of Worth(C). If that value is below
argi, then forget it; otherwise, try to add to to the agenda.

The argument "argl" is that low numeric v'lue, N, supplied to the Suggest facet.

This entry alone will produce a multitude of potential tasks; for concepts whose Worth
numbers are high, or for which a task is already on the agenda to fill in their examples,
these suggested tasks will be remembered; most of the other ones will typically be forgotten.

One use of this facet is thus to "beef up" the agenda whenever AM is discontented with all
the tasks thereon. At such a time, AM may call on all the Suggest facets in the system, and a
large volume of new tasks will be added to the agenda. Many of them will exist there
already, but for different reasons, so many old tasks' priority values will rise. After this
period of suggesting is over, the agenda's highest-ranking task will hopefully have a higher
value than any did before. Also at this time, the Be-thrcshhold and Do-threshhold
numbers are reduced. So there are two reasons why the top task may now be rated higher
than Do-threshhold. If it isn't, then the threshholds are lowered again, and again all the
Sugg facets are triggered (this time with a lower N value).
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Both threshholds are raised slightly every time AM succeeds in picking and executing a
task. So they follow a pattern of slow increase, followed by a sudden decrement, followed by
another slow increase, etc. This was intended to mimic a human's increasing expectations as
he makes progress.44 It also mimics the way a human strains his mind when an obstacle to
that progress appears; if the straining doesn't produce a brilliant new insight, he grudgingly
is willing to reduce his expectations, and perhaps resume some "old path" abandoned
earlier.

Another use of this facet is to re-suggest tasks that might have been dropped from (or never
made it onto) the agenda, because they weren't valued above Be-threshhold. How might this
work? Suppose that, at an earlier time, a task was proposed but never made It onto the
agenda because Be-threshhold was quite high. Now, suppose Be-threshhold is much lower
(due to a succession of failures). If a Sugg facet re-proposes that same task, it will be

-m accepted, will "stick" onto the agenda (albeit near the bottom). The Suggest facets can
reproduce most of the common tasks, and try to stick them on the agenda (though usually
for a mediocre to poor reason). It will still usually require another reason for such a task to

rise to the very top of the agenda, and be selected and executed.

So the use of the two threshholds is really an unaesthetic space-saving device, a,d the role
of the Suggest facets is merely to correct the errors introduced in this way. There may be
no convincing intuitive reason for having these facets at all in a "just" world.

5.2.14. Fillin/Check

To doubt everything doesn't suffice; one must know w_, he doubts.

1 --Poincr

There is one more level of structure to AM's representation of a concept than the simple
"properties on a property-list" image. Each concept consitss of a bunch of facets; each facet
follows the format layed down for it (and described in the preceding several subsections).
Yet each facet of each concept can have two additional "subfacets" (little slots that are hung
onto any desired slot) named Fillin and Check.

The "Fillin" field of facet F of concept C is abbreviated C.F.Fillin. The format of that
subfield is a list of heuristic rules, encoded into LISP functions. Semantically, each rule in
C.F.Fillin should be relevant to filling in entries for facet F of any concept which is a C.
This substructure is an implementation answer tr the question of where to place certain
heuristic rules.

As an illustration, let me describe a typical rule which is found on Compose.Examples.Fillin.
According to the last paragraph, this must be useful for filling in examples of any operation

" - 44
.This wast based on personal introspection, and shculd be tested experimentally

. . . . .. - , .. - .. . " . - .- . ... : - , -, .. .. -.- -.--- -. ,- --.-. .o -- .
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which is a composition. The rule says that if the composition AoB is formed from two very
time-consuming operations A and B, then it's worth trying to find some examples of AoB by
symbolic means; in this case, scan the examples of A and of B, for some pair of examples
x-4y (example of B) and y-z (example of A). Then posit that x-4z is an example of AoB.
This rule applies precisely to the task of filling in examples of Examples(Composition).
Thus, it is relevant to the task "Fill in examples of Insertoinsert". It is irrelevant if you
change the action (e.g., "Check examples of Insertolnsert"), or if you change the facet to be
dealt with (e.g., "Fill in algorithms for Insertolnsert"), or if you change the class of concept
(e.g., "Fill in examples of Set-union)45 .

As another illustration, let me describe a typical rule which is found on
Compose.Conjec.Flllin. It says that one potential conjecture about a given composition AoB
is that it is unchanged from A (or from B). This happens often enough that it's worth
examining each time a new composition is made. This rule applies precisely to the task of
filling in conjectures about particular compositions.

The subfacet Any-Concept.Examples.Fillin is ,zste large; it contains a! ifhe known methods
for filling in examples of C (when all ',;e know is that C is a concept). Here are a few of
those techniques46:

I. Instantiate C.Defri
2. Search the examples facets of all the concepts on Generalizations(C) for examples of

C
3. Run some of the concepts named In In.ran-of(C) [i.e., operations whose range is C)

and collect the resultant values.

Any-Concept.Examples.Check is large for simile" reasons. A typical entry there says to
examine each verified example of C: if it is also an example of a specialization of C, then it
must be removed from C.Examples and inserted 47 into the Examples facet of that
specialized concept.

Here is one typical entry from Operation.Domain/Range.Check:

IF a domain/range entry has the form (D D D....-4 R),
and all the D's are equal, and R is a generalization of D,

THEN it's worth seeing whether (D D D... .- D) is consistent with all known examples of the
operation.

If there are no known examples, add a task to the agenda requesting they be filled in.
If there are examples, and (D D D... -4 D) is consistent, add it to the Domain/range facet

of this operation.
If there are some contradicting examples, create a new concept which is defined as this

operation restricted to (D D D... -4 D).

Note that it does make sense if you replace the concept "Insert o Insert" by any other example of a Composition (e.g.,
"Fill in examples of Set-Union o Set-intersection").

46 The interested reader will find them all listed in Appendix 3, beginning on page 233.
Conditionally Since each concept is of finite worth, it is allotted a finite amount of space. A random number is generated

to decide whether or not to actually insert this example into the Examples facet of the specialization of C.
The more that speciatizef concept is "exceeding its quota", the narrower the range that the random number
must fall into to have Oat new item inserted. The probability is never precisely I or 0

4,

4,

- -- - - --
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Note that this "Checking" rule doesn't just passively check the designated facet; it actively
"fixes up" faulty entries, adds new tasks, creates new concepts, etc. All the check rules are
very aggressive in this way. For example, one entry on No-multiple-elements-
structure.Examples.Check will actually remove any multiple occurrences of an element from
a structure.

As you might expect, the set Checks(C.F) of all relevant rules for checking facet F of
concept C is obtained as (ISA's(C)).F.Check. That is, look for the Check subfacet of the F
facet of all the concepts on ISA's(C)). Similarly, Fillins(C.F) is the union of the Fillin
subfacets of the F facets of all the concepts on ISA's(C).

When AM chooses a task like "Fillin examples of Primes", its first action is to compute
Fillins(Primes.Exs). It does this by asking for ISA's(Primes); that is, a list of all concepts of
which Primes is an example. This list is: <Objects Any-concept Anything>. So the relevant
heuristics are gathered from Objects.Exs.Fill in, etc. This list of heuristics is then executed,
in order (last executed are the heristics attached to Anything.Exs.Fillin).

It should now be clear what is meant when a concept's facets are listed in the following
format:

Name(s) Frob, Frobnation
o

Algorithms Al A2
Examples El E2 E3 E4 E5 E6

Fillin Rulel Rule2
Check Rule3 Rule4 Rule5

Domain/range DRI DR2 DR3
Check Rule6

Conjecs Cl C2 C3 C4 C5 C6
Fillin Rule7 Rule8
Check Rule9 RulelO

E.g., the entry Rule9 is a heuristic rule which may help to check entries on the Conjecs facet

of any Frob 48. This notation will not be used actually in this document, partly for the

benefit of those readers who skip this subsection, partly for consistency between concepts
I diagrammed before and after this subsection. Rather, all the Fillin heuristics for a concept

will be gathered together into what appears to be just one coherent facet. Theoretically, of
course, one could organize them that way, with an extra precondition on each Fillin
heuristic to indicate which facet it is useful for filling in.

48 'Frob' is a nensense word, a variable identifier which stands for any concept.
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5.2.15. Other Facets which were Considered

Most facets (like "Definitions") were anticipated from the very beginning planning of AM,
and proved just as useful as expected. Others (like "Intuitions") were also expected to be
very important, yet were a serious disappointment. Still others (like "Suggest") were
unplanned and grumblingly acknowledged as necessary for the particular LISP program
that bears the name AM. Finally, we turn to a few facets which were initially planned, and
yet which were adjudged useless around the time that AM was coded. They were therefore
never really a part of the LISP program AM, although they figured in its proposal. Let me
list them, and explain why each one was dropped.

1. UN-INTERESTINGNESS. This was to be similar to the Interest part. It would contain
entries of the form featurelvalue/reason, where the feature would be a bad (dull,
trivializing, undesirable, uninteresting) property that an entity (a concept or a task)
might possess. If it did, then the value component would return a negative number as its
contribution to the worth/priority of that entity. This sounded plausible, but turned out
to be useless in practice: (i) There were very few features one could point to which
explicitly indicated when something was boring; (ii) Often, a conjunction of many such
features would make the entity seem unusual, hence interesting; (iii) Most entities were
viewed as very mediocre unlessluntil specific reasons to the contrary, and in those cases
the presence a few boring properties would be outshadowed by the few non-boring ones.
In a sea of mediocrity, there is little need to separate the boring from the very boring.

2. JUSTIFICATION. For conjectures which were not yet believed with certainty, this part
would contain all the known evidence supporting hem. This would hopefully be
convincing, if the user (or a concept) ever wanted to know. In cases of contradictions
arising somehow, this facet was to keep hold of the threads that could be untangled to
resolve those paradoxes. As described earlier, this duty could naturally be assumed by
the Conjecs facet of each concept. The other intended role for this facet was to hold
sketches of the proofs of theorems. Unfortunately, the intended concepts for Proof and
Absolute truth were never implemented, and thus most of the heuristic rules which
would have interacted with this facet are absent from AM. It simply was never needed.

3. RECOGNITION Originally, it was assumed that the location of relevant concepts and
their heuristics would be much more like a free-for-all (pandemonium) than an orderly
rippling process. As with the original use of BEINGs49 , the expectation was that each
concept would have to "shout out" its relevance whenever the activities triggered some
recognition predicate inside that concept. Such predicates were to be stored in this facet.
But it quickly became apparent that the triggering predicates which were the left-hand-
sides of the heuristic rules were quick enough to obviate the need for pre-processing
them too heavily. Also, the only rules relevant to a given activity on concept C always
seemed to be attainable by rippling in a certain direction away from C. This varied
with the activity, and a relatively small table could be written, to specify which direction
to ripple in (for any given desired activity). We see that for "Fill-in examples of...", the
direction to ripple in is "Generalizations", to locate relevant heuristic rules, For "Judge
interest of..." the direction is also generalizations. For "Access specializations of", the

49 Interacting knowledgo modules, each module simulating a different expert at a round-table meeting. See [Lenat 75b].
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direction is Specializations, etc. The only important point here is that the Recognition
facet was no longer needed.

5.3. AM's Starting Concepts

The first subsection presents a diagram of the top-ievel (general) concepts AM started with,
with the lines indicating the GeneralizationslSpecializations kinds of relationships (single
line links) and a few Examples/Isa's links (triple vertical lines). Several specific concepts
have been omitted from that picture. All the concepts initially fed to AM are then listed
alphabeticaliy and described in Section 5.3.2. A full facet-by-facet description of each
concept is provided in Appendix 2. Finally, Section 5.3.3 discusses the choice of starting
concepts.

5.3.1. Diagram of Initial Concepts

I_
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Anything

Any-concept non-concepts

Activity Object

Relation
/ Predicate Operation Atom Conjec Structure

Coalescg /sets 
Inver ted-operat i onCanonizat ion /

Composition Sets

Restricted-operation

Lists

Bags
Ord-pai rs

The diagram above represents the "topmost" concepts which AM had Initially, shown
connected via Specialization links N and Examples links (11i. The only concepts not
diagrammed are examples of the concept Operation. There are 47 such operations.

Also, we should note that many entities exist in the system which are not themselves
concepts. For example, the number "3", though it be an example of many concepts, is not
itself a concept. All entities which are concepts are present on the list called CONCEPTS,
and they all have property lists (with facet names as the properties). In hindsight, this
somewhat arbitrary scheme is regrettable. A more aesthetic designer might have come up
with a more uniform system of representation than AM's.

~- .. . . . .
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5.3.2. Summary of Initial Concepts

Since the precise set of concepts is not central to the design of AM, or the quality of
behaviors of AM, they are not worth detailing here. On the other hand, a cursory
familiarity with their names and definitions should aid the reader in building up an
understanding of what AM has done. For that reason, the concepts will now be briefly
described, in alphabetical order. This is the same order as concepts are listed on page 173.
A fuller description of the concepts is provided in Appendix 2. The ordering within that
appendix is different; concepts are grouped together If they are semantically related, by
starting at the top of the diagram and meandering downward.

ACTIVITY represents something that can be "performed". All Actives - and only Actives -
have Domainirange facets and Algorithms facets.

ALL-BUf-FIRST-ELEMENT is an operation which takes an ordered structure and removes the
first element from it. It is similar in spirit to the Lisp function "CDR".

ALL-BUT-LAST-ELEMENT takes an ordered structure and removes its last element.

ANY-CONCEPT is useful because it holds all the very general tactics for filling in and
checking each facet. The definition of Any-concept is "X (x) x(CONCEPTS". 'CONCEPTS' is
AM's global list of entities known to be concepts. Initially, this list contains the hundred or
so concepts which AM starts with (e.g., all those diagrammed on the preceding page).

ANYTHING is defined as "k, (x) T"; i.e., a predicate which will always return true. Notice that
the singleton {a} is an example of Anything, but (since it's not on the list CONCEPTS) it is
not an example of Any-concept.

ATOM contains data about all primitive, indivisible objects (identifiers, constants, variables).

BAG is a type of structure. It is unordered, and multiple occurrences of the same element
are permitted. They are isomorphic to the concept known as 'multiset', except that we
stipulate that sets are not bags.

BAG-DELETE is an operation which takes two arguments, x and B. Although x can be
anything, B must be a bag. The procedure is to remove one occurrence of x from B.

BAG-DIFF is an operation which takes two bags B,C. It repeatedly picks a member of C, and
re-noves it (one occurrence of it) from both B and C. This continues until C is empty.

BAG-INSERT is an operation which adds (another occurrence of) x into bag B.

BAG-INTERSECT takes two bags B,C, and creates a new bag D. An item occurs in D the
minimum number of times it occurs in either B or C.

BAG-UNION takes bag C and dumps all its elements into bag B.

CANONIZE is both an example of and a specialization of 'Operation'. It accepts two
predicates P1 and P2 as arguments, both defined over some domain AxA, where PI is a
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generalization of P2. Canonize then tries to produce a "standard representation" for
elements of A, in the following way. It creates an operation f from A into A, saisfying.
PI (x,y) iff P2(f(x),f(y)). Then any item of the form f(x) is called a canonical member of A.
The set of such canonical-A's is worth naming, and it is worth investigating the restrictions
of various operations' domains and ranges to this set of canonical-A's s . "Canonize"
contains lots of information relevant to creating such functions f (given P I and P2). Thus
Canonize is an example of the concept Operation. Canonize also contains information
relevant to dealing with any and all such f's. So Canonize is a specialization of Operation.

COALESCE admits the same duality51. This very useful operation takes as its argument any
operation F(a,b,c,d...), locates two domain components which intersect (preferably, which are
equal; say the second and third), and then creates a new operation G defined as
G(a,b,d...)-F(a,b,b,d...). That is, F is called upon with a pair of arguments equal to each
other. If F -erc Ti..cs, then G would be Squaring. If F were Set-insert, then G would be
the operation of inserting a set S into itself.

COMPOSITION involves taking two operations A and B, and applying them in sequence:
Ao,(x),A(B(x)). This concept deals with (!) the activity of creating new compositions, given
a pair of operations; (ii) all the operations which were created in this fashion. That is why
this concept is both a specialization of and an example of Operation.

CONJECTURES are a kind of object. This concept knows about - and can store - conjectures.
When proof techniques are inserted into AM, this tiny twig of the tree of concepts will grow
to giant proportions.

CONSTANT-PREDICATE is a predicate which can afford to have a very liberal domain: it
always ignores its arguments and just returns the same logical value all the time.

DELETE is an operation which contains all the information common to all flavors of
removing an element from a structure (regardless of the type of structure which is being
attenuated). When called upon to actually perform a deletion, this concept determines the
type of structure and then calls the appropriate specialized delete concept (e.g., Bag-delete).

DIFFERENCE is another general operation, which accepts two structures, determines their type
(e.g., Bags), and then calls the appropriate specialized version of difference (e.g., Bag-diff).

EMPTY-STRUCTURE contains data relevant to structures with no members.

FIRST-ELEMENT is an operation which takes an ordered structui., and returns the first
element. It is like the Lisp function 'CAR'.

ICENTITY is just what it claims to be. It takes one argument and returns it immediately. The
main purpose of knowing about this boring transformation is just in case some new concept
turs. out unexpectedly to be equivalent to it.

50 ie, take an operation which used to have "A" at one of its domain components or as its range, and try to create a new

operation with essentially the same definition but whose domain/range says "Canonical-A" instead of A".
51 Both a specialization of Operation and an example of Operation.

............................................................. .- 7, . .. .
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INSERT takes an item x and a structure S, determines S's type, and calls the appropriate
flavor of specialized Insertion concept. The general INSERT concept contains any
information commort to all of those insertion concepts.

INTERSECT is an operation which computes the intersection of any two structures. It, too, has
a separate specialization for Bags, Sets, Osets, and Lists.

UINVERT-AN-OPERATION is a very active concept. It can invert any given operation. If
F:X-+Y is an operation, then its inverse will be abbreviated F" , and F'l(y) is defined as all
the x's in X for which F(x)-y. The domain and range of F-1 are thus the range and
domain of F.

INVERTED-OP contains information specific to operations which were created as the inverses
of more primitive ones.

LAST-ELEMENT takes an ordered structure and returns its final member.

LIST is a type of structure. It is ordered, and multiple occurrences of the same element are
permitted. Lists are also called vectors, tuples, and obags (for "ordered bags").

LIST-DELETE is an operation which takes two arguments, x and B. Although x can be
anything, B must be a list. The procedure is to remove the first occurrence of x from B.

LIST-DIFF is an operation which takes two lists BC. It repeatedly picks a member of 0, and
removes it (the first remaming occurrence of it) from both B and C. This continues until
there are no more membprs in C.

LIST-INSERT is an operation which adds (another occurrence of) x onto the front of list B. It

is like the Lisp function 'CONS'.

LIST-INTERSECT takes two lists B,C, and creates a new list D. An item occurs In D the
minimum number of times it occurs in either B or C. D is arranged in order as (a sublist
of) list B.

r LIST-UNION takes list C glues it onto the end of list B. It's like 'APPEND' in Lisp.

LOGICAL-RELATION contains knowledge about Boolean cembinations: disjunction,
conjunction, implication, etc.

MULTIPLE-ELEMENTS-STRUCTURES are a specialization of Structure. They permit the same
atom to occur more than once as a member. (e.g., Bags and Lists)

NO-MULTIPLE-ELEMENTS-,TRUCTURES are a specialization of Structure. They permit the
same atom to occur only once as a member. (e.g., Sets and Osets)

NONEMPTY-STRUCTtI-ESc a spu.iaiizaton of Structure also. They contain data about all
structures which have some members.

OBJECT is a general, static concept. Objects are like the subjects and direct objects in

I-i ..,.7 ...-.- -,-.. , -, .- x -", - f , ''''.." - r . 'Y "d ' : f, . £ " : _ ,. ,*"" "";;
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sentences, while the Actives are like the verbs52.

OBJECT-EQUALITY is a predicate. It takes a pair of objects, and returns True if (i) they are
identical, or (ii) they are structures, and each corresponding pair of members satisfies
Object-Equality. Often we'll call this 'Equal', and denote it as V.

OPERATIONS are Actives which take arguments and return a value. While a predicate
examines its arguments and returns either True or False, an operation examines its
arguments and returns any number of values, of varying types. Assu.ming that the
arguments lay in the domain o, the operation (as specified by some entry on its
Domain/range facet), then every value returned must lie within its range (as specified by
that same Domain/range entry).

ORDERED-PAIR is a kind of List. It has just two 'slots', however: a front and .4 rear element.

ORDERED-STRUCTURE is a specialized type of Structure. It includes all structures for which
the order of insertion of two members can make a difference in whether the structures are
equal or not. Ordered-structures are those for which it makes sense to talk about a front
and a rear, a first element and a last element.

OSET is a type of structure. It is ordered, and multiple occurrences of the same element are
not permitted The short-term-memory of Newell's PSG [Newell 73] is an Oset, as Is a
cafeteria line. Not much use was found for this concept by AM.

OSET-DELETE remov, x from oset B (if x was in B).

OSET-DIFF is an operation which takes two osets B,C. It removes each member of C from B.

OSET-INSERT is an operation which adds x to the front of oset B. If x was in B previously,
it is simply moved te the front of B.

OSET-INTERSECT takes two osets B,C, and removes from B any items which are not in C as
- .-, well. B thus 'induces' the ordering on the resultant oset.

OSET-UNION takes oset C, removes any elements in B already, then glues what's left of C
onto the rear of B.

PARALLEL-JOIN is an operation which takes a kind of structure and an operation H. It
creates a new operation F, whose domain is that type of structure. For any such structure S,
F(S) is computed by appending together H(x) for each member x of S.

PARALLEL-JOIN2 is a similar operation. It creates an operation F with two structural
arguments. F(S,L) is computed by appending the values of H(x,L), as x runs through the
elements of S.53

52 As in Fnglish, a particular Activity can sometimes itself :e the subject

Here, the are to PARALLEL-JOIN2 are two types of structures SS and LL, and an operation H whose range is also a
structural type DD. Then , new operation is created, with domain SSxLL and range DD.
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PARALLEL-REPLACE is an operation used to synthesize new substitution operations. It takes
a structural type and an operation H as its arguments, arid creates a new operation F. F(S)
is computed by simply replacing each member x of S by the value of F(x). The operation
produced is very much like the Lisp function MAPCAR.

PARALLEL-REPLACE2 is a slightly more general operation. It creates F, where F(S,L) is

computed by replacing each x(S by F(x,L).

PREDICATES are actives which examine their arguments and then return T or NIL (True or
False). It is only due to the capriciousness of AM's initial design that predicates are kept
distinct from operations. Of course, each example of an operation can be viewed as if it
were a predicate; if F:A-B is any operation from A to B, then we can consider F a relation
on AxB, that is a subset of AxB, and from there pass to viewing F as a (characteristic)
predicate F:AxB4[T,F. Similarly, any predicate on Ax...xBxC may be considered an
operation (a multi-valued, not-always-defined function) from Ax...xB into C. There are no
unary predicates. If there were one, say P:A-*[T,F}, then that predicate would essentially be
a new way to view a certain subset of A; the predicate would then be transformed into
{a(AIP(a)}, made into a new concept, tagged as a specialization of A, and its definition
would be "X(a) [A.Defn(a) A P(a)]".

PROJECTIONI is a simple operation. It is defined as >, (x y) x. Notice that Identity is just a
specialized restriction of Proji. Projl(Me.You).Me.

PROJECTION2 is a similar operation. It is defined as X, (N y) y.

RELATION is atn, Active which has been encapsulated into a set of ordered pairs. 'Relation'
bridges the gap between active and static concepts.

REPEAT is an operation for generating new operations by repeating old ones. Given as its
argument a structural type SS and an existing operation H (with domain and range of the
form SSxSS4SS), Repeat(SS,H) synthesizes a brand new operation F. The domainlrange of
F is just that of H. F(S) is computed by repeating TEMP'-H(x,TEMP) for each element x
of S. TEMP is initialized as some member (preferably the first element) of S.

REPEAT2 is similar, but requires that H take three arguments, and it creates F, where F(S,L)
is gotten by repeatedly doing TEMP-H(x,TEMP,L).

RESTRICT is an operation which turns out new operations. Given an argument operation (or
predicate) F, the synthesized concept would have the same definition as F, but would have
its domain and/or range curtailed.

REVERSE-ORDERED-PAIR transforms the ordered pair <x,y> into <y,x>.

SET is a type of structure. It is unordered, and multiple occurrences of the same element are
not permitted.

SET-DELETE is an operation which takes two arguments, x and B. Although x can be
anything, B must be a set. The procedure Is to remove x from B (if x was In B), then
tetu-.n !!,p resultant value of B.



Chapter 5 AM: Discovery in Mathematics as Heuristic Search -I 12-

qFT-nIFF is an operation which tales two sets B,C. It removes each member of C from B.

SET-INSERT is an operation which adds x to set B.

SET-INTERSECT removes from set B any items which are not in set C, too.

SET-UNION dumps into B ail the members of C which weren't in there already.

STRUCTURE, the antithesis of ATOM, is inherently divisible. A structure is something that
has members, that can be broken into pieces. There are two questions one can ask about
any kind of structure: Is it ordered or not? Can there be multiple occurrences of the same
element in it or not? There are four sets of answers to these two questions, and each of the
four specifies a wel-knewn kind of structure (Sets, Lists, Osets, Bags).

STRUCTURE-OF-STRUCTURES is a specialization of Structure, representing those structures all
of whose membeis are themselves structures.

TRUTH-VALUE is a specialized kind of atomic object. Its only examples are True and False.
This concept is the range set for all predicates.

UNION is a general kind of joining operation. It takes two structures and combines them.

Four separate variants of this concept are given to AM initially (e.g., Set-union).

UNORDERED-STRUCTURE is a specialized type of Structure. It includes all structures for

which the order of insertion of two members never makes any difference in whether the
structures are equal or not. Unordered-structures cannot be said to have a front or a rear, a
first element or a last element.

5.3.9. Rationale behind Choice of Concepts

A necessary part of realizing AM was to choose a particular set of starting concepts. But
how should such a choice be made?

My first Impulse was to gather a complete set of concepts. That is, a basis which would be
sufficient to derive all mathematics. The longer I studied this, the larger the estimated size
of this basis grew. It immediately became clear that this would never fit in 256k. e One
philosophical problem here is that future mathematics may be inspired by some real-world
phenomena which haven't even been observed yet. Aliens visiting Earth might have a
different mathematics from ours, since their collective life experiences could be quite
different from we Terrans.

Scrapping the idea of a sufficient basis, what about a necessary one? That is, a basis which
* would be minimal in the following sense: if you ever removed a concept from that basis, it

could never be re-discovered. In isolated cases, one can tell when a basis Is not minimal: if
it contains both addition and multiplication, then it is too rich, since the latter can be

54 This is the size of the core memory of the computer I had at my disposEl.

4'"
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derived from the former. 55 
* nd yet, the same problem about "absoluteness" cropped up:

how can anyone claim the t' e discovery of X can never be made from a given starting
point? Until recently, mathemd,cians didn't realize how natural it was to derive numbers
and arithmetic from set theor; ,. task which AM does, by the way)56. So 50 years ago the
concepts of set theory and numbar theory would both have been undisputedly placed into a
"minirrial" basis. There are thus no absolute conceptual primitives; each culture (perhaps

OI even each individual) possesses its own basis.

Since I couldn't give AM a minimal basis, nor a complete one, I decided AM might as well
have a nice one. Although it can never be minimal, it should nevertheless be made very
small (order of magnitude: 100 concepts). Although it can never be complete, it should
suffice for re-discovering muci of already-known mathematics. Finally, it should be

NO rational, by which I mean that there should be a simple rule for deciding which concepts do
and don't belong in that basis.

The concepts AM starts with are meant to be those possessed by young children (age 4, say).
This explains some omissions of concepts which would otherwise be considered
fundamental: (i) Proof and techniques for proof/disproof; (ii) Abstract properties of
relations, like associativity, single-valued, onto; (iii) Cardinality, arithmetic; (iv) Infinity,
continuity, limits. The interested reader should see [Piaget 55] or (Copeland 70].

Because my programming time and the PDP-10's nemory space were both quite small, only
a small percentage or these 'pre-numerical' concepts could be included. Some unjustified
omissions are: (i) visual operations, like rotation, coloration; (ii) Games, rules, procedures,

Ul strategies, tactics; (iii) Geometric notions, e.g., outside and between.

A M is not supposed to be a model of a child, however. It was never my intention (and it
would be much too hard for me) to try to emulate a human child's whimsical imagination
and emotive drives. And AM is not ripe for "teaching", as are children. 7 Also, though it
possesses a child's ignorance of most concepts, AM is given a large body of sophisticated
."adult" heuristics. So perhaps a more faithful image is that of Ramanujan, a brilliant

modern mathematician who received a very poor education, and was forced to re-derive
much of known number theory all by himself. Incidentally, Ramanujan never did master
the concept of formal proof.

There is no formi.1 justification for the particular set of starting cotiLepts. Tl'?y :r, ;Ill
reasonably primitive (sets, composition), and lie several levels "below" the ones whi .-. AM
managed to ultimately derive (prime factorization, square-root). It ., *,, te valuable to
attempt a similar automated math discoverer, whir-h ,gan with a very different set of
concepts (eg., start it out as an Pvpc;. in lattice theory, possessing all known concepts
thereof). The convr,: kiila of experiments are to vary the initial base of concepts, and
observ- t,% et.ects on AM's behavior. A few experiments of that form are described in
bection 6.2.

by AM, and by any mathematician As Don Cohen points out, if the researcher lacked the proper discovery methods, then
he might never derive Times from Pks

56 The "new math" is trying to got young children to do this as well. unfortunately, no one showed the elementary-school

teachers the underlying harmony, and the results have been saddening
57 Learning psychologists might label AM as neo-behavioristic and cognitivistic. See [LeFrancois]

.................-
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Chapter 6. Results

This chapter opens by summarizing what AM "did". Section 1 gives a fairly high-level
description of the major paths which were explored, the concepts discovered along the way,
the relationships which were noticed, and occasionally the ones which "should" have been
but but weren't.

The next section (6.2) continus this exposition by presenting the results of experiments
which were done with (and on) AM.

Chapter 7 will draw upon these results - and others given in the appendices - to form
conclusions about AM. Several meta-level questions will be tackled there (e.g., "What are
A M's limitations?").

6.1. What AM Did

Now we have seen that mathematical work is not simply mechanical, that it could
not be done by a machine, however perfect. It is not merely a question of applying
rules, of making the most combinations possible according to certain fixed laws.
The combinations so obtained would be exceedingly numerous, useless, and
cumbersome. The true work of the inventor consists in choosing among these
combinatioas so as to eliminate the useless ones or rather to avoid the trouble of
making them, and the rules which must guide this choice are extremely fine and
delicate, it is almost impossible to state them precisely; they are felt rather than
formulated. Under these conditions, how imagine a sieve capable of applying
them mechanically?

-- Poincars'

AM is both a mathematician of sorts, a,id a big computer program.

By granting AM more anthropomorphic qualities than it deserves, we can describe its
progress through elementary mathematics. It rediscovered many well-known concepts, a
couple interesting but not-generally-known ones, and several concepts which were hitherto
unknown and should have stayed that way. Section 1.3, on page 10, recaps what AM did,
much as a historian might critically evaluate Euler's work. A more detailed prose
description of everything AM did is found in Appendix 5.1, beginning on page 287.

-I'



Chapter 6 AM: Discovery in Mathematics as Heuristic Search -115-

Instead of repeating any of this descriptive prose here, Section 6.1.! will provide a very
brief listing of what AM did in a single good run, task by task. A much more detailed
version of this same list is found in Appendix 5.2, beginning on page 294. The task
numbers there correspond to the numbering below1. These task-by-task listings are not
complete listings of every task AM ever attempted in any of its many runs, but rather a
trace of a single, better-than-average run of the program.2 The reader may wish to consult
the brief alphabetized glossary of concept names in the last chapter (page 107), or the more
detailed appendix of concept descriptions (following page 173).

Following this linear trace of AM's behavior is a more appropriate representation of what it
did: namely, a two-dimensional graph of that same behavior as seen in "concept-space".
This forms Section 6.1.2, and is found on page 123.

By under-estimating AM's sophistication, one can demand answers to the typical questions
to ask about a computer program: how big is it, how much cpu time does it use, what
language it's coded in, etc. These are found In Section 6.1.3.

6.1.1. Linear Task-by.task Summary of a Good Run

1. Fill in examples of Compose. Failed, but suggested next task:
2. Fill in examples of Set-union. Also failed, but suggested:
3. Fill in examples of Sets. Many found (e.g., by instantiating Set.Defn) and then more

derived from those examples (e.g., by running Union.Alg).
4. Fill in specializations of Sets (because It was very easy to find examples of Sets).

Creation of new concepts. One, INT-Sets, is related to "Singletons". Another, "Bl,-

Sets", is all nests of braces (no atomic elements).
5. Fill in examples of INT-Sets. This indirectly led to a rise in the worth of Equal.
6. Check all examples of INT-Sets. All were confirmed. AM defines the set of Nonempty

INT-Sets; this is renamed "Singletons" by the user.
7. Check all examples of Sets. To check a couple conjectures, AM will soon look for

Bags and Osets.
8. Fill in examples of Bags.
9. Fill in specializations of Bags. Created INT-Bags (contain just one kind of element),

and BI-Bags (nests of parentheses).
10. Fill in examples of Osets.
11. Check examples of Osets.
1'2. Fill in examples of Lists.
13. Check examples of Lists.
14. Fill in examples of All-but-first.
15. Fill in examples of All-but-last.
16. Fill in specializations of All-but-last. Failed.

They do not precisely match the task numbers accompanying the example given in Chapter 2.

2 In fact, it is perhaps the best overall run. It occurred in two stages (due to space problems; unimportant). In this particular

run, AM misses the few "very best" discoveries R ever made, since the runs they occurred in went in
somewhat different directions. It also omits some of the more boring tasks see, e C., the description of task
number 69.
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17. Fill in examples of List-union.
18. Fill in examples of Projl.
19. Check examples of All-but-first.
20. Check examples of All-but-last.
21. Fill in examples of Proj2.
22. Fill in examples of Empty-structures. 4 found.
23. Fill in generalizations of Empty-structures. Failed.
24. Check examples of List-union.
25. Check examples of Bags. Defined Singleton-bags.
26. Fill in examples of Bag-union.
27. Check examples of Proj2.
28. Fill in examples of Set-union.
29. Check examples of Set-union. Define x (x,y) xuy.x, later called Superset.
30. Fill in examples of Bag-insert.
31. Check examples of Bag-insert. Range Is really Nonempty bags. Isolate the results of

insertion restricted to Singletons: call them Doubleton-bags.
32. Fill in examples of Bag-intersect
33. Fill in examples of Set-insert.
34. Check examples of Set-insert. Range is always Nonempty sets. Define A (x,S) Set-

insert(x,S)=S; i.e., set membership. Define Doubleton sets.
35. Fill in examples of Bag-delete.1: 36. Fill in examples of Bag-difference.
37. Check examples of Bag-intersect. Define ) (x,y) xny=-, i.e. disjoint bags.
38. Fill in examples of Set-intersect.
39. Check examples of Set-intersect. Define x, (x,y) xnyux; i.e., subset. Also define

disjoint sets: A (x,y) xnyu{}.
40. Fill in examples of List-intersect.
41. Fill in examples of Equal. Very difficult to find examples; this led to:F 42. Fill in generalizations of Equal. Define "Same-size", "Equal-CARs", and some losers.
43. Fill in examples of Same-size.
44. Apply an Algorithm for Canonize to the args Same-size and Equal. AM eventually

synthesizes the canonizing function "Size". AM defines the set of canonical
structures: bags of T's; this later gets renamed as "Numbers".

45. Restrict the domain/range of Bag-union. A new operation is defined, Number-
union, with domain/range entry <Number Number -+ Bag>.

46. Fill in examples of Number-union. Many found.
47. Check the domain/range of Number-union. Range is 'Number'. This operation is

renamed "Add2".
48. Restrict the domain/range of Bag-intersect to Numbers. Renamed "Minimum".
49. Restrict the domain/range of Bag-delete to Numbers. Renamed "SUB I".
50. Restrict the domain/range of Bag-insert to Numbers. AM calls the new operation

"Number-insert". Its domain/range entry is <Anything Number -+ Bag>.
51. Check the domain/range of Number-insert. This doesn't lead anywhere.
52. Restrict the domain/range of Bag-difference to Numbers. This becomes "Subtract".
53. Fill in examples of Subtract. This leads to defining the relation LEO,.().3
54. Fill in examples of LEO. Many found.

3 If a larger number is "subiacted" from a smaller, the result is zero. AM explicitly defines the est of ordered pairs of
numbers having zero "difference". <x,y> is in that set iff x is le than or equal to y.
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55. Check examples of LEQ
56. Apply algorithm of Coalesce to LE LEx,x) is Constant-True.
57. Fill in examples of Parallel-join2. Included is Parallel-join2(Bags,Bags,Proj2), which

is renamed "TIMES", and Parallel-join2(Structures,Structures,ProjI), a generalized
Union operation renamed "G-Union", and a bunch of losers.

58. - 69. Fill in and check examples of the operations just created.
70. Fill in examples of Coalesce. Created: Self-Compose, Self-Insert, Self-Delete, Self-

Add, Self-Times, Self-Union, etc. Also: Coa-repeat2, Coa-join2, etc.
71. Fill in examples of Self-Delete. Many found.
72. Check examples of Self-Delete. Self-Delete is just Identity-op.
73. Fill in examples of Self-Member. No positive examples found.
74. Check examples of Self-Member. Self-member is just Constant-False.
75. Fill in examples of Self-Add. Many found User renames this "Doubling".
76. Check examples of Coalesce. Confirmed.
77. Check examples of Add2. Confirmed.
78. Fill in examples of Self-Times. Many found. Renamed "Squaring" by the user.
79. Fill in examples of Self-Compose. Defined SquarlngoSquaring. Created AddoAdd

(two versions: Add2l which is X (x,y,z) (x+y)+z, and Add22 which is x.(y+z)).
Similarly, two versions of TimesoTimes and of ComposeoCompose.

80. Fill in examples of Add2l. (x+y).z. Many are found.
81. Fill in examples of Add22. x4(y+z). Again many are found.
82. Check examples of Squaring. Confirmed.
83. Check examples of Add22. Add2l and Add22 appear equivalent. But first:
84. Check examples of Add2l. Add2l and Add22 still appear equivalent. Merge them.

So the proper argument for a generalized "Add" operation is a Bag.
85. Apply algorithm for Invert to argument 'Add'. Define Inv-add(x) as the set of all

bags of numbers (>0) whose sum is x. Also denoted Add'l(x).
86. Fill in examples of TIMES21. (xy)z. Many are found.
87. Fill in examples of TIMES22. x(yz). Again many are found.
88. Check examples of TIMES22. TIMES2I and TIMES22 may be equivalent.
89. Check examples of TIMES21. TIMES21 and TIMES22 still appear equivalent.

Merge them. So the proper argument for a generalized "TIMES" operation is a
Bag. Set up an analogy between TIMES and ADD, because of this fact.

90. Apply algorithm for Invert to argument TIMES'. Define Inv-TIMES(x) as the set
of all bags of numbers (>1) whose product is x. Analogic to Inv-Add.

91. Fill in examples of Parallel-replace2. Included are Paral1li-
replace2(Bags,Bags,Proj2) (called MR2-BBP2), and many losers.

92. - 107. Fill in and check examples of the operations just created.
10j. Fill in examples of Compose. So easy that AM creates Int-Compose.
109. Fill in examples of Int-Compose. The two chosen operations G,H must be such

that ran(H)(dom(G), and ran(G)(dom(H); both G and H must be interesting.
Create G-UnionoMR2-BBP2, 4 InsertoDelete, TimesoSquaring, etc.

110. - 127. Fill in and check examples of the compositions just created. Notice that G-
UnionoMR2-BBP2 is just TIMES.

128. Fill in examples of Coa-repeat2. Among them: Coa-repeat2(Bags-of-Numbers,
Add2) [multiplication again!), Coa-repeat2(Bag5-of-Numbers, Times)

4
an alternate derivation of the operation of multiplication.
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[exponentiation), Coa-repeat2(Structures, ProjI) [CAR), Coa-repeat2(Structures,
Proj2) [Last-element-of], etc.

129. Check the examples of Coa-repeat2. All confirmed.
130. Apply algorithms for Invert to 'Doubling'. The recult Is called "Halving" by the

user. AM then defines "Evens".
131. Fill in examples of Self-Insert.
132. Check examples of Self-Insert. Nothing special found.
133. Fill in examples of Coa-repeat2-Add2.
134. Check examples of Coa-repeat2-Add2. It's the same as TIMES.
135. Apply algorithm for Invert to argument 'Squaring'. Define "Square-root".
136. Fill in examp!es of Square-root. Some found, but very inefficiently.
137. Fill in new algorithms for Square-root. Had to ask user for a good one.
138. Check examples of Square-root. Define the set of numbers "Perfect-squares".
139. Fill in examples of Coa-repeat2-Times. This is exponentiation.
140. Check examples of Coa-repeat2-Times. Nothing special noticed, unfortunately.
141. Fill in examples of Inv-TIMES. Many found, but inefficiently.
142. Fill in new algorithms for Inv-TIMES. Obtained opaquely from the user.
143. Check examples of Inv-TIMES. This task suggests the next one:
144. Compose G-Union with Inv-TIMES. Good domain/range. Renamed "Divisors".
145. Fill in exampleF of Divisors. Many found, but not very efficiently.
146. Fill in new algorithms for Divisors. Obtained from the user.
147. Fill in examples of Perfect-squares. Many found.
148. Fill in specializations of TIMES. Timesl(x)-lex, Times2(x)-2x, Times-sq is TIMES

with its domain restricted to bags of perfect squares, Times-ev takes only even
arguments, Times-to-evens requires that the result be even, Times.to-sq,

149. Check examples of Divisors. Define 0-Div, l-Div, 2-Div, and 3-Div, the sets of
numbers whose Divisors value is the empty set, a singleton, a doubleton, and a
tripleton, respectively.

150. Fill in examples of I-Div. Only one example found: "I". Lower l-Div.Worth.
151. Fill in examples of 0-Div. None found. Lower the worth of this concept.
152. Fill in examples of 2-Div. A nice number are found. Raise 2-Dlv.Worth.
153. Check examples of 2-Div. All confirmed, but no pattern noticed.
154. Fill in examples of 3-Div. A nice number found.
155. Check examples of 3-Div. All confirmed. All are perfect squares.
156. Restrict Square-root to numbers which are in 3-Div. Call this Root3.
157. Fill in examples of RootS. Many found.
158. Check examples of RootS. All confirmed. All are in 2-Div. Raise their worths.
159. Restrict Squaring to 2-divs. Call the result Square2.
160. Fill in examples of Square2. Many found.

161. Check the range of Square2. Always 3-Divs. Conjecture: x has 2 divisors iff x2

has 3 divisors.
162. Restrict Squaring to 3-Divs. Call the result SquareS.
6 3. Restrict Square-rooting to 2-Divs. Call the result Root2.

164. Fill in examples of Square3. Many found.
165. Compose Divisors-of and SquareS. Call the result Div-Sq3.
166. Fill in examples of Div-Sq3. Many found.
167. Check examples of Div-Sq3. All such examples are Same-size.
168. - 175. More confirmations and explorations of the above conjecture. Gradually,

all its ramifications lead to dead-ends (as far as AM is concerned).
176. Fill in examples of Root2. None found. Conjecture that there are none.

=---------------,~-,
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177. Check examples of Inv-TIMES. Inv-TIMES always contains a singleton bag, and
always contains a bag of primes.

178. Restrict the range of Inv-TIMES to bags of primes. Call this Prime-Times.
179. Restrict the range of Inv-TIMES to singletons. Called Single-Times.
180. Fill in examples of Prime-times. Many found.
181. Check examples of Prime-times. Always a singleton set. User renames this

conjecture "The unique factorization theorem".
182. Fill in examples of Single-TIMES. Many found.
183. Check examples of Single-TIMES. Always a singleton set. Single-TIMES is

*- .actually the same as Bag-insert!
184. Fill in examples of Self-set-union. Many found.
185. Check examples of Self-set-union. This operation is same as Identity.
186. Fill in examples of Self-bag-union. Many found.
187. Check examples of Self-bag-union. Confirmed. Nothing interesting noticed.
188. Fill in examples of Inv-ADD.
189. Check examples of Inv-ADD. Hordes of boring conjectures, so:
190. Restrict the domain of Inv-ADD to primes (Inv-Add-primes), to evens (Inv-Add-

evens), to squares, etc.
V 191. Fill in examples of Inv.add-primes. Many found.
l 192. Check examples of Inv-add-primes. Confirmed, but nothing special noticed.

193. Fill in examples of Inv-add-evens. Many found.
194. Check examples of Inv-add-evens. Always contains a bag of primes.
195. Restrict the range of Inv-Add-evens to bags of primes. Called Prime-ADD.
196. Restrict the range of Inv-ADD to singletons. Call that new operation Single-ADD.
197. Fill in examples of Prime-ADD. Many found.
198. Check examples of Prime-ADD. Always a nonempty set (of bags of primes). User

renames this conjecture "Goldbach's conjecture".
199. Fill in examples of Single-ADD. Many found.
200. Check examples of Single-ADD. Always a singleton set. This operation is the same

as Bag-insert and Single.TIMES.
201. Restrict the range of Prime-ADD to singletons, by analogy to Prime-TIMES.5 Call

the new operation Prime-ADD-SING.
202. Fill in examples of Prime-ADD-SING. Many found.
203. Check examples of Prime-ADD-SING. Nothing special noticed.
204. Fill in examples of Times-sq.6 Many examples found.
205. Check domainlrange of Times-sq. Is the range actually Perfect-squares? Yes!
206. Fill in examples of Timesi. Recall that Times l(x)TIMES(1,x).
207. Check examples of Timesl. Apparently just a restriction of Identity.
208. Check examples of Times-sq. Confirmed.
209. Fill in examples of TimesO.
210. Fill in examples of Times2.
211. Check examples of Times2. Apparently the same as Doubling. That is, x~x=2ox.

Very important. By analogy, define Ad2(x) as x+2.
~ .T 212. Fill in examples of Ad2.

213. Check exam~ples of Ad2. Nothing interesting noticed.

In this case, AM is asking which numbers are uniquely representable as the sum of two primes.
j-g) 6 Recall that this is just TIMES restricted to operate on perfect squares

-.

Iv.



Chapter 6 AM: Discovery in Mathematics as Heuristic Search -120-

214. Fill in specializations of Add. Among those created are: AddO (x+O), Add I, Add3,
ADD-sq (addition restricted to perfect squares), Add-ev (sum of even numbers),
Add-pr (sum of primes), etc.

215. Check examples of TimesO. The value always seems to be 0.
216. Fill in examples of Times-ev.7 Many examples found.
217. Check examples of Times-ev. Apparently all the results are Evens.
218. Fill in examples of Times-to-ev. 8 Many found.
219. Fill in examples of Times-to-sq. Only a few found.
220. Check examples of Times-to-sq. All arguments always seem to be squares. Conjec:

Times-to-sq is really the same as Times-sq. Merge the two. This is a false
conjecture, but did AM no harm.

221. Check examples of Times-to-ev. The domain always contains an even number.
222. Fill in examples of Self-Union.
223. Check examples of Self-Union.
224. Fill in examples of SubSet.
225. Check example of SubSet.
226. Fill in examples of SuperSet.
227. Check examples of SuperSet. Conjec: Subset(x,y) iff Superset(y,x). Important.
228. Fill in examples of ComposeoCompose-l. AM creates some explosive combination

(e.g., (ComposeoCompose)o(ComposeoCompose)o(ComposeoCompose)), some poor
ones (e.g., SquareoCountoADD'), and even a few - very few - winners (e.g.,
SUB loCountoSelf-Insert).

229. Check examples of ComposeoCompose-l.
230. Fill in examples of ComposeoCompose-2. 9 AM recreates many of the previous

tasks' operations.
231. Check examples of ComposeoCompose-2. Nothing noticed yet'0 .
232. - 252. Fill in and check examples of the losing compositions just created.
253. Fill in examples of Add-sq (i.e., sum of squares).
254. Check domain/range entries of Add-sq. The range is not always perfect squares.

Define Add-sq-sq(x,y), which is True iff x and y are perfect squares and their sum
is a perfect square as well.

255. Fill in examples of Add-pr; i.e., addition of primes.
256. Check Domain/range entries of Add-pr. AM defines the set of pairs of primes

whose sum is also a prime. This is a bizarre derivation of prime pairs.

Recall that Times-ev is just Irks TIMES restricted to operating on even numbers.
That it, consider bags of numbers which multiply to give an even number.

9 Recall that the difference between this operation and the last one is merely in the order #%f tre composing: Fo(GoH) versus
(FoG)oH.

30 Later on, AM will use these new operations to discover tW .socistivity of Compose.

- "- ---. ..... : " "-- . "" ... .... . ..... .............. " :;2"""".........."" '
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6.1.2. Two-Dimensional Behavior Graph

On the next two pages is a graph of the same "best run" which AM executed. The nodes
are concepts, and the links are actions which AM performed. Labels on the links indicate
when each action was taken, so the reader may observe how AM jumped around. It should
also easy to perceive from the graph which paths of development were abandoned, which
concepts ignored, and which ones concentrated upon. These are precisely the features of
AM's behavior which are awkward to infer from a simple linear trace (as in the previous
section).

In more detail, here is how to read the graph: Each node is a concept. To save space, these
names are often highly abbreviated. For example, "xW" is used in place of "TIMES-0".

Each concept name is surrounded by from zero to four numbers:
318 288
FROBNATION
310 291

The upper right number indicates the task number (see last section) during which examples
of this concept were filled In. The lower right number tells when they were checked. The
upper left number indicates when the Domain/range facet of that concept was modified.
Finally, the lower left number is the task number during which some new Algorithms for
that concept were obtained. A number in parentheses indicates that the task with that
number was a total failure.

Because of the limited space, it was decided that if a concept were ever renamed by the
user, then only that newer, mnemonic name would be given in the diagram. Thus there is
an arrow from "Coalesce" to "Square", an operation originally called "Self-Times" by AM.

Sometimes, a concept will have under it a note of the form ,GROK. This simply means that
AM eventually discovered that the concept was equivalent to the already-known concc.P("
"Grok", and probably forgot about this one (merged it into the one it already kn-ew about).
The "trail" of discovery may pick up again at that pre-existing conc, Pt. A node written as
-GROK means that the concept was really the same as "Grok", but AM never investigated it
enough to notice this.

Each node may have an arrou, iading into it, and any number of arrows emanating from
it. The arrows indic"tc the creation of new concepts. Thus an arrow leading to concept
"Frobnate" -,dicates how that concept was created. An arrow directed away from Frobnate
nits to a concept created as, e.g., a specialization or an example of Frobnate. No
arrowheads are in practice necessary: all arrows are directed downwards.

The arrows may be labelled, indicating precisely what they represent (e.g., composition,
restriction) and what the task number was when they occurred. For space reasons, the
following convention has proven necessary: if an arrow emanating from C is un-numbered,
it is assumed to have occurred at the same time as the arrow to its immediate left which also
points from C; if all the arrows emanating from C have no number, than all their times of
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occurrence are assumed to be the lower right'I number of C. Finally, if C has no lower
right number, the arrow is assumed to have the value of the upper right number of C.

An unlabelled arrow is assumed to be an act of Specialization or the creation of an
Example. 12 Labels, when they do occur, are given in capitals and small letters; concept
names (nodes) are by contrast in all capitals.

All the numbers correspond to those given to the tasks in the task-by-task traces presented
in the last section (p. 115) and in Appendix 5 (p. 294).

The first part of this graph (presented below) contains static structural (and ultimately
numerical) concepts which were studied by AM:

STRUCTURES

3 8 ,.8 12 22
SETS BRG OGSET LISTS ElPTY-STRUCS

(23)
4 ~~-44-----. allure)

IN 4~A~~.A 
DOBIB Canonical izo

NS BS N-SAG $,I SIN BAG TRJPL-BAG NUMBERS

13013 4

1138 Si 18, 15"-52--.154
SINGLETONS DOUBLETONS EVENS SQUARES I-DIV &-DIV PRIMIES 3-DIV

aEIIPTY .153 155

The rest of the graph (presented on the next page) deals with activities which were
investigated:

This is often true because many concepts are created while checking examples of some known concept.
12 It should be clear in each context which is happening. If not, refer tu the short trace in the preceding section, and look up

the appropriate task number.
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6.1.3. AM as a Computer Program

When viewed as a large LISP program, there is very little of interest about AM. There are
the usual battery of customized functions (e.g., a conditional PRINT function), the storage
hacks (special emergency garbage collection routines, which know which facets are
expendible), the time hacks (omnisciently arrange clauses in a conjunction so that the one
most likely to fail will come first), and the bugs (if the user renames a concept while it's the
current one being worked on, there Is a 5% chance of AM entering an infinite loop).

Below are listed a few parameters of the system, although I doubt that they hold any
theoretical significance. The reader may be curious about how big AM, how long it takes to
execute, etc.

Machine: SUMEX, PDP.10, KI-10 uniprocessor, 256k core memory.

Language: Interllsp, January '75 release, which occupies 140k of the total 256k, but which
provides a surplus "shadow space" of 256k additional words available for holding compiled
code.

AM support code: 200 compiled (not block.compiled) utility routines, control routines, etc.
They occupy roughly 100k, but all are pushed into the shadow space.

AM itself: 115 concepts, each occupying about .7k (about two typed pages, when Pretty-
printed with indentation). Facet/entries stored as property/value on the property list of
atoms whose names are concepts' names.13 Each concept has about 8 facets filled in.

Heuristics are tacked onto the facets of the concepts. The more general the concept, the
more heuristic rules it has attached to it.14 "Any-concept" has 121 rules; "Active concept"
has 24; "Coalesce" has 7; "Set-Insert:.n" has none. There are 250 heuristic rules in all,
divided into 4 flavors (Fillin, Check, Suggest, Interestingness). Although the mean number
of rules is therefore only about 2.2 (i.e., less than I of each flavor) per concept, the standard
deviation of this is a whopping 127.4. The average number of heuristics (of a given flavor)
encountered rippling upward from a randomly-chosen concept C (along the network of
generalization links) is about 35, even though the mean path length is only about 4.15

The total number of jobs executed in a typical run (from scratch) is about 200. The run
ends beca'.use of space problems, but AM's performance begins to degrade near the end
anyway.

"Final" state of AM: 300 concepts, each occupying about Ik. Many are swapped out onto

13 Snazzy feature Executable entries on facets (eg, an entry on UnonAIg) are stored uncompiled until the first time they
are actually called on, at which time they are compiled and then executed

14 This was not done consciously, and may or may not hold some theoretical significance

15 If the heuristics were homogeneously distributed among the concepts, the number of heuristics (of a given type) along a

typical path of length 4 would only be about 2, not 35 If all the heuristics were tacked onto Anything and
Any-concept, the number encountered in any path would be 75, not 35

%-
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" disk. Number of winning concepts discovered: 25 (estimated). Number of acceptable

concepts defined: 100 (est.).16 Number of losing concepts unfortunately worked on: 60 (est.).
The original 115 concepts have grown to an average size of 2k. Each concept has about 11
facets filled in.

About 30 seconds of cpu time were allocated to each task, on the average, but the task
typically used only about 18 seconds before quitting. Total CPU time for a run is about I
hour. Total cpu time consumed by this research project was about 500 cpu hours.

Real time: about I minute per task, 2 hours per run. The idea for AM was formulated in
the Fall of 1974, and AM was coded in the summer of 1975. Total time consumed by this
project to date has been about 2500 man-hours: 700 for planning, 500 for coding, 600 for
modifying and debugging and experimenting, and 700 for writing this thesis.

6,2. Experiments with AM

Now we've described the activities AM carried out during its best run. AM was working
by itself, and each time executed the top task on the agenda. It received no help from the
user, and all its concepts' Intuitions facets had been removed.

One valuable aspect of AM is that it is amenable to many kind of interesting experiments.
Although AM is too ad hoc for numerical results to have much significance, the qualitative
results perhaps do have some valid things to say about research in elementary mathematics,
about automating research, and at least about the efficacy of various parts of AM's design.

This section will explain what it means to perform an experiment on AM, what kinds of
experiments are imaginable, which of those are feasible, and finally will describe the many

% experiments which were performed on AM.

By modifying AM in various ways, its behavior can be altered, and the quality of its
behavior will change as well. As a drastic example, one experiment involved forcing AM
to select the next task to work on randomly from the agenda, not the top task each time.
Needless to say, the performance was very different from usual.

By careful planning, each experiment can tell us something new about AM: how valuable a
certain piece of it is, how robust a certain scheme really is, etc. The results of these
experiments would then have something to contribute to a discussion of the "real
intelligence" of AM (e.g., what features were superfluous), and contribute to the design of
the "next" AM-like system. Generalizing from those results, one might suggest some
hypotheses about the larger task of automated math research.

Let's cover the different kinds of experiments one could perform on AM:

(i) Remove individual concept modules, and/or individual heuristic rules. Then examine

16 For a list of most of the 'winners' and 'acceptables', see the final section in Appendix 2, page 224.

"J )°
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how AM's performance is degraded. AM should operate even if most of its heuristic rules
and most of its concept modules were excised. If the remaining fragment of AM is too
small, however, it may not be able to find anything interesting to do. In fact, this situation
was actually encountered experimentally, when the first few partially complete concepts were
inserted. If only a little bit of AM is removed, the remainder will in fact keep operating
without this "tninteresting collapse". The converse situation should also hold: although still
functional with any concept module unplugged, AM's performance should be noticeably
degraded. That is, while not indispensable, each concept should nontrivially help the
others. The same holds for each individual heuristic rule. When a piece of AM is
removed, which concepts does AM then "miss" discovering? Is the removed
concept/heuristic later discovered anyway by those which are left in AM? TNs should
indicate the importance of each kind of concept and rule which AM starts with.

(ii) Vary the relative weights given to features by the criteria which judge aesthetics,interestingness, worth, utility, etc. See how important each factor is in directing AM along

successful routes. In other words, vary the little numbers in the formulae (both the global
priority-assigning formula and the local reason-rating ones inside heuristic rules). One
important result will be some idea of the robustness or "toughness" of the numeric weighting
factors. If the system easily collapses, it was too finely tuned to begin with.

(iii) Add several new concept modules (including new heuristics relevant to them) and see if
AM can work in some unanticipated field of mathematics (like graph theory or calculus or
plane geometry). Do earlier achievements - concepts and conjectures AM synthesized
already - have any impact in the new domain? Are some specialized heuristics from the
first domain totally wrong here? Do all the old general heuristics still hold here? Are they
sufficient, or are some "general" heuristics needed here which weren't needed before? Does
AM "slow down" as more and more concepts get introduced?

.

(iv) Try to have AM develop nonmathematical theories (like elementary physics, or
program verification). This might require limiting AM's freedom to "ignore a given body
of data and move on to something more interesting". The exploration of very non-
formalizable fields (e.g., politics) might require much more than a small augmentation of
AM's base of concepts. For some such domains, the "Intuitions" scheme, which had to be
abandoned for math, might prove valid and valuable.
(v) Add several new concepts dealing with proof, and of course add all the associated
heuristic rules. Such rules would advise AM on the fine points of using various techniques
of proof/disproof, when to use them, what to try next based on why the last attempt failed,
etc. See if the kinds of discoveries AM makes are increased.

Just prior to the writing of this document, several experiments (of types i, ii, and iii
above' 7) were set up and performed on AM. We're now ready to examine each of them in
detail. The following points are covered for each experiment:

1. How was it thought of?
2. What will be gained by it? What would be the implications of the various possible

outcomes?

17 experiments of type (iv) weren't tried and are left as "open problems", as invitations for future research efforts.

Experiment (v) will probably be carried out this year (1976).
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3. How was the experiment set up? What preparations/modifications had to be made?
How much time (man-hours) did it take?

4. What happened? How did AM's behavior change? Was this expected? Analysis.
5. What was learned from this experiment? Can we conclude anything which suggests

new experiments (e.g., use a better machine, a new domain) or which bears on a
more general problem that AM faced (e.g., a new way to teach math, a new idea
about doing math research)?

6.2.1. Must the Worth numbers be finely tuned?

Each of the 115 initial concepts has supplied to it (by the author) a number between 0 and
1000, stored as its Worth facet, which Is supposed to represent the overall value of the
concept. "Compose" has a higher initial Worth than "Structure-delete", which is higher
than "Equality".

Frequently, the priority of a task involving C depends on the overall Worth of C. How
sensitive is AM's behavior to the initial settings of the Worth facets? How finely tuned
must these initial Worth values be?

This experiment was thought of because of the 'brittleness' of many other Al systems, the
amount of fine tuning needed to elicit coherent behavior. For example, see the discussion of
limitations ol" PUP,., in [Lenat 75b]. The author believed that AM was very resilient in
this regard, and that a demonstration of that fact would increase credibility in the power of
the ideas which AM embodies.

V To test this, a simple experiment was performed. Just before starting AM, the mean value
of all concepts' Worth values was computed. It turned out to be roughly 200. Then each
concept had its Worth reset to the value 200.19 This was done "by hand", by the author, in
a matter of seconds. AM was then started and run as if there were nothing amiss, and its
behavior was watched carefully.

What happened? By and large, the same major discoveries were made - and rn - - as
usual, in the same order as usual. But whereas AM proceeded fairly smoothly before, with
little superfluous activity, it now wandered quite blindly for long periods of time, especially
at the very beginning. Once AM "hooked Into" a line of productive development, it
followed it just as always, with no noticeable additional wanderings. As one of these lines
of developments died out, AM would wander around again, until the next one was begun.

It took roughly three times as long for each major discovery to occur as normal. ThisK_%%-: "delay" got shorter and shorter as AM developed further. In each case, the tasks preceding
the discovery and following it were pretty much the same as normal; only the tasks
"between" two periods of development were different - and much more numerous. The
precise numbers Involved would probably be more misleading than helpful, so they will not

.8 As AM prorresees it notices aomething interesting about Equality every now and then. and pushes its Worth value

upwards.
19 The initial spread of vahues was from 100 to 600.
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be given20-

The reader may be interested to learn that the Worth values of many of the concepts - and
most of the new concepts - ended up vEry close to the same values that they achieved in
the original run. Overrated concepts were investigated and proved boring; underrated
concepts had to wait longer for their chances, but then quickly proved interesting and had
their Worth facets boostr-I.

The conclusion I draw from this change in behavior is that the Worth facets are useful for
making blind decisions - where AM must choose based only on the overall worths of the
various concepts in its repertoire. Whenever a specific reason existed, it was far more
influential than the "erroneous" Worth values. The close, blind, random decisions occur
between long bursts of specific.reason.driven periods of creative work. 21

The general answer, then, is No, the initial settings of the Worth values are not crucial.
Guessing reasonable initial values for them is merely a time-saving device. This suggests
an interesting research problem: what impact does the quality of initial starting values have
on humans? Give several bright undergraduate math majors the same set of objects and
operators to play with, but tell some of them (i) nothing, and some of them (ii) a certain few
pieces of the system are very promising, (il) emphasize a different subset of the objects and
operators. How does "misinformation" impede the humans? How about no information?
Have them give verbal protocols about where they are focussing their attention, and why.

Albeit at a nontrivial cost, the Worth facets did manage to correct themselves by the end of
a long 22 run. What would happen if the Worth facets of those 115 concepts were not only
initialized to 200, but were held fixed at 200 for the duration of the run?

In this case, the delay still subsided with time. That is, AM still got more and more "back
to normal" as it progressed onward. The reason is because AM's later work dealt with
concepts like Primes, Square-root, etc., which were so far removed from the initial base of
concepts that the initial concepts' Worths were of little consequence.

Even more drastically, we could force all the Worth facets of all concepts - even newly-
created ones - to be kept at the value 200 forever in this case, AM's behavior doesn't
completely disintegrate, bLt that delay factor actually increases with time: apparently, A M
begins to suffer from the exponential growth of "things to do" as its repertoire of concepts
grows linearly. Its purposiveness, its directionality depends on "focus of attention" more and
more, and if that feature is removed, AM loses much of its rationality. A factor of 5 delay
doesn't sound that bad "efficiency-wise", but the actual apparent 'ehavior of AM is as
staccato bursts of development, followed by wild leaps to unrelated concepts. AM no longer
can "permanently" record its interest in a certain concept.

So we conclude that the Worth facets are (i) not finely tuned, yet (i) provide important

20 Any reader who wishes to perform this experiment can simply say [MAPC CONCEPTS '(LAMBDA () (SETB c WORTH

200] to interl p, j lt before iyping (START) io begin AM
21 Incidentally, GPS behaved yust this same way See, e g, [Newell&Simon 72J

22 A couple cpu hours, about a thousand tasks total selected from the agenda

- - - -. -..-.. -%
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global information about the relb'ive values of concepts. If the Worth facets are completely
disabled, the rationality of AM's behavior hangs or the slender thread of "focus of
attention".

6.2.2. How finely tuned is the Agenda?

The top few candidates on the agenda always appear to be reasonable (to me). If I work
with the system, guiding it, I can cause it to make a few discoveries it wouldn't otherwise
make, and I can cause it to make its typical ones much faster (about a factor of 2). Thus the
very top task is not always the best.

If AM randomly selects one of the top 20 or so tasks on the agenda each time, what will
happen to its behavior? Will it disintegrate, slow down by a factor of 10, slow down
slightly,...?

This experiment required only a few seconds to set up, but demanded a familiarity with the
LISP functions which make up AM's control structure. At a certain point, AM asks for
Best-task(Agenda). Typically, the LISP function Best-task is defined as CAR - i.e., pick the
first member from the list of tasks. What I did was to redefine Best-task as a function
which randomly selected n from the set {1,2,...,20), and then returned the nth member of the
job-list.

If you watch the top job on the agenda, it will take about 10 cycles until AM chooses it.
And yet there are many good, interesting, worthwhile jobs sprinkled among the top 20 on
the agenda, so AM's performance is cut by merely a factor of 3, as far as cpu time per given
major discovery. Part of this better.than-20 behavior is due to the fact that the 18th best
task had a much lower priority rating than the top few, hence was allocated much less cpu
time for its quantum than the top task would have received. Whether it succeeded or
failed, it used up very little time. Since AM was frequently working on a low-value task, it
was unwilling to spend much time or space on it. So the mean time allotted per task fell to
about 15 seconds (from the typical 30 secs). Thus, the "losers" were dealt with quickly, so the
detriment to cpu-time performance was softened.

Yet AM is much less rational in its sequencing of tasks. A topic will be dropped right in the
middle, for a dozen cycles, then picked up again. Often a "good" task will be chosen,
having reasons all of which were true 10 cycles ago - and which are clearly superior to

V ,those of the last 10 tasks. This is what is so annoying to human onlooker4.

. To carry this investigation further, another experiment was carried out. AM was forced to

alternate between choosing the top task on the agenda, and a randomly-chosen one.
Although its rate of discovery was cut by less than half, its behavior was almost as
distasteful to the user as in the last (always-random) experiment.

Conclusion: Picking (on the average) the 10th-best candidate impedes progress by a factor
less than 10 (about a factor of 3), but it dramatically degrades the "sensibleness" of AM's
behavior, the continuity of its actions. Humans place a big value on absolute sensibleness,
and believe that doing something silly 50% of the time is much worse than half as
productive as always doing the next most logical task.

-... ...
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Corollary: Having 20 multi.processors simultaneously execute the top 20 jobs will increase
the rate of "big" discoveries, but not by a full factor of 20.

Another experiment in this same vein was done, one which was designed to be far more
crippling to AM. Be-threshhold was held at 0 always, so any task which ever got proposed
was kept forever oa the agenda, no matter how low its priority. The Best-task function war
modified so it randomly seected any member of the list of jobs. As a final insult, the Worth
facets of all the concepts were initialized to 200 before starting AM.

Result: Many "explosive" tasks were chosen, and the number of new concepts increased
rapidly. As expected, most of these were real "losers". There seemed no rationality to AM's
sequence of actions, and it was quite boring to watch it floundering so. The typical length
of the agenda was about 500, and AM's performance was "slowed" by at least a couple
orders of magnitude. A more subjective measure of its "intelligence" would say that it
totally collapsed under this random scheme.

Conclusion: Having an unlimited number of processors simultaneously execute all the jobs
on the agenda would increase the rate at which AM made big discoveries, at an ever
accelerating pace (since the length of the agenda would grow exponentially).

Having a uniprocessor simulate such parallel processing would be a losing idea, however.
The truly "intelligent" behavior AM exhibits is Its plausible sequencing of tasks.

6.2.3. How valuable is tacking reasons onto each task?

Let's dig inside the agenda scheme now. One idea I've repeatedly emphasized is the
attaching of reasons to the tasks on the agenda, and using those reasons and their ratings to
compute the overall priority value assigned to each task. An experiment was done to
ascertain the amount of intelligence that was emanating from that idea.

The global formula assigning a priority value to each job was modified. We let it still be a
function of the reasons for the job, but we "trivialized" it: the priority of a job was
computed as simply the number of reasons it has (normalized by multiplying by 100, and
cut-off if over 1000).

This raised the new question of what to do if several jobs all have the same priority. In
that case, I had AM execute them in stack-order (most recent first)23.

Result: I secretly expected that this wouldn't make too much difference on AM's apparent
level of directionality, but such was definitely not the case. While AM opened by doing
tasks which were far more interesting and daring than usual (e.g., filling in various
Coalescings right away), it soon became obvious that AM was being swayed by hitherto
trivial coding decisions. Whole classes of tasks - like Checking Examples of C - were
never chosen, because they only had one or two reasons supporting them. Previously, one

Why 7  Because Gi) it sounds right intuitively to me, (i) this is akin to human focus of attention, and mainly because (i)

this is what AM did anyway, with no extra modification
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or two good reasons were sufficient. Now, tasks with several poor reasons were rising to the
top and being worked on. Even the LIFO (stack) policy for resolving ties didn't keep AM's
attention focussed.

Conclusion: Unless a conscious effort is made to ensure that each reason really will carry
roughly an eq, al amount of semantic impact (charge, weight), it is not acceptable merely to
choose tasks on the basis of how many reasons they possess. Even in those constricted
equal-weight cases, the similarities between reasons supporting a task should be taken into
account.

Another experiment, not yet performed, will pin down the value of this rule-attaching .-'.a
even more precisely. A threshhold value - say 400 - will be fixed. Any reason whose rating
is above that threshhold will be called a good reason, and every other reason will be a
minor reason. Then tasks will be ordered by the number of good reasons they possess, and
ties will be broken by the number of minor reasons. Still another experiment would be to
randomly pick any task with at least one good reason.

6.2.4. What if certain concepts are eliminated/added?

Feeling in a perverse mood one day, i eliminated the concept "Equality" from AM, to see
what it would then do. Equality was a key concept, because AM discovered Numbers via
the technique of generalizing the relation "Equality" (exact equality of 2 given structures, at
all internal levels). What would happen if we eliminate this path? Will AM rederive
Equality? Will it get to Cardinality via another route? Will it do some set-theoretic things?

Result: Rather disappointing. AM never did re-derive Equality, nor Cardinality. It spent its
time thrashing about with various flavors of data-structures (unordered vs. ordered,
multiple.elements allowed or not, etc.), deriving large quantities of boring results about
them. Very many composings and coalescings were done, but no exciting new operations
were produced.

It is expected that eliminating other, less central concepts than Equality will do less damage
to AM's progress. The reader is invited to try such experiments himself.

To eliminate a concept, like equality, one need merely type KILB(OBJ-EQUALITY 2 4) at the
beginning of the session, before typing (START).

An even kinder type of experiment would be to add a few concepts. One such experiment
was done: the addition of Cartesian-product. This operation, named C-PROD, accepts twu
sets as arguments and returns a third set as its value: the Cartesian produrc Of ihe first two.

Result: The only significant change in AM's behavior was that TIMES was discovered first
as the restriction of C-PROD to Catonical-Bags. When it soon was rediscovered in a few
other guises, its Worth was even higher than usual. AM spent even more time exploring
concepts concerned with it, and deviated much less for quite a long time.

24 To find out the precise PNAME of each concept, just type CONCEPTS.

.4,
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Synthesis of the above experiments: It appears that AM may really be more specialized than
expected; AM may only be able to forge ahead along one or two main lines of development
- at least if we demand it make very interesting, well-known discoveries quite frequently.
Removing certain key concepts can be disastrous. On the other hand, adding some
carefully-chosen new ones can greatly enhance AM's directionality (hence its apparent
intelligence).

Conclusion: In its current state, AM Is thus seen to be minimally competent: if any
knowledge is removed, it appears much less intelligent; if any is added, it appears slightly
smarter.

Suggestion for future research: A hypothe'-- which should be test'.V xperimentally, is that
the importance of the presence of each indivuual concept decreases as .he number of - and
depth of - the synthesized concepts increase. That is, any excision would eventually "heal
over", given enough time. The failhi'e of AM to verify this may be due to the relatively
small amount of development in toto (an hour of cpu time, a couple hundred new concepts,
a few levels deeper than the starting ones).

6.2.5. What if certain heuristics are tampered with?

The class of experiments described by this section's heading should prove entertaining, but
it will probably be difficult to learn from their results.

Why is this? Some of the heuristics were added to correct a specific problem; removing
them would simply re-initiate that problem. Others were never actually used by AM, so
their deletion would have no effect. If AM enlarged the range of what it worked on, their
absence might then be felt.

What good would these experiments be, then? We might learn something about the
"redundancy of reasoning chains". We'd stop AM just before it made a big discovery,
remove the heuristic rule it was about to use, and see if it ever makes that big discovery
anyway, later on. If not, perhaps the discarded rule was very important, or there are
alternate rules which exist but haven't been inserted in AM. If the same discovery is made
by an alternate route, does that indicate an unexpected duplication of heuristic knowledge?
if heuristic H2 is used now, instead of Hi, does that suggest a new meta-rule: "if you want
to apply one of H I/H2 but can't, see if the other rule can be applied."? Is that last sentence
really a Meta-meta-rule?

Before this discussion enters an infinite loop, I'd better extract myself - and the reader - by
commenting that there may be an idea ir, all this, perhaps of use to whoever writes Meta-
AM. It was decided not to carry out a systematic series of experiments of this type until
AM is much further developed in abilities.
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6.2.6. Can AM work in a new domain: Plane Geometry?

A true strategy should be domain-independent.

-- Adams

As McDermott points out [McDermott 76), just labelling a bunch of heuristics 'Operation
heuristics' doesn't suddenly make them relevant to any operation; all it does is give that
impression to a human who looks at the code (or a description of it). Since the author
hoped that the labelling really was fair, an experiment was done to test this. Such an
experiment would be a key determiner of how general AM is.

How might one demonstrate that the "Operation" heuristics really could be useful or dealing
with any operation, not just the ones already in AM's initial base of concepts?

One way would be to pick a new domain, and see how many old heuristics contribute to -
and how many new heuristics have to be added to elicit - some sophisticated behavior in
that domain. Of course, some new primitive concepts would have to be introduced (defined)
to AM.

Only one experiment of this type was attempted. The author added a new base of concepts
to the ones already in AM. Included were: Point, Line. Angle, Triangle, Equality of
pointsllineslanglesltrlangles. Thes, simple p;ne geometry notions were sufficiently removed
from set-thecrctl, ones that those pre-existing specific concepts would be totally irrelevant;
on the other hand, the general concepts - the ones with the heuristics attached - would still
bc just as relevant: Any-concept, Operation, Predicate, Structure, etc.

For each new geometric concept, the only facet filled in was its Definition. For the new
predicates and operators, their Domainlrange entries were also supplied. No new heuristics
were added to AM.

Results: fairly good behavior. AM was able to find examples of all the concepts defined,
Sid to use the character of the results of those examples searches to determine intelligent
ca.urses of action. AM derived congruence and similarity of triangies, and several other
well-known simple concepts. An unusual result was the repeated derivation of the idea of
'timberline". This is a predicate on two triangles: Timberline(TI,T2) iff TI and T2 have a
common angle, and the side opposite that angle in the two triangles are parallel:

ra
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_ CA

Timberline(ABC,ADE)

B _ _ C

D 0
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Since AM kept rederiving this in new ways, it seemi surprising that theie Is no very
common name for the concept. It could be that AM is using techniques which humans don't
- at least, for geometry.

The only new bit of knowledge that came out of this experiment was a "use" for Colcibach's
conjecture: any angle (0-180 degrees) can be built up (to within I degree) as the sum of two
angles of prime degrees (r 180). This result is admittedly esoteric Pt best, but is nonetheless
wotth reporting.

The total effort expended on this experiment was: a few months of subconse ious processing,
ten hours of designing the base of concep.s to insert, ten hours inserting and debugging
them. The whole task took abnut two days of rea! time.

The conclusion to be drawn is that heuristics really can be generally useful; their attachment
to general-sounding concepts is not an illusion.25 The implication of this is that AM can be
grown incrementally, domain by domain. Adding e~pertisc ;n a new domain tequires only
the introduction of concepts local to that domain; all the vry general concepis - and their
heuristics - already exist and can be used with no change.
The author feels that this result can be genealized: AM can be expanded in scope, even to

non-mathematical fields of endeavor. In each field, however, the rankings of the various

heuristics26 may shift slightly. As the domain gets further away from mathematics, various
heuristics are important which were ignorable before (e.g., those dealing with ethics), and
some pure math research-oriented heuristics become less applicable ("giving up and moving
on to another topic" is not an acceptable response to the 15-puzzle, nor to a hostage
situation).

Well, it sounds as if we've shifted our orientation from 'Results' to a subjective evaluationof those results, Let's start a new chapter to legitimize this type of commentary.

25 Or it's a very good illusion! But note: if this phenomenon is repeatable and useful, then (like Newtonian mechanics) it
won't pragmatically matter whqther it's only an illusion.

26 the numeric values that should be returned by the local ratings formulae which are attsched to the heuristic rules
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Chapter 7. Evaluating AM

All mathematicians are wrong at times.

-- Maxwell

This chapter contains discussions "meta" to AM itself.

First comes an essay about judging the performance of a system like AM. This is a very
hard task, since AM has no "goal". Even using current mathematical standards, should AM
be judged on what it produced, or the quality of the path which led to those results, or the
difference between what it started with and what it finally derived?

Section 7.2 then deals with the capabilities and limitations of AM:
* What concepts can be elicited from AM now? With a little tuning/tiny additions?
* What are some notable omissions in AM's behavior? Can the user elicit these?
, What could probably be done within a couple months of modifications?
• Aside from a total change of domain, what kinds of activiu,s does AM lack (e.g.,

proof capabilities)? Are any discoveries (e.g., analytic function theory) clearly
beyond its design limitations?

Finally, all the conclusions will be gathered together, and a short summary of this project's
'contribution to knowledge' will be tolerated.

7.1. Judging Performance
One may view AM's activity as a progression from an initial core of knowledge to a more

sophisticated "final" ! body of concepts and their facets. Then each of the following is a
reasonable way to measure success, to "judge" AM:

1. By AM's ultimate achievements. Examine the list of concepts and methods AM

As has been stressed before, AM has no fixed goal, no "final" state For practical purposes, however, the totality of

explorations by AM is about the same as the "best run to far"; either of these can be thought of as
defining what is meant by the "final" state of knowledge.
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developed. Did AM ever discover anything interesting yet unknown to the user?2

Anything new to Mankind?
2. By the character of the difference between the initial and final states. Progressing

from set theory to number theory Is much more impressive than progressing from
two-dimensional geometry to three-dimensional geometry.

3. By the quality of the route AM took to accomplish these advances: How clever, how
circuitous, how many of the detours were quickly identified as such and
abandoned?

4. By the character of the User-System interactions: How important is the user's
guidance? How closely must he guide AM? What happens if he doesn't say
anything ever? When he does want to say something, is there an easy way to
express that to AM, and does AM respond well to it? Given a reasonable kick in
the right direction, can AM develop the mini-theories which the user intended, or
at least something equally interesting?

5. By its intuitive heuristic powers: Does AM believe in "reasonable" conjectures? How
accurately does AM estimate the difficulty of tasks it is considering? Does AM tie
together (e.g., as analogous) concepts which are formally unrelated yet which benefit
from such a tie?

6. By the results of the experiments described in Section 6.2 (beginning on page 125).
How "tuned" is the worth numbering scheme? The task priority rating scheme?
How fragile is the set of initial concepts and heuristic rules? How domain-specific
are those heuristics really? The set of facets?

7. By the very fact that the kinds of experiments outlined in Section 6.2 can easily be
set up" and performed on AM. Regardless of the experiments' outcomes, the

features of AM which allow them to be carried out at all are worthy of note.
a. By the implications of this project. What can AM suggest about educating young

mathematicians (and scientists in general)? What can AM say about doing math?
about empirical research in general?

9. By the number of new avenues for research and experimentation it opens up. What
new projects can we propose?

10. By comparisons to other, similar systems.

For each of these 10 measuring criteria, a subsection will now be provided, to illustrate (I)
the biggest achievement and (i) the biggest failure of AM along each dimension, and (iii)
to try to objectively characterize AM's performance according to that measure. Other

measures of judging performance exist3, of course, but haven't been applied to AM.

. 7.1.1. AM's Ultimate Discoveries

2 The "user" is a human who works with AM interactively, giving it hints, commands, questions, etc Notice that by "new" we

mean new to the user, not new to Mankind This might occur if the user were a child, and AM discovered
some elementary factes of arithmetic. This is not really so provincial mathematicians take "new" to mean new

'Jto Mankind, not now in the Universe I feel philosophy slipping in, to this footnote is terminated
For example, Colby sent transcripts of a session with PARRY to various psychiatrists, and had them evaluate each

interaction along several dimensions The same kind of survey could be done for AM. A quite separate
measure of AM would be to wait and see how many future articles in the field refer to this work (and in

whatghtl).
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Two of the ideas which AM proposed were totally new and unexpected:4

1. Consider numbers with an abnormally high number of divisors. If d(n) represents
the number of divisors of n,5 then AM defines the set of "maximally-divisible
numbers" to be {n(N I (Vm<n) d(m)<d(n)). By factoring each such number into
primes, AM noticed a regularity in them. The author then developed a "mini-
theory" about these numbers. It later turned out that Ramanujan had already
proposed that very same definition (in 1915), and had found that same regularity.
His results only partially overlap those of AM and the author, however, and his
methods are radically different.

2. AM found a cute geometric application ot' Goldbach's conjecture. Given a set of all
angles of prime degree, from 0 to 1800,6 then any angle between 0 and 180 degrees
can be approximated to within 10 by adding a pair of angles from this prime set.
In fact, it is hard to find smaller sets than this one which approximate any angle to
that accuracy.

By and large, the other concepts which AM developed were either already-known, or real
losers. For example, AM composed Set-insert with the predicate Equality. The result was
an operation InsertoEqua(x,y,z), which first tested whether x was Equal to y or not. The
value of this was either True or False 7. Next, this T/F value was inserted into z. For
example, InsertoEqual(1l,2},{3,4},{5,6}) - {False,5,6}. The first two arguments are not equal,
so the atom 'False' was inserted into the third. Although hitherto "unknown", this operation
would clearly be better off left in that state.

Another kind of loser occurred whenever AM entered upon some "regular" behavior. For
example, if it decided that Compose was interesting, it might try to create some examples of
compositions. It could do this by picking two operations and composing them. What better
operations to pick than Compose and Compose! Thus ComposeoCompose would be born.
By composing that with itself, an even more monstrous operation is spawned:
ComposeoComposeoComposeoCompose. Sit-e AM actually uses the word "Compose"
instead of that little infix circle, the PNAME of the data structure it creates is horrendous.
Its use is almost nonexistent: it must take 5 operations as arguments, and it returns a new
operation which is the composition of those five. An analogous danger which exists is for
AM to be content conjecturing a stream of very similar relationships (e.g., the multiplication
table). In all such cases, AM must have meta-rules which pull it up out of such whirlpools,
to perceive a higher generaliz.tion of its previous sequence of related activities.

In summary, then, we maf say that AM produced a few winning ideas new to the author, a
couple of which were new to Mankind. Several additional "new" concepts were created

4.e that these are "ultimate discoveries" only in the sense of what has been done at the time of writing this thesis For
one of AM's ideas to be "new", it should be previously unknown to both the author and the user. Why? If the
author knew about it, then the heuristics he provided AM with might unconsciously encode a path to that
knowledge If the user knew about that idea, his guidance might unconsciously help AM to derive it. An even
more stringent interpretation would be that the idea be hitherto unknown to the collective written record of
Mathematics.

e g, d(i2) - Size(( 1,2,3,,6,12)) . 6.
6 Included are 00 and I0, as well as the "typical" primes 20, 30, 50, 70, 110,., 1790.

7 Actually, in LISP, it was easier to have such results always be either T or NIL

11o
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which both AM and the user agreed were better forgotten. The "level" of AM's fruits could
be classified as an undergraduate math major, although this is deceptive since AM lacks the
breadth of abilities any human being possesses.

7.1.2. The Magnitude of AM's Progress

Even with men of genius, with whom the birth rate of hypotheses is very high, it
only just manages to exceed the death rate.

W H. Georp8

We can ask the following kind of question: how many "levels" did AM progress along? This
is a fuzzy notion, but basically we shall say that a new level is reached when a valuable new
bunch of connected concepts are defined in terms of concepts at a lower level.

For example, AM started out knowing about Sets and Set.operations. When it progressed
to numbers and arithmetic, tkat was one big step up to a new level. When it zeroed in on
primes, unique-factorization, and divisibility, it had moved up another level.

When fed simple geometry concepts, AM moved up one level when it defined some
generalizations of the equality of geometric figures (parallel lines, congruent and similar
triangles, angles equal in measure) and their invariants (rotations, translations, reflections).

The above few examples are unfortunately exhaustive: that just about sums up the major
advances AM made. Its progress was halted not so much by cpu time and tn;,'t, a-!. by a
paucity of meta-knowledge: heuristic rules for fillit1 t, iww heuristic rules. Thus AM's
successes are finite, and its rf!urs infinite, along this dimension.

A more charitable view might compare AM to a human who was forced to start from set
theory, with AM's sparse abilities. In that sense, perhaps, AM would rate quite well. The
"unfair" advantage it had was the presence of many heuristics which themselves were

X gleaned from mathematicians: i.e., they are like compiled hindsight. A major purpose of
mathematics education in the university is to instil these heuristics into the minds of the
students.

AM is thus characterized as possessing heuristics which are powerful enough to take it a
;y,. few "levels" away from the kind of knowledge it began with, but only a few levels. The

limiting factors are (i) the heuristic rules AM begins with, and more specifically (ii) the
expertise in recognizing and compiling new heuristics, and more generally (iii) a lack of

t- real-world situations to draw upon for analogies, intuitions, and applications.

8 Quot d from [Bevoridle 501



Chapter 7 AM: Discovery in Mathematics as Heuristic Search -139-

7.1.3. The Quality of AM's Route

Thinking is not measured by what is produced, but rather is a property of the
way something is done.

-- Hamming

No .,oatter what its achievements were, or the magnitude of its advancement from initial
knowledge, AM could9 still be judged "unintelligent" if, e.g., it were exploring vast numbers
of absurd avenues for each worthwhile one it found. The quality of the route AM followed
is thus quite significant.

AM performed better in this respect than expected. It is not obviousl0 how well a human
would have fared under similar circumstances. Of the two hundred new concepts it defined,
about 130 were acceptable - in the sense that one can defend AM's reasoning in at least
exploring them; in the sense that a human mathematician might have considered them. Of
these "winners", about two dozen were significant - that is, useful, catalytic, well-known by
human mathematicians, etc. Unfortunately, the sixty or seventy concepts which were losers
were real losers. In this respect, AM fell far below the standards a mathematician would set
for acceptable behavior: all his failures should have at least seemed promising at the
beginning. Half of AM's adventures were poorly grounded, and (perhaps due to a lack of
intuition) AM bothered with concepts which were "obviously" trivial: the set of even primes,
the set of numbers with only one divisor, etc. The human mathematician would
momentarily consider many poor courses of action, whereas AM on the other hand
managed to avoid truly lunatic activities without even momentary consideration of them,
6ut a -ti*an ;-':-A nnlv spend a significant amount of time on very promising tasks, and
AM wasted a huge amount or time orn tPks which a human would have quickly recognized
as dead-ends.

Once again we must observe that the quality of the route is a function of the qualiLy of the
heuristics. If there are many clever little rules, then the steps AM takes will often seem
clever and sophisticated. If the rules superimpose nicely, joining together to collectively
buttress some specific activity, then their effectiveness may surprise - and surpass - their
creator.

Such moments of great insight (i.e., where AM's reasoning surpassed mine) did occur,
although rarely. Both of AM's "big discoveries" started by its examining concepts I felt
weren't really interesting. For example, I didn't like AM spending so much time worrying
about numbers with many divisors; I "knew" t- I the converse concept of primes was

9
not necessarily WOULD be so judged. Humans may very well consider an incredible number of silly ideas before the right

pair of "hooked atoms" collide into a sensible thought, which is then considered in full consciousness If, like
human, AU -,- capble of doing this processing in - sufficiently brief period of real time, it would not
reflect ill on ie evaluation Of course, this may simply be the DEFINITION of "sufficiently brief".10I0 Or whether that even makes sent to consider. Comparisons with mathematicians would be desirable, but are beyond the
scope of this investigation.

" - % .-. --
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infinitely more valuable. And yet AM saw no reason to give up on maximally-divisible
numbers; it had several good reasons for continuing that inquiry (they were the converse to
primes which had already proved interesting, their frequency within the integers was
neither very high nor very low nor very regular, their definition was simple, they were
extremals of the interesting operation "Divisors-of", etc., etc.) Similarly, I "knew" that
Goldbach's conjecture was useless, so I was unhappy that AM was bothering to try to apply
it in the domain of geometry. In both cases, AM's reasons for its actions were unassailable,
and in fact it did discover some interesting new ideas both times.

Sometimes AM's behavior was displeasing, even though it wasn't "erring". Occasionally it
was simultaneously developing two mini-theories (say primes and maximally-divisibles).

, .i.,Then it might pick a task or two dealing with one of these topics, then a task or two dealing
with the other topic, etc. The task picked at each moment would be the one with the highest
priority value. As a theory is developel, the interestingness of its associated tasks go up
and down; there may be doldrums for a hit, just before falling into the track that will lead
to the discovery of a valuable relationship. During these temporary lags, the interest value
of tasks related to the other theory's conce?ts will appear to have a higher priority value:
i.e., better reasons supporting it. So AM would then skip over to one of those concepts,

-% _ develop it until its doldrums, then return to the first one, etc. Most humans found this
O behavior unpalatable' because AM had no compunction about skipping from one topic to

another. Humans have to retune their minds to do this skipping, and therefore treat it
.4 much more seriously. For that reason, AM was given an extra mobile reason to use for

certain tasks on its agenda: "focus of attention". Any task with the same kind of topic as the
ones just executed are given this extra reason, and it raises their priority values a little.
This was enough sometimes to keep AM working on a certain mini-theory when it
otherwise would have skipped somewhere else.

The above "defect" is a cute little kind of behavior AM exhibited which was non-human
but not clearly "wrong". There were genuine bad moments also, of course. For example,
AM became very excited12 when the conjunction of "empty-set" and other concepts kept

being equal to empty-set. AM kept repeating conjunctions of this form, rather than stepping
back and generalizing this data into a (phenomenological) conjecture. Similar blind looping
behavior occurred when AM kept composing Compose with itself, over and over. In
general, one could say that "regular" behavior of any kind signals a probable fiasco. A
heuristic rule to this effect halted most of these disgraceful antics. This rule had to be
careful, since it was almost the antithesis of the "focus of attention" idea mentioned in the

- preceding Paragraph. Together, those two rules seem to say that you should continue on
with the kind of thing you were just doing, but not for too long a time.
The moments of insight were 2 in number; the moments of stupid misdirection were about

twenty times as many.

J& AM has very few heuristics for deciding that something was uninteresting, that work on it

Although it might be the *best" from a dynamic management point of view, it probably would be wrong in the long run.
Ma or advances really do have lulls in their development.

12 Please excuse this anthropomorphism. Technically, we may say that the priority value of the best job on the agenda is

the "level of excitement" of AM. 700 or higher is called "excitement", on a scale of 0-1000.

N!

-. . . - - .- __ _ __ _ __ _
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should halt for a long time. Rather, AM simply won't have anything positive to say about
that concept, and other concepts are explored instead, essentially by default. Each concept
has a worth component which corresponded to its right to life (its right to occupy storage in
core). This number slowly declines with time, and is raised whenever something interesting
happens with that concept. If it ever falls below a certain threshhold, and if space is
exhausted13, then the concept is forgotten: its list cells are garbage collected, and all
references to it are erased, save those which will keep it from being re-created. This again
is not purposeful forgetting, but rather by default; not because X is seen as a dead-end, but

simply because other concepts seem so much more interesting for a long time.

Thus AM did not develop the sixty "losers" very much: they ended up with an average of
only 1.5 tasks relevant to them ever having been chosen. The "winners" averaged about
twice as many tasks which helped fill them out more. Also, the worth ratings of the losers
were far below those of the winners. So AM really did judge the value of its new concepts
quite well.

The final aspect of this important dimension of evaluation is the quality of the reasons AM
used to support each task it chose to work on. Again, the English phrases corresponded
quite nicely to the "real" reasons a human might give to justify why something was worth
trying, and the ordering of the tasks on the agenda was rarely far off from the one that I
would have picked myself. This was perhaps AM's greatest success: the rationality of its
actions.

7.1.4. The Character of the User-System Interactions

AM is not a "user-orientea" system There were many nice human-interaction features in
the original grandiose proposal for AM which never got off the drawing board. At the
heart of these features were two assumptions:

1. The user must understand AM, and AM must likewise have a good model of the
particular human using AM. The only time either should initiate a message is
when his model of the other is not what he wants that model to be. In that case,
the message should be specifically designed to fix that discrepancy..14

2. Each kind of message which is to pass between AM and its user should have its
own appropriate language. Thus there should be a terse comment language,
whereby the user can note how he feels about what AM is doing, a questioning
language for either party to ,et/give reasons to the other, a picture language for
communicating certain relationships, etc.

Neither of these ideas ever made it into the LISP code that is now AM, although they are
certainly not prohibited in any way by AM's design. It would be a separate project, at or
above the level of a master's thesis, for someone to build a nice user interface for AM 5.

13 No concepts were forgctlen in this way until near the end of AM's runs, when AM would usually collapse from several

causes including lack of space.
15 This idea was motivated by a lecture given in 1975 by Terry Winograd

I am not actually calling for this to be done, merely indicating the magnitude of the effort involved. A VERY nice user

interface might be much harder, at the level of a dissertation.
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As one might expect, the reason for this atrophy is simply because very little guidance from
the user was needed by AM. In fact, all the discoveries, cpu time quotes, etc. mentioned in
this document are taken from totally unguided runs by AM. If the user guides as well as he

- -, can, then about a factor of 2 or 3 speedup is possible. Of course, this assumes that the user
-- is dragging AM directly along a line of development he knows will be successful. The user s

reasons" at each step are based essentially on hindsight. Thus this is not at all "fair". If
AM ever becomes more user-oriented, it would be nice to let children (say 6-12 years old)
experiment with it, to observe them working with it in domains unfamiliar to either of
them. 

6

The user can "kick" AM in one direction or another, e.g., by interrupting and telling AM
that Sets are more interesting than Numbers 17. Even in that particular case, AM fails to
develop any higher-level set concepts (diagonalization, infinite sets, etc.) and simply wallows
around in finite set theory (de Morgan's laws, associativity of Union, etc.). When geometric
concepts are input, and AM is kicked in that direction, much nicer results are obtained. See
the report on the Geometry experiment, page 133.

There is one important result to observe: the very best examples of AM in action were
brought to full fruition only by a human developer. That is, AM thought of a couple great

-0 concepts, but couldn't develop them well on its own. A human (the author) then took them
and worked on them by hand, and interesting results were achieved. These results could be
told to AM, who could then go off and look for new concepts to investigate. This
interaction is of course at a much lower frequency than the kind of rapidfire
question/answering talked about above. Yet it seems that such synergy may be the ultimate
mode of A M-like systems.

7.1.5. AM's Intuitive Powers

Intuitive conviction surpasses logic as the brilliance of the sun surpasses the pale
light of the moon.

-Kline

Let me hasten to mention that the word "intuitive" in this subsection's title is not related to
the (currently non-existent) "Intuitions" facets of the concepts. What is meant is the totality
of plausible reasoning which AM engages in: empirical induction, generalization,
specialization, maintaining reasons for jobs on the agenda list, creation of analogies between
bunches of concepts, etc.

16 Starred () exercise for the reader carry out such a project on a statistically significant sample of children, wait thrty

years, and observe the incidence of mathematicians and scientists in general, compared to the national
averages. Within whatever occupation they've chosen, rate their creativity and productivity.

To actually do this, the user will type control-I to interrupt AM. He then types I, meaning "alter the interest of", followed

by the word "Sets" AM then asks whether this is to be raised or lowered. He types back R, and AM asks
how much, on a 1-10 scale. He replies 9, say, and then repeats this process for the concept "Numbers".

'I .
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AM only considers conjectures which have been explicitly suggested: either by empirical
evidence, by analogy, or (de-implemented now:) by Intuition facets. Once a conjecture has
been formulated, it is tested in all ways possible: new experimental evidence is sought
(especially extreme cases), it is examined orm ,....., 8 to see if it follows from already-known
conjectures, etc.

Because of this grounding in plausibility, the only conjectures the user ever sees (the ones
AM is testing) are quite believable. If they turn out to be false, both he and AM are
surprised. For example, both AM and the user were disappointed when nothing came out
of the concept of Uniquely-prime-addable numbers (positive integers which can be
represented as the sum of two primes in precisely one way). Several conjectures were
proposed via analogy with unique prime factorization, but none of them held
experimentally. Each of them seemed worth Investigating, to both the user arid the
system.' 9

A M's estimates of the value of each task it attempts were often far off from what hindsight
proved their true values to be. Yet this was not so different from the situation a real
researcher faces, and it made little difference on the discoveries and failures of the system.
AM occasionally mismanaged its resources due to errors In these estimates. To correct for
such erroneous prejudgments, heuristic rules were permitted to dynamically alter the
time/space quanta for the current task. If some interesting new result turned up, then some
extra resources would be allotted. If certain heuristics f.iled, they could reduce the time
limits, so not as mnci total cpu time would be wasted on this loser.

An example of a nice conjecture is the unique factorizatiot, otie. A nice analogy was the
one between angles and numbers (leading to the application of Goldbach's conjecture).
Another nice analogy was between numbers and bags (and hence between bag-operations
and what we commonly call arithmetic operations).

Some poor analogies were considered, like the one between bags and singleton-bags. The
ramifications of this analogy were painfully trivial20 .

7.1.6. Experiments on AM

The experiments described in Section 6.2 (page 125 ff) provide some results relevant to the
overall value of the AM system. The reader should consult that section for details; neither
the experiments nor their results will be repeated here. A few conclusions will be
summarized, to show that AM fared well in this dimension of evaluation.

The worth-numbering scheme for the concepts is fairly robust: even when all the concepts's

18 Currently, this is done in trivial ways An open problem, which is under attack now, is to add more powerful formal
reasoning abilities to AM

It is still not known whether there is anything interesting about that concept or not

20 The bag-operations, applied to singletons, did not produce singletons as their result (x)U(y) is (x,y) which is not a

singleton Whether they did or not depended only on the equality or inequality of the two arguments There
were many tiny conjectures proposed which merely re-echoed this general conclusion

C. .''.Z ''- ?:. ".; .. ''-i.?. ' " :i ? ' - :i?:*"':""-?: ::" "' - - ' : -. "-:-' -
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worths are initipazed at the same value, the performance of AM doesn't collapse, although
ii is noticeably degraded.

Certain mutilations of the priority-value scheme for tasks on the agenda will cripple AM,
but it can resist most of the small changes tried in various experiments.

Sometimes, removing just a single concepts (e.g., Equality) was enough to block AM from
discovering some valuable concepts it otherwise got (in this case, Numbers). This makes
AHI's behavior sound very fragile, like a slender chain of advancement. But on the other
hand, many concepts (e.g., TIMES, Timberline, Primes2 1) were discovered in several
independent ways. If AM's behavior is a chain, it is multiply-stranded22. More
expreriments of this sort should be done to test this general conclusion about AM.

The heuristics are specific to their stated domain of applicability. Thus when working in
geometry, the Operation heuristics were just as useful as they were when AM worked in
elementary set theory or number theory. The set of facets seemed adequate for those
domains, too. The Intuition facet, which was rejected as a valid source of information about

V-' sets and numbeis, might have been more acceptable in geometry (e.g., something similar to
Gelernter's model of a geometric situation).

All in all, then, we conclude that AM was fairly tough, and about as general as its heuristics

.-. claimed it was. AM is not invincible, infallible, or universal. Its scength lies in careful use
of heuristics. If there aren't enough domain-specific heuristics around, the system will simply
not perform we!l in that domain. If the heuristic-using control structure of AM is tampered
with2 3, there is some chance of losing vital guiding information which the heuristics would
otherwise supply.

7.1.7. How o Perform Experiments on AM

The very fact that the kinds of experiments mentioned in the I?!' section (and described in
detail In Section 6.2) can be "set up" and performed on AM, reflects a nice quality of the
AM program.

Most of those experiments took only a matter of minutes to set up, only a few tiny
modifications to AM. For example, the one where all the Worth ratings were initialized to
the same value was done by evaluating the single LISP expression:

(MAPC CONCEPTS 'IN c1 (PUT c 'Worth 200)))

23 Primes was discovered independently as follows: all numbers (>O) were seen to be representable as the sum of smaller
numbers, Add was known to be analogous to TIMES; But not all numbers (>I) appeared to be representable
as the Uct of two smaller ones; Rule number 91 triggered (see Appendix 3, page 243), and AM
defi ed the set of exceptions: the set of numbers which could not be expressed as the product of two
smaller ones; is, the primes.L" - 2222 except for a few weak spots, like Numbers. If they don't get discovered, AM loses

23 e g., treat all reasons as equivalent, so wou just COUNT the number of reasons a task has, to determine its priority on

the egenda.
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Similarly, here is how AM was modified to treat all tasks as if they had equal value: the
function Pick-task has a statement of the form

(SETQ Current-task (First-member-of Agenda))

All that was necessary was to replace the call on the function "First-member-of" 24 by the

function "Random-member-of".

Even the most sophisticated experiment, the introduction of a new bunch of concepts -
those dealing with geometric notions like Between, Angle, Line - took only a day of
conscious work to set up.

Of course running the experiment involves the expenditure of hours of cpu time, so only a
limited number were actually performed.25

There are certain experiments one can't easily perform on AM: removing all its heuristics,
for example. Most heuristic search programs would then wallow around, displaying just
how big their search space really was. But AM would just sit there, since it'd have nothing
plausible to do.

Many other experiments, while cute and easy to set up, are quite costly in terms of cpu time.
For example, the class of experiments of the form: "remove heuristics x, y, and z, and
observe the resultant affect on AM's behavior". This observation would entail running AM
for an hour or two of cpu time! Considering the number of subsets of heuristics, not all
these questions are going to get answered in our universe's lifetime. Considering the small
probable payoff from any one such experiment, very few should actually be attempted.

One nice experiment would be to monitor the contribution earl- heuristic is making. That
is, record each time it is used and record the final outcome of its activation (which may be
several cycles later). Unfortunately, AM's heuristics are not all coded as separate Lisp
entities, which one could then "trace". Rather, they are often interwoven with each other
into large program pieces. So this experiment can't be easily set up and run on AM.

Most of the experiments one could think of can be quickly set up - but only by someone
familiar with the LISP code of AM. It would be quite hard to modify AM so that the
untrained user could easily perform these experiments. Essentially, that would demand that
AM have a deep understanding of its own structure. This is of course desirable, fascinating,
challenging, but wasn't part of the design of AM.26

24 In LISP, this function is actually abbreviated 'CAR".

25 Those described in the last chapter. The series of experiments began at the same time that this document was being

written, and was intended originally only as a diversion from the tedium of writing The interesting character
of their results convinced me they should be included, even though they are few in number and quite
incomplete

26 A sueiatpon for future research projects in this general ares. such systems should be designed in a way which

facilitates a poorly-tra,'nd user not only uns the system but experimentine on it.
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7.1.8. Future Implications of this Project

One harsh measure of AM would be to demand what possible applications it will have.
This really means (i) the uses for the AM system, (ii) the uses for the ideas of how to create
such systems, (iii) conclusions about math and science one can draw from experiments with
AM.

Here are some of these implications, both real and potential:

1. New tools for computer scientists who want to create large knowledge-based systems to
emulate some creative human activity.

I .The modular representation of knowledge that AM uses might prove to be
effective in any knowledge-based system. Division of a global problem into a multitude
of small chunks, each of them of the form of setting up one quite local "expert" on some
concept, is a nice way to make a hard task more managable. Conceivably, each needed
expert could be filled in by a human who really is an expert on that topic. Then the
global abilities of the system would be able to rely on quite sophisticated local criteria.
Fixing a set of facets once and for all permits effective inter-module communication.

lb. Some ideas may carry over unchanged into many fields of human creativity,
wherever local guiding rule3 exist. These include: (a) idcas about heuristics having
domains of applicability, (b) the policy of tacking them onto the most general knowledge
source (concept, module) they are relevant to, (c) the rippling scheme to locate relevant
knowledge, etc.,

2. A body of ueuristics which can' be built upon by others.
2a. Most of the particular heuristic judgmental criteria for interestingness, utility,

etc., might be valid in developing theorizers in other sciences. Recall that each rule has
its domain of applicability; many of the heuristics in AM are quite general.

2b. Just within the small domain in which AM already works, this base of
heuristics might be enlarged through contact with various mathematicians. If they are
willing to introspect and add some of their "rules" to AM's existing base, it might
gradually grow more and more powerful.

2c. Carrying this last point to the limit of possibility, one might imagine the
program possessing more heuristics than any single human. Of course, AM as it stands
now is missing so much of the 'human element', the life experiences that a
mathematician draws upon continually for inspiration, that merely amassing more
heuristics won't automatically push it to the level of a super-human intelligence.
Another far-out scenario is that of the great mathematicians of each generation pouring
their individual heuristics into an AM-like system. After a few generations have come
and gone, running that program could be a valuable way to bring about 'interactions'
betwccn peopl, who were not contemporaries.

3. New and better strategies for math educators. [optional)
3a. Since the key to AM's success seems to be its ',euristics, and not the particular

concepts it knows, th" vhole orientation of m.,athematics education should perhaps be
modifiee. - -ovide experiences fc; cne student which will build up these rules in his
mind. Learning a new !hurem is worth much less than learning a new heuristic which
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lets you discover new theorems. 27 I am far from the first to urge such a revision (see,
e.g., [Koestler 67], p.265, or see [Papert 72]).

3b. If the repertoire of intuition (simulated real-world scenarios) were sufficient for
AM to develop elementary concepts of math, then educators should ensure that children
(4-6 years old) are thoroughly exposed to those scenarios. Such activities would include
seesaws, slides, piling marbles into pans of a balance scale, comparing the heights of
towers built out of cubical blocks, solving a jigsaw puzzle, etc. Unfortunately, AM failed
to show the value of these few scenarios. This was a potential application which was
not confirmed.

3c. One use for AM itself would be as a "fun" teaching tool. If a very nice user
interface is constructed, AM could serve as a model for, say, college freshmen with no
math research experience. They could watch AM, see the kinds of things it does, play
with it, and perhaps get a real flavor for (and get turned on by) doing math research. A
vast number of brilliant minds are too turned off by high-school drilling and college
calculus to stick around long enough to find out how exciting - and different - research
math is compared to textbook math.

4. Further experiments on AM might tell us something about how the theory formation task
changes as a theory grows in sophistication. For example, can the same methods which
lead AM from premathematical concepts to arithmetic also lead AM from number
systems up to abstract algebra? Or are a new set of heuristic rules or extra concepts
required? My guess is that a few of each are lacking currently, but only a few. Thprz is
a great deal of disagreement about this sub ject among mathema.cians. 1 y tracing
along the development of mathematics, one might categorize discov,,ies by how easy
they would be for an AM-like system to find. Sometimes. a discovery required the
invention of a brand new heuristic rule, which wotild clearly be beyond AM as
currently designed. Sometimes, discovery is hI:.,u d on the lucky random combination of
existing concepts, for no good a prin-. reason. It would be instructive to find out how
often this is necessarily the as.ow often can't a mathematical discovery be motivated
and "explained" using Ieuristic rules of the kind AM possessrs?

5. An ur--f~icipated result was the creation of new-to-Mankind math (both directly and by
ciefining new, interestin,; concepts to investigate by hand). The amount of new bits of
mathematics developed to date is minuscule.

5a. As described in (2c) above, AM might absorb heuristics from several
individuals and thereby integrate their particular insights. This might eventually result
in new mathematics being discovered.

5b. 'An even more exciting prospect, which never materialized, was that AM
would find a new redivision of existing concepts, an alternate formulation of some
established theory, much like Hamiltonian mechanics is an alternate unification of the
data which led to Newtonian mechanics. The only rudimentary behavior along these
lines was when AM occasionally derived a familiar concept in an abnormal way (e.g.,
TIMES was derived in four ways; Prime pairs were noticed by restricting Addition to
primes).

27 Usually One kind of exception is the following the ability to take a powerful theorem, and extract from it a new,

powerful heuristic. AM cannot do this, but it may turn out that this mechanism is quite crucial for humans'
obtaining new heuristics This is another open research problem
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7.1.9. Open Problems: Suggestions for Future Research

While AM can and should stand as a complete research project, part of its value will stem
from whatever future studies are sparked by it. Of course the "evaluation" of AM alon
this dimension must wait for years, but even at the present time several such oper problems
come to mind:

Devise Meta-heuristics, rules capable of operating c., and synthesizing new heuristic
rules. AM has shown the solution r-f this problem to be both nontrivial and
indispensable. AM's progress gound to a halt because fresh, powerful heuristics
were never produced Tne next point suggests that the same need for new rules
exists in mather,,atics as a whole:

Examine the history of mathematics, and gradually build up a list of the heuristic
rules used. Does the following thesis have any validity: "The development of
mathematics is essentially the development of new heuristics." That is, can we 'factor
out' all the discoveries reachable by the set of heuristics available (known) to the

N1. mathematicians at some time in history, and then explain each new big discovery
as requiring the synthesis of a brand new heuristic? For example, Bolyai and
Lobachevsky did this a century ago when they decided that counter-intuitive
systems might still be consistent and interesting. Non-Euclidean geometry resulted,
and no mathematician today would think twice about using the heuristic they
developed. Einstein invented a new heuristic more recently, when he dared to

consider that counter-intuitive systems might actually iave physical reality.28 What
was once a bold new method is now a standard tool in theoretical physics.

"-In a far less dramatic vein, a hard open problem is that of building up a body of
rules for symbolically instantlating a definition (a LISP predicate), These rules m,',y
be structured hierarchically, so that rules specific to operating on 'operations whost.

% domain and range are equal' may be gathered. Is this set finite and managable; i.e.,
does some sort of "closure" occur after a few hundred (thousand?) such rules are

..iassembled?

* More generally, we can ask for the expansion of all the heuristic rules, of all
categories. This may be done by eliciting them from famous mathematicians, or
automatically by the application of very sophisticated meta-heuristics. Some
categories of rules include: how to generalize/specialize definitions, how to find
examples of a given concept, how to optimize LISP algorithms.

* Experiments can be done on AM. A few have been performed already, many more
are proposed in Section 6.2, and no doubt some additional ones have already
occurred to the reader.

Extend the analysis already begun (see p. 59) of the set of heuristics AM possesses.
One reason for such an analysis would be to achieve a better understanding of the

28 As Courant says, "When Einstein tried to reduce the notion of 'simultaneous events occurring at different places' to
observable phenomena, when he unmasked as a metaphysical prejudice the belief that this concept must

have a scientific meaning in itself, he had found the key to his theory of relativity."

' ................ "
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contribution of the heuristics. In some sense, the heuristics and the choice of
starting concepts "encode" the discoveries which AM makes, and the way it makes
them. A better understanding of that encoding may lead to new ideas for AM and
for future AM-like systems.

Rewrite AM. In Chapter 1, on page 9, it was pointed out that there are two
common species of heuristic search programs. One type has a legal move
generator, and heuristics to constrain it. The second type, including AM, has only
a set of heuristics, and theyact as plausible move generators. Since AM seemed to
create new concepts, propose new conjectures, and formulate new tasks in a very
few distinct ways, it might very well be feasible to find a purely syntactic "legal
move generator" for AM, and to convert each existing heuristic into a form of
constraint. In that case, one could, e.g., remove all the heuristics and still see a
meaningful (if explosive) activity proceed. There might be a few surprises down
that path.

A more tractible project, a subset of the former one, would be to recode just the
conjecture-finding heuristics as constraints on a new, purely syntactic "legal
conjecture generator". A simple Geiierate-and-Tcst paradigm would be used to
synthesize and examine large numbers of conjectures. Again, removing all the
heuristics would be a worthwhile experiment.

• At the reaches of feasability, one can imagine trying to extend AM into more and
more fields, into less-formalizable domains. International politics has already been
suggested as a very hard future applications area.

" Abstracting that last point, try to build up a set of criteria which make a domain
ripe for automating (e.g., it possesses a strong theory, it is knowledge-rich (many
heuristics exist), the perfce. mance of the professionals/experts is much better than
that of the typical practitioners, the new discoveries in that field all fall into a small
variety of syntactic formats,...?). Initially, this study might help humans build better
and more appropriate scientific discovery programs. Someday, it might even permit
the creation of an automatic-theory-formation-program-writer.

" The interaction between AM and the user is minimal and painful. Is there a more
effective language for communication? Should several languages exist, depending
on the type of message to be sent (pictures, control characters, a subset of natural
language, induction from examples, etc.)? Can AM's output be raised in
sophistication by introducing an internal model of the user and his state of
knowledge at each moment?

" Human protocol studies may be appropriate, to test out the model of mathematical
research which AM puts forward. Are the sequences of actions similar? Are the
mistakes analogous? Do the pauses which the humans emit quantitatively
correspond to A M's periods of gathering and running 'Suggest' heuristics?

" Can the idea of Intuition functions be developed into a useful mechanism? If not,
how else might real-world experiences be made available to an automated
researcher to draw upon (for analogies, to base new theories upon)? Could one

. - - - -,- .--- - .--- -



Chapter 7 AM: Discovery in Mathematics as Heuristic Search -150-

interface physical effectors and receptors and quite literally allow the program to
'play around in the real world' for his analogies?

Most of the 'future implications' discussed in the last section suggest future activities
(e.g., new educational experiments and techniques).

* Most of the 'limiting assumptions' discussed In a later section (page 157) can be

tackled with today's techniques (plus a great deal of effort). Thus each of them
counts as an open problem for research.

• Perform an information-theoretic analysis on AM. What Is the value of each
heuristic? the new information content of each new conjecture?

If you're interested in natural language, the very hard problem exists of giving AM
(or a similar system) the ability to really do inferential processing on the reasons
attached to tasks on the agenda. Instead of just being able to test for equality of
two reasons, it would be much more intelligent to be able to infer the kind of
relationship between any two reasons; if they overlap semantically, we'd like to be
able to compute precisely how that should that effect the overall rating for the task;
etc.

Modify the control structure of AM, as follows. Allow mini-goals to exist, and

supply new rules for setting them up (plausible goal generators) and altering those
goals, plus some new rules and algorithms for satisfying them. The modification !
have in mind would result in new tasks being proposed because of certain current
goals, and existing tasks would be reordered so as to raise the chance of satisfying
some important goal. Finally, the human watching AM would be able to observe
the rationality (hopefully) of the goals which were set. The simple "Focus of
Attention" mechanism already in AM is a tiny step in this goal-oriented direction.
Note that this proposal itself demonstrates that AM is not inherently opposed to a
goal-directed control structure. Rather, AM simply possesses only a partial set of
mechanisms for complete reasoning about its domain.

7.1.10. Comparison to Other Systems

One popular way to judge a system is to compare it to other, similar systems, and/or to
others' proposed criteria for such systems. There is no other project (known to the author)

having the same objective: automated math research.29 Many somewhat related efforts have
been reported in the literature and will be mentioned here.

Several projects have been undertaken which overlap small pieces of the AM system and in
addition concentrate deeply upon some area not present in AM. For example, the CLET

29 In (Atkin & Birch 19713, eg, we find no mention of the computer except a a number cruncher.
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system [Badre 73] worked on learning the decimal addition algorithm 3° but the
"mathematics discovery" aspects of that system were neither emphasized nor worth
emphasizing; it was an interesting natural language communication study. The same
comment applies to several related studies by IMSSS 31.

Boyer and Moore's theorem-prover [Boyer&Moore 75] embodies some of the spirit of A M
(e.g., generalizing the definition of a LISP function), but Its motivations are quite different,
its knowledge base is minimal, and its methods purely formal.32 The same comments apply
to the SAM program [Guard 69], in which a resolution theorem-prover is set to work on
unsolved problems in lattice theory.

Among the attempts to incorporate heuristic knowledge into a theorem prover, we should
also mention [Wang 60], [Pitrat 70), [Bledsoe 71], and [Brotz 74). How did AM differ from
these "heuristic theorem-provers"? The goal-driven control structure of these systems is a
real but only minor difference from AM's control structure (e.g., AM's "focus of attention" is
a rudimentary step in that direction; see p. 150). The fact that their overall activity is
typically labelled as deductive is also not a fundamental distinction (since constructing a
proof is usually in practice quite inductive). Even the character of the inference processes
are analogous: The provers typically contain a couple binary inference rules, like Modus
Ponens, which are relatively risky to apply but can yield big results; AM's few "binary"
operators have the same characteristics: Compose, Canonize, Logically-combine (disjoin and
conjoin). The main distinction is that the theorem provers each incorporate only a handful
of heuristics. The reason for this, in turn, is the paucity of good heuristics which exist for
the very general task environment in which they operate: domain-independent (asemantic)
predicate calculus theorem proving. The need for additional guidance was recognized by
these researchers. For example, see [Wang 60), p. 3 and p. 17. Or as Bledsoe says33:

There is a real difference between doing some mathematics and being a
mathematician. The difference is principally one of judgment: in the selection of a
problem (theorem to be proved); in determining its relevance;... ' is precisely in
these areas that machine provers have been so lacking. This kind of judgment has
to be supplied by the user... Thus a crucial part of the resolution proof is the
selection of the reference theorems by the human user; the human, by this one
action, usually employs more skill than that used by the computer in the proof.

Many researchers have constructed programs which pioneered some of the'techniques AM
uses34. (Gelernter 63) reports the use of prototypical examples as analogic models to guide
search in geometry, and [Bundy 731 employs models of "sticks" to help his program work
with natural numbers. The single heuristic of analogy was studied in [Evans 68) and

30 Given the addition table up to 10 + 10, plus an English text description of what it means to carry, how and when to

carry, etc, actually write a program capable of adding two 3-digit numbers
31 See [Smith 74s], for example.

32 This is not meant as criticism; considering the gode of those researchers, and the age of that system, their work is quite

significant.
33 (Blsdse 71, p. 7 3
34 In many cases, those techniques were used for the first time, hence were thought of as "tricks",
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Theory formation systems in any field have been few. Meta-Dendral [Buchanan 74)
represents perhaps the best of these. Its task is to unify a body of mass spectral data
(examples of "proper" identifications of spectra) into a small body of rules for making
identifications. Thus even this system is given a fixed task, a fixed set of data to find
regularities within. AM, however, must find its own data, and take the responsibility for
managing its own time, for not looking too long at worthless data.36 There has been much
written about scientific theory formation (e.g., [Hempel 52)), but very little of it is specific
enough to be of immediate use to Al researchers. A couple pointers to excellent discussions
of this sort are: (Fogel 66), [Simon 73), and [Buchanan 75). Also worth noting is a
discussion near the end of (Amarel 69), in which "formation" and "modelling," probems are
treated:

The problem of model finding is related to the following general question raised
by Schutzenberger [in discussion at the Conference on Intelligence and Intelligent
Systems, Athens, Ga., 1967): 'What do we want to do with intelligent systems that
relates to the work of mathematicians?'. So far all we have done in this general
area is to emulate some of the reasonably simple activities of mathematicians,
which is finding consequences from given assumptions, reasoning, proving
theorems. A certain amount of work of this type was already done in the
propositional and predicate calculi, as well as in some other mathematical systems.
But this is only one aspect of the work that goes on in mathematics.
Another very important aspect is the one of finding general properties of
structures, finding analogies, similarities, isomorphisms, and so on. This is the
type of activity that is extremely important for our understanding of model-
finding mechanisms. Work in this area is more difficult than theorem-proving. The
problem here is that of theorem finding.

AM is one of the first attempts to construct a "theorem-finding" program. As Amarel noted,
it may be possible to learn from such programs how to tackle the general task of automating
scientific research.

Besides "math systems", and "creative thinking systems", and "theory formation systems", we
should at least discuss others' thoughts on the issue of algorithmically doing math research.
Some individuals feel it is not so far-fetched to imagine automating mathematical research
.-e.g., Paul Cohen). Others (e.g., Polya) would probably disagree. The presence of a high-
speed, general-purpose symbol manipulator in our midst now makes investigation of that

% .question possible.

There has been very little published thought about discovery in mathematics from an
algorithmic point of view; even clear thinkers like Polya and Poincare' treat mathematical
ability as a sacred, almost mystic quality, tied to the unconscious. The writings of
philosophers and psychologists invariably attempt to examine human performance and
belief, which are far more managable than creativity in vitro. Belief formulae in inductive

35 lrolt's program, 18rolz 74], uses this to propose useful lemmata
,.-..- 036 In case that wasn't clear: Meta-Dendral has a fixed set of templates for ruleo which it wishes to find, and a fixed

vocabulary of mass spectral concepts which can be plugged intr ihose templates. AM also has only a few
stock formats for conjectures, but it selectively enlarges its vr..abulary of math concepts
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logic37 invariably fall back upon how well they fit human measurements. The abilities of a
computer and a brain are too distinct to ccnsider blindly working for results (let alone
algorithms!) one possesses which match those of the other.

7.2. Capabilities and Limitations of AM

The first two subsections contain a general discussion of what AM can and can't do. Later
subsections deal with powers and limitations inherent in using an agenda scheme, in fixing
the domain of AM, and in picking one specific model of math research to build AM upon.
The AM program exists only because a great many simplifying assumptions were tolerated;
these are discussed in Section 7.2.4 (p. 157). Finally, some speculation is made about the
ultimate powers and weaknesses of any systems which are designed very much like AM.

7.2.1. Current Abilities

What fields has AM worked in so far? AM is now able to explore a small bit of the theory
of sets, data types, numbers, and plane geometry. It by no means has been fed - nor has it
rediscovered - a large fraction of what is known in any of those fields. It might be more
accurate to be humble and restate those domains as: elementary finite set theory, trivial
observations about four kinds of data types, arithmetic and elementary divisibility theory,
and simple relationships between lines, angles, and triangles. So a sophisticated concept in
each domain - which was discovered by AM - might be:

* de Morgan's laws
- the fact that Deleteolnsert3 9 never alters Bags or Lists
* unique factorization
* similar triangles

Can AM work in a new field, like politics? AM can work in a new elementary, formalized
domain, if it is fed a supplemental base of conceptual primitives for that domain. To work
in plane geometry, it sufficed to give AM about twenty new primitive concepts, each with a
few parts filled in. Another domain which AM could work in would be elementary
mechanics. The more informal the desired field, the less of AM that is relevant. Perhaps an
AM-like system could be built for a constrained, precise political task.39 Disclaimer: Even
for a very small domain, the amount of common-sense knowledge such a system would need
is staggering. It is unfortunate to provide such a trivial answer to such an important
question, but there is no easy way to answer it more fully until years of additional research
are performed.

Can AM discover X? Why didn't it do Y? It is difficult to predict whether AM will (without

37For example, see [Hintika 621, (Pietarinin 72] The latter also contains a good summary of Carnp's X,oe formalization.

Take an item x, insert it into (the front of) structure B, then delete one (the first) occurrence of x from B
39 For example, such a politics-oriented AM-like system might conceive the notion of a group of political entities which view

themselves as quite disparate, but which are viewed from the outside as a single unit. eg, 'the Arabs', 'the
American Indians' Conjectures about this concept might include its reputation as a poor combatant (and
why). Many of the same facets AM uses would carry over to represent concepts in that new domain
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modifications) ever make a specific given discovery. Although its capabilities are small, its
limitations are hazy. What makes the matter even worse is that, given a concept C which
AM missed discovering, there is probably a reasonable heuristic rule which is missing from
AM, which would enable that discovery. One danger of this "debugging" is that a rule will

* be added which only leads to that one desired discovery, and isn't good for anything else. In
that case, the new heuristic rule would simply be an encoding of a specific bit of
mathematics which AM would then appear to discover using general methods. This must
be avoided at all costs, even at the cost of intentionally giving up a certain discovery. If the

a. needed rule is general - it has many applications and leads to many interesting results -
then it really was an oversight not to include it in AM. Although I believe that there are
not too many such omissions still within the small realm AM explores, there is no objective
way to demonstrate that, except by further long tests with AM.

In what ways are new concepts created? Although the answer to this is accurately given in
Section 4.3, page 42 (namely, this is mainly the jurisdiction of the right sides of heuristic
rules), ;nd although I dislike the simple-minded way it makes AM sound, the list below
does characterize the major ways in which new concepts get born:

Fill in examples of a concept (e.g., by instantiating or running its definition)
Create a generalization of a given concept (e.g., by weakening its definition)
Create a specialization of a given concept (e.g., by restricting its domain/range)

0 fi Compose two operations f,g, thereby creating a new one h. [Define h(x)sf(g(x))]
Coalesce an operation f into a new one g. [Define g(x)-f(x,x)]
Permute the order of the arguments of an operation. [Define g(xy)-f(y,x)]
Invert an operation [g(x)=y iff f(y):x] (e.g., from Squaring, create Square-rooting)
Canonize one predicate PI with respect to a more general one P2 [create a new concept f,

an operation, such that: P2(x,y) iff PI(f(x),f(y))J
Create a new operation g, which is the repealed application of an existing operation f.
The usual lo.,ical combinations of existing concepts x,y: xAy, Xvy, "x, etc.

Below is a similar list, giving the primary ways in which AM formulates new conjectures:
Notice that concept Ci is really an example of concept C2
Notice that concept C1 is really a specialization (or: generalization) of C2
Notice that Cl is equal to C2; or: almost always equal
Notice that Cl and C2 are related by some known concept
Check and update the domain/range of an existing operation
If two concepts are analogous, extend the analogy to their conjectures as well

In summary, we can say that AM has achieved its original purpose: to be guided
successfully by a large set of local heuristic rules, in the discovery of new mathematical
theories. Besides creating new concepts and noticing conjectures, AM has the key "ability"
of appearing to decide rationally what to work on at each moment. This is a result of the
agenda of tasks - containing associated reasons. Of course all of these abilities stem from
the quality and the quantity of local heuristic rules: little plausible move generators and
evaluators.

-:O 7.2.2. Current Limitations

Below are several shortcomings of AM, which hurt its behavior but are not believed to be

inherent limitations of its design. They are presented in order of decreasing severity.
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Perhaps the most serious limitation on AM's current behavior arose from the lack of
constraints on left sides of heuristic rules. It turned out that this excessive freedom made it
difficult for AM to inspect and analyze and synthesize its own heuristics; such a need was
not foreseen at the time AM was designed. It was thought that the power to manipulate
heuristic rules was an ability which the author must have, but which the system wouldn't
require. As it turned out, AM did successfully develop new concepts several levels deeper
than the ones it started with. But as the new concepts got further and further away from
those initial ones, they had fewer and fewer specific heuristics filled in (since they had to be
filled in by AM itself). Gradually, AM found itself relying on heuristics which were very
general compared to the concepts it was dealing with (e.g., forced to use heuristics about
Objects when dealing with Numbers). Heuristics for dealing with heuristics do exist, and
their number could be increased. This is not an easy job: finding a new meta-heuristic is a
tough process. Heuristics are rarely more than compiled hindsight; hence it's difficult to
create new ones "before the fact".

AM has no notion of proof, proof techniques, formal validity, heuristics for finding
counterexamples, etc. Thus it never really establishes any conjecture formally. This could
probably be remedied by adding about 25 new concepts (and their 100 new associated
heuristics) dealing with such topics. The needed concepts have been outlined on paper, but
nu yet coded. It would probably require a few hundred hours to code and debug them.

The user interface is quite primitive, and this again could be dramatically improved with
just a couple hundred hours' work. AM's explanation system is almost nonexistent: the user
must ask a question quickly, or AM will have already destroyed the information needed to
construct an answer. A clean record of recent system history and a nice scheme for tracking
down reasons for modifying old rules and adding new ones dynamically does not exist at
the level which is found, e.g., in MYCIN (Davis 76]. There is no trivial way to have the
system print out its heuristics in a format which is intelligible to the untrained user.

An important type of analogy which was untapped by AM was that between heuristics. If
two situations were similar, conceivably the heuristics useful in one situation might be
useful (or have useful analogues) in the new situation (see [Koppelman 75]). Perhaps this
is a viable way of enlarging the known heuristics. Such "meta-level" activities were kept to
a minimum throughout AM, and this proved to be a serious limitation. My intuition tells
me that the "right" ten meta-rules could correct this particular deficiency.

The idea of "Intuitions" facets was a flop. Intuitions were meant to model reality, at least
little pieces of it, so that AM could perform (simulate) physical experiments, and observe the
results. The major problem here was that so little of the world was modelled that the only
relationships derivable were those foreseen by the author. This lack of generality was
unacceptable, and the intuitions were completely excised. The original idea might lead
somewhere if it were developed fully. As with all limitations of AM, I leave this as an open

=" suggestion for future research.

Several limitations arose from the constraints of the agenda scheme, from the choice of finite
set theory as the domain to work in, and from the particular model of math research that
was postulated. These will be discussed in the next few subsections.
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7.2.3. Limitations of the Agenda scheme

The following quibbles with the agenda scheme get less and less important. When you get
bored, skip to the next subsection.

Ciiently, it is difficult to include heuristics which interact with one another in any
significant way. The whole fibre of the Agend-A scheme assumes perfect independence of
heuistics. The global formula used to rate tasks on the agenda assumes perfect
su~petposition of reasons: there are no "cross-terms". Is this assumption always valid?
Unfortunately no, not even for the limited domain AM has explored. Sometimes, two
reasons are very similar: "Examples of Sets would permit finding examples of Union" and
"Examples of Sets would permit finding examples of Intersection". In that case, their two
ratings shouldn't cause such a big increase in the overall priority value of the task "Fillin
examples of Sets".

"ometimes, a heuristic rule will want to dissuade the system from some activity. Thus a
wirrti-r numeric conrib "utio, to a task's priority value is desired. This is not figured into
the Ltiirit scheme. With a slight modification, the global formula could preserve the sign
(signum) of each reason's rating.

'1 asks on the agenda list are ordered by their numeric priority value. Each reason's
iiuneiilL value is kept, too. When new reasons are added, these values are used to
,.(,COnipute a new priority for the task. Each reason's rating was computed by a little
fuirnula found inside some heuristic rule. Those formulae are not kept hanging around.
Onfe big improvement in apparent intelligence could be attained by tacking on those little

i formulae to the reasons. When a new reason is added, the old reasons' rating formulae
would be evaluated again. They might indeed give new numbers. For example, suppose
one reason was "Few examples of X are known". But by now, other tasks have meanwhile
inadvertantly filled in several examples of X. Then that little reason's formula would come
tip with a much lower value than it did originally. In fact, the value might be so low that
the reason was dropped altogether. If the formulae were kept, it might be good practice to
evaluate them for the top two or three tasks on the agenda, to see if they might change their
ordering Also, the top task's priority would then be more accurate, and recall that its value
is used to determine the cpu time and list cell space quanta that the task is allowed to use
up At the moment, AM is not set up to store the little functions, and if modified to do so, it
uses up a lot more space than it can afford. Also, the top few jobs are almost never
semantically coupled (except by "focus of attention"), so the precise order in which they are
executed rarely matters.

Perhaps what is needed is not a single priority value for each task, but a vector of numbers.
At each cycle, AM would construct a vector of its current "interests" and needs, and each
task's vector would be dot-multiplied against this global vector of AM's desires. The
highest scorer would then be chosen. For example, one dimension of the rating could be

*.e "safety", and one could be "best possible payoff", one could be "average expected payoff", etc.
Sometimes, AM would have to break out of a stagnant situation, and it would be willing to
try riskier tasks than usual. This was not implemented because of the great increase in cpu
time it would cause. It is, however, probably a better design than the current one. Even
more intelligent schemes can be envisioned - involving more and more symbolic data being
stored with each task. Ultimately, this would be just the English reasons themselves; by that

,.--
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time, the task-orderer would have grown into an incredibly complex AI program itself (a
natural language program plus an interrelator plus...).

The agenda list should really be an agenda tree40, since the ordering of tasks is really just
partial, not total. If this is clear, then skip the rest of this paragraph. There are some

"legitimate" orderings of tasks on the agenda; if task X is supported by a subset of the
reasons which support Y, then typically the priority of X will be less than or equal to the
priority of Y. Two tasks of the form "Fillin examples of A", "Fill in examples of B" can be
ordered simply because A is currently much more interesting than B. But often, two tasks
will have no ironclad ordering between them: compare "Fillin examples of Sets" and "Check
generalizations of Union". Thus the ordering is only partial, and it is the artifice of the
global evaluation function which embeds this into a linear ordering. If multiprocessors are
used, it might be advantageous to keep the original partial ordering around.

7.2.4. Limiting Assumptions

AM only "got off the ground" because a number of sweeping assumptions were made,
pertaining to what could be ignored, how a complex process could be adequately simulated,
etc. Now that AM is running, however, those same simplifications crop up as limitations to
the system's behavior. Each of the following points Is a 'convenient falsehood'. Although
the reader has already been told about some of these, it's worth listing them all together
here:

The only communication necessary from AM to the user is keeping the user
informed of what AM is doing. No natural language ability is required by AM;
simple template instantiation is sufficient.

The only communication from the user to AM is an occasional interrupt, when the
user wishes to provide some guidance or to pose a query. Both of these can be
stereotyped and passed easily through a very narrow channel.41

* Each heuristic has a well-defined domain of applicability, which can be specified
just by giving the name of a single concept.

If concept CI is more specialized than C2, then Cl's heuristics will be more
powerful and should be executec, before C2's (whenever both concepts' heuristics
are relevant).

If h I and h2 are two heuristics attached to concept C, then it Is not necessary to
spend any time ordering them.

Heuristics superimpose perfectly; they never interact strongly with each other.

40 maybe an stenda Heap.

41 EC, a set of escape characters, so 1W means 'Why did you do that?', tU meant 'Uninteresting! Go on to
something else', etc.
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: The reasons supporting a task can be mere tokens; it suffices to be able to inspectM-- them for equality. They need not follow a constrained syntax. The value of a
reason is adequately characterized by a unidimensional numeric rating.

"\The reasons supporting a task superimpose perfectly; they never .. teract with each
other.

Supporting reasons - and their ratings - never change with time, with one
exception: the ephemeron 'Focus of attention'.

'- * It doesn't matter in what order the supporting reasons for a task were added.

"-There is no need for negative or inhibitory reasons, which would decrease the
priority value of a task.

- At any moment, the top few tasks on the ,genda are not coupled strongly; it is not
necessary to expend extra processing time'to carefully order them.

0 The t'sks on the agenda are completely independent of each other, in the sense of
one task 'enabling' or 'waking-up' another.

- Mathematics research has a clean, simple model (see Section 7.2.6, page 162),
which indicates that it is a search process governed by a large collection of heuristic
rul's.

* Elementary mathematics is such that valuable new concepts will be discovered fairly
regularly.

The worth of each new concept can be estimated easily, after just a brief
investigation.

* Contradictions will arise very rarely, and it is not disastrous to ignore them when
they do occur. The same indifference applies to the danger of believing in fR1.e

con jectures.
When doing theory formation in elementary mathematics, proof and formal

reasoning are dispensable.

_.Even as more knowledge is obtained, the set of facets need never change.

*.For any piece of knowledge sought or obtained, there is precisely one facet of one
existing 42 concept where that knowledge ought to be stored, and it is easy to

determine that proper location.

.- Even as more concepts are defined, the body of heuristics need not grow much.

-7 42 The only allowable exception i that a ncw pisce of information might require the creation of a brand new concept, and

then require storage somewhere on that concept.



Chapter 7 AM: Discovery in Mathematics as Heuristic Search -159-

Any common-sense knowledge required by AM is automatically present within the
heuristic rules. So, e.g., no special spatial visualization abilities are needed.

It is worth repeating here that the above assumptions are all clearly false. Yet none of them
was too damaging to AM's behavior, and their combined presence made the creation of
AM feasible.

7.2.5. Choice of Domain

The genesis of mathematical creation is a problem which should intensely interest
the psychologist. It is the activity in which the human mind seems to take least
from the outside world, in which it acts or seems to act only of itself and on itself,
so that in )tudying the procedure of mathematical thought we may hope to reach
what is most essential in man's mind.

-- Poincare'

Here are some questions this subsection will address:
• What are the inherent limitations - and advantages - in fixing a domain for AM

to work in?
* What characteristics are favorable to automating research in any given domain?
• What are the specific reasons for and against elementary finite set theory as the

chosen starting domain?

Research in various domains of science and math proceeds slightly differently. For example,
psychology is interested in explaining people, not in creating new kinds of people. Math is
not interested in individual entities so much as In new kinds of entities. There are ethical
restrictions on physicians which prevent certain experiments from being done. Political
experiments rarely permit backtracking, etc. Each field has Its own peculiarities.

If we want a system to work in many domains, we have to sacrifice some power.43. Within a
given field of knowledge (like math), the finer the category we limit ourselves to, the more
specific are the heuristics which become available. So it was reasonable to make this first
attempt limited to one narrow domain.

This brings up the choice of domain. What should it be? As the DENDRAL project
illustrated so clearly44 , choice of subject domain is quite important when studying how
researchers discover and develop their theories. Mathematics was chosen as the domain of
this investigation, because

1. In doing math rese.r,:h, one needn't cope with the uncertainties and fallability of

43 This is assuming a system of a given fixed size. If this restriction isn't preseit, then a reasonable "general-purpose"
sysem could be Ivlt as several systems linked by one giant switch.

44
see [Feigenbaum at. al. 71]. In that case, the choice of subject was enabled by (Lederberg 64].

1".I
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*testing equipment; that is, there are no uncertainties in the data (compared to, e.g.,
molecular structure inference from mass spectrograms).

2. Reliance on experts' introspections is one of the most powerful techniques for
codifying the judgmental criteria necessary to do effective work in a field; I
personally have had enough training in ilementary mathematics so that I didn't
have to rely completely on external sources for guidance in formulating such
heuristic rules. Also, several excellent sources were available [Polya, Skemp,
Hadamard, Kershner, etc.).

3. The more formal a science is, the easier it is to automate. For a machine to carry out
research in psychology would require more knowledge about human information

.-.- processing than now is known, because psychology deals with entities as complex as
you and 1. Also, in a formal science, the .nguages to communicate information can
be simple even though the messages themselves be sophisticated.

4. Since mathematics can deal with any conceivable constructs, a researcher there is not
limited to explaining observed data. Related to this is the freedom to investigate -
or to give up on - whatever the researcher wants to. There is no single discovery
which is the "goal", no given problem to solve, no right or wrong behavior.

5. Unlike "simpler" fields, such as propositional logic, there is an abundance of heuristic
rules available for the picking.

The limitations of math as a domain are closely intertwined with its advantages. Having
no ties to real-world data can be viewed as a limitation, as can having no clear goal. There
is always the danger that AM will give up on each theory as soon as the first tough obstacle
crops up.

Since math has been worked on for millenia by some of the greatest minds from many
different cultures, it is unlikely that a small effort like AM would make any new inroads,
have any startling insights. In that respect, Dendral's space was much less explored. Of

,course math - even at the elementary level that AM explored it - still has undiscovered
"N gems (e.g., the recent unearthing of Conway's numbers [Knuth 74)).

One point of agreement between Weizenbaum and Lederberg45 is that Al can succeed in
automating an activity only when a "strong theory" of that activity exists. AM is built on a
detailed model of how humans do math research. In the next subsection, we'll discuss the
model of math research that AM assumes.

Before that, consider for a moment how few other fields of human endeavor have a good
model, and also enjoy all the advantages listed above: other domains of math, classical
physics.... not many others.

7.2.6. Limitations of the Model of Math Research

45 See the quote at the front of the next subsection It is from [Lodsrborg 76), a review of [Weizenbaum 76). This review
also exists ss file WEIZEN.LED[pub,imc)OSAIL.
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Weizenbaum does point to prqjects in mathematics and chemistry where computers
have shown their potential for assisting human scientists in solving problems. He
correctly points out that these successes are based on the existence of "strong
theories" about their subject matter.

-- Lederberg

AM, like anything else in this world, is constrained by a mass of assumptions. Most of these
are "compiled" or interwoven into the very fabric of AM, hence can't be tested by
experiments on AM. Some of these were just discussed a few pages ago, in Section 7.2.4.

Another body of assumptions exists. AM is built around a particular model of how
mathematicians actually go about doing their research. This model was derived from
introspection, but can be supported by quotes from Polya, Kershner, Hadamard, Saaty,
Skemp, and many others. No attempt will be made to justify any of these premises. On the
next page is a simplified summary of that information processing model for math theory
formation:

RI
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MODEL OF MATH RESEARCH

1. The order in which a math textbook presents a theory is almost the exact opposite
of the order in which it was actually discovered and developed. In a text, new
definitions are stated with little or no motivation, and they turn out to be just the
ones needed to state the next big theorem, whose proof then magically appears.
In contrast, a mathematician doing research will examine some already-known
concepts, perhaps trying to find some regularity in experimental data involving
them. The patterns he notices are the conjectures he must investigate further,
and these relationships directly motivate him to make new definitions.

2. Each step the researcher takes while deveieping a new theory involves choosing
from a large set of "legal" alternatives - that is, searching. The key to keeping
this from becoming a blind, explosive search is the proper use of evaluation
criteria. Each mathematician uses his own personal heuristics to choose the "best"
altei native available at each moment.

3. Non-formal criteria (aesthetic interestingness, inductive inference from empirical
evidence, analogy, and utility) are much more important than formal deductive
methods in developing mathematically worthwhile theories, and in avoiding
barren diversions.

4. Piogress in any field of mathematics demands much non-formal heuristic expertise
in many different "nearby" mathematical fields. So a broad, universal core of
knowledge must be mastered before any single theory can meaningfully be
developed.

5. It is sufficient (and pragmatically necessary) to have and use a large set of informal
heuristic rules. These rules direct the researcher's next activities, depending on
the current situation he is in. These rules can be assumed to superimpose
ideally: the combined effect of several rules is just the sum of the individual
effects.

6. The necessary heuristic rules are virtually the same in all branches of mathematics,
and at all levels of sophistication. Each specialized field will have some of its
own heuristics; those are normally much more powerful than the general-purpose
heuristics.

7. For true understanding, the researcher should grasp46 each concept in several ways:
declaratively, abstractly, operationally, knowing when it is relevant, and as a
bunch of examples.

8. Common metaphysical assumptions about nature and science: Nature is fair,
uniform, and regular. Coincidences have meaning. Statistical considerations are
valid when looking at mathematical data. Simplicity and symmetry and synergy
are the rule, not the exception.

46 Have access to, relate to, store, be able to manipulate, be able to answer qu- about
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7.2.7. Ultimate powers ad weaknesses

Consider now any system which is consistent with the preceding model of math research,
and whose orientation is to discover and deveiop new (to the system) mathematical theories.
This includes AM itself, but might also include a bright high-school senior who has been
taught a large body of heuristic rules.

What can such systems ultimately achieve? What are their ultimate limits? Answers to
ultimate questions are hard to come by experimentally, so this discussion will be quite
philosophical, speculative, and short. The model of math research hinges around the use of
heuristic rules for guidance at all leve,s of behavior. It is questionable whether or not all
known mathematics could evolve smoothly in this way. As a first order fixup, ,ie've
mentioned the r.eed to provide good mta-heuristics, to keep enlarging the set of heuristics.
If this is not enough (if meta-meta-...-,ieuristics are needed), then the model is a poor one
and has some inherent limitations.47 If some discoveries can only te made non-rationally
(by random chance, by Gestalt, etc.) then any such system would be incapable of finding
those concepts.

Turning aside from math, what about systems whose design - as a computer program - is
similar to AM?48 Building such systems will be "'fun", and perhaps will result in new
discoveries in other fields. Eventually, scientists (at least in a few very hard domains) may
relegate more and more of their "hack" research duties to AM-like systems. The ultimate
limitations will be those arising from incorrect (e.g., partial) models of the activities the
system must perform. The systems themselves may help improve these models: experiments
that are performed on the systems are actually tests olf the underlying model; the results
might cause revisions to be made in the model, then in the system, and the whole cycle
would begin again.

73. Final Conclusions

Before quitting, let's summarize what's worth remembering about this thesis.

It is a demonstration that a few hundred general heuristic rules suffice to guide an
automated math researcher as it explores and expands a large but incomplete
knowledge base of math concepts. AM serves as a living existence proof that creative
research can be effectively modelled as heuristic search.

47 If Ptolemy had had access to a digital computer, all his data could have been made to fit (to any desired accuracy), just
by computing epi-cycles, epi-epi-cycles,. to the needed number of epi's We in Al must constantly be on
guard against that error.

48 Having en agenda of tasks with reasons and reason-ratings combining to form * global priority for each task, having
units/modules/frames/Being/Actors/concepte which have parts/slots/faScets, etc. Heuristic rules are
tacked onto relevant concepts, and are executed to produce new concepts, new tasks, new facet entries.

:[%
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The thesis also introduces a control structure based upon an agenda of small research
tasks, each with a list of supporting reasons attached.

The main limitation of AM was its inability to synthesize powerful new heuristics for
the new concepts it defined.

The main successes were the few novel ideas it came up with, the ease with which a new
task domain was fed to the system, and - most importantly - the overall rational
sequences of behavior AM exhibited.

The greatest long-range importance of AM may well lie in the body of heuristics
assembled (Appendix 3), either as the seed for a huge base of experts' heuristics, or as
a new orientation for mathematics education.
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Appendix 1. Glossary of Technical Terms

The "jargon" of a field facilitates communication among practitioners of that field, but it too
often excludes novices. I have tried to soften the impact of each "buzz-word" when it was
first used, but the reader may need to frequently refresh his memory about the meanings of
certain terms.

This glossary is divided into two sections. The first contains primarily Mathematics terms,
strangely biassed because it just covers what is referenced in this thesis. The second
glossary, of Computer Science and Artificial Intelligence terms, suffers from the sam.e tunnel
vision. They may suffice for reading this document, but they are certainly not meant to be
used for more general purposes.

Appendix 1.1. Glossary of Math Terms

Abduction: In logic, a syllogism of the form "from A, conclude that B is probably true". If
your mental frame for an automobile contains a hundred necessary features, and you see
something satisfying only 90 of them, you can abductively conclude it is probably an
automobile.

Cardinality: the concept of "number". Two sets are of the same cardinality iff they have the
same number of elements.

Composition of two relations R and S: This is a new relation denoted AoS, and defined as
RoS(x) - R(S(x)). So RoS maps elements of the domain of S into elements of the range of
R. Notice that if R and S are both functions, then so is RoS. The intuitive picture of this
process is to operate on x with the relation S, and then apply R to the results.

Function: an operation f which associates. to each element x of some set D, an element f(x)
of some set R. D and R are the domain and range of f. Notice that a function may be
considered a special kind of relation. For a relation f (on DxR) to be called a function, f
must satisfy two important constraints: (i) it must be always-defined on its domain; that is,
for all domain elements x(D, f(x) must exist. (ii) f must be single-valued; that is, f(x) must
be a singleton.hif: if and only if; Implies and is implied by; is equivalent to; < >.

Integers: positive and negative whole numbers; i.e. ..... -2,-1, 0, 1, 2....

Map: used as a verb, this word indicates the action of applying a function or a relation; e.g.,
we say that squaring maps 7 into 49. Used as a noun, it is a synonym for function.

Mathematical concept: this is taken to mean all the constructipns, definitions, conjectures,
operations, structures, etc. that a mathematician deals with. Some examples: Set-intersection,
Sets, The unique factorization theorem, every entry listed in this glossary.

4'
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Mathematical intuition: this is the mental imagery which can be brought to bear. Typically,
we transform the situation to an abstract, simplified one, manipulate it there, and re-
translate the results into the original notation. For example, our intuition about "ordering"
may involve the image of marks on a yardstick. We can then answer questions involving
ordering rapidly, using this representation. Three features of the intuitive image should be
noted: (i) it is typically fast and simple, (i) it is opaque, one cannot introspect too easily on
"why it works", and (in) it is fallible, occasionally leading to wrong results.

Mathematical research: The fundamental idea here is that mathematics is an empirical
science, just as much as chemistry or physics. In doing research, the ultimate goal is the
creation of new, interesting heories, but the techniques used include looking for patterns in
empirica! dcua, inducing new conjectures, modelling some aspects of the real world, etc.
Although the final product looks like a smooth, formal development, magically flowing from
postulates to lemmas to theorems, the actual research process involved untold blind alleys,
rough guesses, and hard work. (Analogy: The process of painting is rarely itself artistic.)

Mathematical theory: to qualify as a theory, we must have 0) a basis of undefined primitive
terms, (ii) definitions involving these, (iii) axioms involving all the primitives and defined
terms (iv) conjectures and theorems relating these terms. To be at all worthwhile, however,
the theory must also meet the fuzzy requirements that (v) there is some correspondence
between the primitives and some "real-world" concepts, between the axioms and some "real"
relationships, and (vi) some of the theorems are unexpected, hard to prove, elegant,
interesting, etc.

Mersenne prime: a prime number which happens to be of the form 2P-1, where p is prime.

Natural numbers: non-negative integers; i.e., 0, 1, 2, 3,...

No.: an abbreviation for "Number".

Number: in the typical loose fashion of computer scientists, I intend this to mean a non-
negative integer: i.e., a natural number.

Ordering: the concept of "before" and "after". This distinguishes a list from a bag
(multiset). The formal axioms for ordering simply state the obvious properties of the
intuitive image of a list.

Prime numbers: natural numbers which have no divisors other than I and themself; e.g., 17,
but not 15 (--x5). Primes are interesting because of the myriad times they crop up in

I %. diverse theorems - from the Chinese Remainder Theorem (solving systems of linear
congruence equations), to the Law of Quadratic Reciprocity, to Fermat's Theorem (for all

integers n, for all primes p, nP is congruent to n (mod p)). The "secret" of their value lies in
* the fact that all integers can be factored uniquely into a set of prime divisos. This "Unique
- Factorization Theorem" lets us reduce questions about ntegers to questions about primes.

Prime pairs: two prime numbers whose difference is two; e.g., 17 and 19.

Relation: an operation which associates, for each element of some set D, a set of elements EK - {el , e2,...} of some set R. D and R are the domain and range of the relation. For example,

.-. -.-
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the relation "S" associates to 5 the set of numbers {5, 6, 7, 8,...} - i.e., all integers which 5 is
less than or equal to. The domain and range of this relation are the integers.

Set-theoretic: having to do (in the context of this thesis) with elementary finite set theory,
and the primitive notions of mathematics (e.g., union, insert, predicate, con jecture).

Unity: a fancy way of referring to the natural number "I".

I: The relation "divides-evenly-into". Thus we say 216.

-: The operation of negation. ",X" is read as "not X".

v: Disjunction. "AvB" is read as "A or B".

A: Conjunction. "AAB" is read as "A and B".

0: Exclusive or. "A.B" is read as "A or B, but not both".

-: Implication. "A-+B" is read as "if A then B".

-4: Logical equivalence. "A44B" is read as "A if and only if B".
V: Universal quantification. "VX" is read as "For all X".

3: Existential quantification. "3X" is read as "For some X".
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Appendix 1.2. Glossary of AI Terms

ACTORs: A modular form of representation, useful for distributing of the task of control
among several components in a computer program. Each ACTOR is a black box, with no
parts or slots, but which does have some assertions (a "contract") which he must honor. It
merely responds to a fixed set of messages, by sending out certain messages of his own.
These are delivered via a bureaucracy. See [Hewitt 76].

A!: an abbreviation for Artificial Intelligence.

Bag: A bag is a kind of list structure, a bunch of elements which are unordered, but one in
which multiple copies of the same element are permitted. One may visualize a paper bag

filled with cardboard letters. Technically, we shall say that a set is not considered to be a
bag. A bag is denoted by enclosure within parentheses, just as sets are within braces. So
the bag containing X and four Y's might be written (X Y Y Y ), and would be considered
indistinguishable from the bag (Y Y Y X Y).

BEINGs: A modular form of representation of knowledge, conceived as a collection of
cooperating experts. Each expert Is modelled by one module, which consists of a list of
Question/A nswering.program pairs. The set of questions is fixed for all the Beings in the
system. When any Being has a question, he broadcasts it to the entire system, and some
Being who recognizes it will take over control and try to answer it by running his
appropriate Answering-program. In the process of running this, some new questions may
arise. Notice that Beings distribute responsibility for control and for static knowledge. See
[Lenat 75b].

Bug: a flaw in a computer program. As Corey Sacerdoti put it, a bug refers to something
which is broken but not badly.

Concept: within the context of this document, the word "concept" typically refers to a precise
frame-like data structure, a BEING. Semantically, each concept is meant to correspond to
one abstract entity that we would intuitively call a concept: an object, an operator, a
conjecture, etc. See "facet".

Cooperating Knowledge Sources: Very often, in tackling a problem, one receives some hints
and some constraints from very different sources, phrased in very different languages, often
addressing different representations of the problem. For example, in trying understand a
human speaker, our memory of the previous discussion and knowledge of the speaker may
narrow down the possible meanings of what he is saying. Our ears, of course, register the
precise acoustic wave-forms he is uttering. Our English vocabulary forces us to interpret
imperfect signals as real words. Our eyes see his gestures and hi, lip movements, and give
us more information. All these different sources of information must be used, and yet they
all are talking in different "languages" to us. The most trivial solution is to keep all the
sources independent, and keep working until one of them can solve the problem all by itself.
A much better solution is to transform all their babblings into one canonical representation,
one single language. This way, all the knowledge sources can cooperate.

-,....Coupled: two functional subsystems are causally connected; one influences the other. See the
.4 entry for "Linear".

[ - -,--,,
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CPU time: Central-Processing-Unit runtime (cpu time) is the number of execution cycles of
the computer that the AM program has used up. This is conveniently measured in seconds,
minutes, and hours, where one cpu minute is the amount of processing done in one minute
of real time, when AM has 100%. of the machine, and is runninng without any input or
output.

CS: an abbreviation for Computer Science.

Execution: a program is actually used by running it on a particular set of input data. This
process is known as program execution.

Facet: Within the context of this document, the word "facet" denotes a slot of the kind of
data-structure known as "concepts" (qv). Thus "a fazcet of the Compose concept" really just
means a slot of a particular frame, a part of certain BEING, one single attribute/value pair
taken from the property list of the Lisp atom named Compose. Semantically, each facet
holds information pertaining to a single aspect of the concept it is a part of; hence the
suggestive name: "facet".

FRAMEs: A modular representation of knowledge. Each module is a list of Feature/Value
pairs. The value represents a default assumption which can be relied on until/unless new
information comes in about that feature. Each frame has whatever features (called "slots")
seem appropriate. Whenever a situation S is encountered, the frame(s) for S are activated.
As new information tolls In, it replaces the default information in various slots. Notice the
emphasis on distributing static knowledge (data), not necessarily control, in such a system.
See [Piaget 55) or [Minsky 75].

Function: a small, executable part of a program. When fed the proper kind of argument(s),
a function will "run" and ultimately produce some sort of value. Unlike pure mathematical
functions (see the previous glossary), a Lisp function can have side effects (qv).

Garbage cbllection: As a Lisp program executes, various list s.Vructures (pointer networks)
are created. When the last pointer to a structure is removed, that structure has essentially
been irretrievably forgotten. If the operating system knew which storage cells were thus
"free", it could re-cycle them, reuse them. The process of finding and liberating such
discarded lists is called garbage collection. This is performed automatically by the Lisp
language, whenever space is almost all filled up.

Hack: A quick job that produces what is needed, but not well. Introducing a heuristic which
was only used once, in a predetermined way (e.g., to fix a particular bug), would be a real
hack.

Hand-crafting: the human programmer carefully designs his system in such a way that the
pieces just manage to mesh. For instance: he provides just the perfect set of axioms so that
his theorem-prover can solve a certain problem, or he modifies the program's strategies so
that they efficiently manipulate the axiom set in just the right way.
Heterarchy: A kind of control structure for a computer program which is distinct from
hierearchy. Heterarchical structuring views the whole program as a collection of equal

partners, an unstructured set of functions. "Control" is viewed as a spotlight, which can be
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flicked from one function to another. The functions can affect who does or doesn't get
control next, but there is no guarantee who will get control, or that control will revert back
to some function which once had it. Aside from the lure of its democratic flavor, it is
clearly a natural way to represent cooperating knowledge modules.

Hierarchy: This term refers to a kind of control structure for a computer program. The
typical hierarchical structure is one in which a function calls a subroutine, which processes
and then returns a value to that function. A program is viewed as a tree structure, with
lines indicating "calling".

Interact: a dynamic mode of communication between a human and a computer program.
The human reacts to what the program is printing out on his terminal, and the program in
turn reacts to what the user types in. This may take the form of questioning and answering,
or interrupting and commenting.

,nterestingness: Note that this is not a valid English word. In the context of AM, it refers to
i, .,"'. a numeric value, computed by little Lisp programs stored in the "Interest" facets of various

concepts. Despite the danger of imbuing such a humble scheme with all the mystique of
what is and isn't interesting, it is felt that a sufficient component of that evaluation has been
captured to warrant the name. Pragmatically, it is of much more use to the user to see
"Interestingness of Compose has just risen" than to see a message like "GO0034
incremented".

Kludge (or Kluge): This is a program feature which is an unfair shortcut around a specific
"* problem. One "kludgy" way of improving the algorithm of a given concept is to ask the user

for a better algorithm.

Linear: a system whose components, inputs, and outputs superimpose - i.e., don't couple.

Lisp: a LISt-Processing programming language. Primitive operations exist for manipulating
nested list structures. Since Lisp functions are also merely lists, it is easy to create and
modify entities which are then executed (qv).

Modular Representations of Knowledge in Al Systems: Knowledge is partitioned into
packets (called modules, frames, units, productions, Beings, experts, Actors) along lines of:

'V- different applicabilities, expertise, purpose, importance, generality, etc. Each packet is
structurally similar to all the rest. Advantages: By having the knowledge discretized, pieces

* can be added and/or removed with no trouble. The knowledge of the system is easily
inspected and analyzed. The structural similarity yields several advantages: a simple control
system suffices to "run" all the knowledge, the modules can intercommunicate easily, new
modules can be inserted without knowing precisely "who else" is already in the sysrm. In
general, the less similarly-structured the modules are, the simpler the inter-communication
media must be. Modular representation is a natural way to implement cooperating

.* knowledge sources.

Number: in the typical loose fashion of computer scientists, I intend this to mean a non-
negative integer: i.e., a natural number.

Open research problem: a limitation of the AM system.

-- . - -. .- - -- -.
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Recur: Often, part of a definition will refer back to that very same definition. This may
lead to an infinite circular loop, or it may terminate. The following definition of "is larger
than" is recursive, because the last line recurs:

set R is larger than set S

if Rz{) but S J}, or
if neither is empty and

Remove-element(R) is larger than Remove-element (S).

Recurse: a transitive verb which means "to swear again." It must be distinguished from
torecur", above.

Side effects: while a function is executing, it may cause changes in the state of its
environu;;ent which persist even after the function has retu.ned a value. This is like
hysteresis effects. For example, a function may create or destroy some list structure, define a
new function, reset some variable, etc. Such activities are called side effects of the function.

Space: The memory of a computer is quite finite. Though it may be supplemented by slow
auxilliary devices (tapes, discs, etc.), the actual number of storage cells in the computer's fast
core memory is a limiting factor in program behavior. Storage space, or just "space", refers

to these internal memory cells. When space is exhausted, the only remedy is to perform a
garbage collection (qv).

System: this can mean a computer program, and occasionally is just an another way of
referring to AM. In general, a system is any collection of entities related to form a
meaningful whole.

Terminal: a communications device for passing information between a computer system and

a human. This could be a teletype, a TV screen and keyboard, etc. The terminal is usually
portable and remotely located from the computer.

Us er: the human being who sits at a computer terminal and watches AM run (occasionally,
I-. perhaps, interacting with AM).

1.:
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Appendix 2. AMs Concepts

The Irst part of this huge appendix (Appendix 2.1.2 to 2.1.75) lists the set of knowledge
AM started with: its initial concepts. It is not very readable, nor is it central to any of the
ideas on which AM is based. The reader is therefore warned to proceed at his own risk
through this material.

Section 2 of this appendix contains a brief description of those concepts which were only
partially implemented in AM (e.g., "Destructive.op"). It was decided not to give each of
them a full "box" of their own.

The third part of this appendix lists a couple concepts as they were actually coded into
Lisp. The reader is shown which entry - or heuristic rule - each bit of Lisp code
corresponds to.

Finally, starting on page 224, a list is provided of some of the concepts which AM created.
This is intended not as an exhaustive catalog, but merely to show the breadth of what was
done by AM, the smart guesses and the lunacies. This list could have been pieced together
by sudying Appendix 5, v-,rerein some examples of AM in action are given. There the
reader may dynamically observe what kinds of concepts - and infer what kinds of entries
for their facets - AM was able to derive from its initial base.

Appendix 2.1. Initial Concepts

Each concept will be listed, followed by a description of the entries in each of its facets1 .
For each such "slot", a condensation is provided (in English, LISP, and math notation) of
all the knowledge initially supplied to AM about that facet of that concept.

If there is any unmentioned facet -for a concept, then it started out blank. Many of the
facets oi ahe original concepts were left blank intentionally, knowing that AM would be able
to fill them in as well. After all, if you can fill in examples of any new concept, you ought to
be able to fill in examples of Sets!

The concepts are grouped semantically, much like the tree shown on page 105, like the
order in which heuristics are listed in Appendix 3. This section of the appendix is
prefaced by an index which is arranged alphabetically, since the primary use of it will
probably be as an encyclopedia. When the reader encounters a poorly-namd or poorly-
explained concept somewhere in the text, he may wish to glance first at Chapter 5, page 107,
where very brief definitions of the concepts are also given alphabetically. If that
"dictionary" is ins,fficent, he can turn to the approprate page in this appendix, and see the
same concept presented in much more detail.

Each of thes en':.es was supplied by hand, by the author.
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Appeildix 2.w. Index to Initial Concejpts

CONCEPT PAGE CONCEPT PAGE

A~c ive................................ .......... 175 M ultiple-elemen ts-structu re................ 210
All but-the-first-element .. ............. 201 N o-nulIt ip!e-elements-structu re ......... 211
A 1l-bu~t-the-last-element ... ...... 202 Non rmpty-strucru re ........................... 211
Any-concept ... ....... . ....... 174 Object ................. ........................... 207
Anything ......................................... 171 Object-equality .................................. 176
A torn-obj ............................................ 8 Opera~ion......................................... 177
Bag-Delete ............ ............................ Ord-Structure .................................... 210
Rtg.Diff........................................... Ordered-pairs .................................... 213

.............................................. 182 Oset-Delet ......................................... 185
L,,ig- lntei sect.............................. 189 Oset-Diff.......................................... 193
Bag-Union ........................................ 191 Oset-insert .. ..................................... 181

4Bags ...... . .................................... 212 Oset-Intersect ..................................... 187
C aiolir .... ..................... I......... 196 Oset-Union ....................................... 190
COM ICSue...... .. ................................. 195 Osets ............................................... 214
Compow . . .....e............................... 178 Parallel-join ...................................... 199
Coiijectute ........................................ 207 Parallel-join2 ..................................... 199
C'oiistant-False..................................177 Parallel-replace............................... ..197
Constant-piedicate..I....I..................176 Parallel-replace2 ................................. 197
Constant-True .................................. 176 Predicate .......................................... 175
Delete.............................................. 183 Projection I ....................................... 203
Difference......................................... 192 Projection2 ....................................... 203
Empty-structure ................................ 211 Relation ........................................... 206
First-element.....................................201 Repeat ............................................. 198
Identity ............................................ 204 Repeat2 ............................................ 198
Insert .. ............................................ 179 R estrict............................................. 204
Intersect ........................................... 186 Reverse-ord-pair ............................... 200
In vert-a i-operation .................. I..........205 Set-Delete ......................................... 183
Inverted-op ...................................... 205 Set-Diff ...................... .. .................... 193
Last-elenr ...................................... 200 Set-insert .......................................... 180
List-Delete ........................................ 184 Set-Intersect ....................................... 188
List-Duff ........................................... 192 Set UJnion ......................................... 191
List-insert ......................................... 182 Seats.................................................. 212
List-lntei sect ..................................... 186 Structure .......................................... 209
List-Union........................................ 190 Structure-of-Structures ...................... 209
L i t s ................................................ 213 Truth-value ...................................... 208

*Logical-combination .................. I........206 Union .............................................. 189
Member........................................... 202 Unord-Structure ................................. 210
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Appendix 2.1.2 Anything

Name(s): Anything, Entity, Thing, Item
Definitions:

Non-Recursive, Trivial, Quick: X 0 T
Specializations: Any-concept, Non-concepts
Generalizations: none
Examples: Anything, Any-concept
Isa's: Any-concept
Worth: 100
Interest: 5 heuristics (see Appendix 3.1, page 229).2

Sugg: 5 heuristics
In-domain-of: Delete, Insert 3, Member, ProjI, Proj2, Identity, Constant-prod.
In-range-of: First-ele, Last-ole, Member, ProjI, Proj2, Identity.

Appendix 2.1.3 Any-concept

Name(s): Any-concept, Any-Being, Anybody
Definitions:

Non-Recursive, Opaque, Quick: X (x) FMEMB(x,Concepts)
Non-Recursive, Opaque, Quick: X (x) GETP(x,Name)

Specializations: Active, Object
Generalizations: Anything
Examples: Anything, Any-concept, Active, Object
Isa's: Anything, Any-concept
Worth: 100
View: to view any X as if it were a Y, find an op. whose domain contains4 X,

and whose range is contained in Y, and apply that op. to the given X.

Fillin: 39 heuristics (see Appendix 3.2, beginning on page 230). 5

Check: 20 heuristics
Interest: 21 heuristics
Sugg: ?0 heuristics

2 In general, this appendix will omit heuristics They will instead be presented n one big collection, as the next eppendix. For

each concept, we will however mention how many heuritics of each variety are present. The interested
reader may turn immediately to Appendix 3 if he desires, to ee those sristic rules.

3 All four specializations of each of Delete (e g., Bag-delete) and Insert (9 Z, List-insert) are also listed here.
4 That it, the domain of the operation is DIxD2xD3., and X is a subset of some Di., s pecialization of Di
5 As usual, the heuri a are listed in Appendix 3, not here. But the reader is forewarned that this concept has so many

heurit ie that they are grouped by facet in the next appendix, occupying Appendices 3.2 I through
328, pages 230 io 251,

" '. ","- *-.: : - .:- '. .' '_.''.." " '*': -''. . - :<. -.j'.-- __'.- . -'..' Ii± I .'- '.. "
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Appendix 2.1.4 Active

Name(s): Active, activity, action
Definitions:

Sufficient, Non-Recursive, Quick: k (x) GETP(x,Algorithms)
* . Sufficient, Non-Recursive, Quick: X (x) GETP(x,Dom/range)

Specializations: Predicate, Relation, Operation
Generalizations: Any-concept

Examples: none.6

Isa's: Any-concept
In-domain-of: Constructive, Destructive, Coalesce, Compose, Restrict

In-range-of.: Compose, Coalesce, Restrict.
Worth: 100
Fillin: 7 heuristics.
Check: 4 heuristics
Interest: 3 heuristics
Sugg: 10 heuristics

Appendix-2.1.5 Predicate

- Name(s): Predicate, sometimes: logical operation, Boolean function.
Definitions:

Nonrecursive quick opaque: X~ (P) Range(P) is Truth-value; i.e., {T,F).
Generalizations: Active
Examples: Equality, Constructive, Destructive, Empty, Nonempty, Constant-prod,

the Defn entries of each concept. 7

In-domain-of: Canonize
Worth: 100
Fillin: 2 heuristics.
Sugg: I heuristic.
Interest: I heuristic.

V6

6Recall that each active will be an example of an operation, predicate, etc, hence need not be pointed to explicitly here

7Thus the predicate 'Empty', while it exists in AM, is superfious, sinc6 the demfinition facet of 'Empty-struc' contains that
S very predicate
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Appendix 2.1.6 Q1bjt-equliy-
Name(s): Equality, Object equality, Obj-equal, Equal, Same.
Definitions:

Nonrecursive opaque: X. (x,y) EQUALNx,y)
Sufficient, very quick, opaque: X. (x,y) EQ(x,y)).'
Recursive slow: X (x,y) x and y are both identical atoms,

or x and y are both empty structures,
or x and y are both nonempty structures and

Equality.Defn(CAR(x),CAR(y)) and
Equality.Defn(CDR(x),CDR(y)).

Nonrecursive transform slow: X. (x y) ldentity.Defn(x,y).
Quick: X (x,y) ysEquality.Algs(x),

Domain/range: (Object Object -# (T,F)>
<Structure Structure -4 {T,F)>

Algorithms:
Nonrecursive quick: X. (x) x.

Conjec: 'Identity, restricted to Objects, is the same as Obj-Equality.'
Isa's: Predicate
Worth: 200
What: the Equality of two list structures; closely related to Identity op.

Appendix 2.1.7 Constant-predicate

Name(s): Constant -predicae, Const prod, Logical constant function.
Definitions: none.
Domain/range: <Anything... Anything -4 {T,F)>
Isa's: Predicate
Specializations: Constant-True, Constant-False
Conjec: (Vx,Yy) Constant-pred.Defn(x)@Constarnt-pred.Defn(y).
Worth: 100
Whatt a predicate which always returns the same logical value.

Appendix 2.1.8 Constant-True

Namne(c): Constant-True, Constant T, Always-T, sometimes: Always.
Definitions:

Nonrecursive, very quick: X .. T.
Domain/range: <Anything... Anything -4 (T,F)>

<Anything... Anything -4 (T)>
Generalizations: Constant-Predicate
Worth: 100
What: a predicate which always returns True.

-t%
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Appendix 2.1.9 Constant-False

Name(s): Constant-False, Constant F, Always-F, sometimes: Ngver.
Definitions:

Nonrecursive, very quick: X .. F8

Domain/rang.: <Anything... Anything -. T,F)>
<Anything... Anything -# IF)>

Generalizations: Constant -Predicate
Worth: 100
What: a predicate which always returns False.

Appendix 2.1.10 Operation
7 j Name(s): Operation, sometimes: function, mapping.

Definitions: none.9

Spcaiztos Inverted-op, Composition, Canonization,

-~ ~.Coalesced-op, Constructive-opl 0

Generalizations: Active
Examples: In,.ort, Delete, Union, Intersect, Uitterence, Compose, Canonize,

Coalesce, Identity, Proji, Proj2, First-ele, Last-ele, AI-but-first-ole,
AII-but-last-eie, Restrict, Reverse-ord-pair, Member, Invert, Repeat(2),
Parallel-join(2), ParalleI-replace(2).

Iri-domain-of: Invert, Parallel-join(2), Parallel-replace(2), Reapeat(2).
In-range-of: Canonize, Invert, ParalleI-join(2), ParaIlel-roplace(2), Roeat(2)
Worth: 100
Fillin: 7 heuristics.
Check: 3 heuristics
Interest: I1I heuristics
Sugg: 2 heuristics

a Actually, the value returned is 'NIL', not False or F.

9Recall that all this means is that compuitationally, any entity x is considered to be an Operation if f it is in Operation.Exs, or
if it " an exam-pleof some Spac.l;tion of this concept.

10The concepts of Constructive and Destructive operations are not encoded as concepts yet. The distinction between
specialization of Operation and Example of operation is quite blurry. E.g, why not consider th class of
Insertion operations a whole specialization of Operation, instead of Just an example? The decision as to what

* status each operation would have was quits arbitrary, inm afraid.

V4. = . .. . .
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Appendix MAL.1 Compose

Name(s): Compose, Composition, sometimes: afterwards;
Definitions:

Declarative slow: X (ABC) Yx, C(x)mA(B(x).
Sufficient Nonrecursive Quick: X (A,B,C) C h~s the Name %8o'.
Sufficient, Slow: Are-equivalent(C,Compose.Alvs(A,B)).
Sufficient, Quick: Cm-Compose.AlgsCA,8).

Domain/range: (Active Active -4 Active>
(Operation Active 4Operation>

1

<Predicate Active -4Predicate>
<Relation Relation -*Relation>

Algorithms: 12

Distributed: use the heuristics attached to Compose to guide the filling
in of various facets of the new composition.

Generalizations: Operation
Isa's: Operation
Worth: 300
Fillin: 9 heuristics.
Check: 2 heuristic.
Suggest: 2 heuristics.
Interest: I1I heuristics.

Note that while lhie entry would imply that Operation~ln-ran-of and Operation.ln-dom-of could both contain 'Compose' as
an entry, only the most general concept (i.e., 'Activ&I oiat 'Compose' in its In-donm-of and In-ran-of facets.

12An .lgordin for COMPOSE is a procedure for taking a pair of operations, i.e. a pair of concepts G and H, and cresting a
new active concept F which is defined to be their composition, whose Algorithms facet ccnitoins 'x~ (x)
G(H(x))', or, more precisely, '(PPLY8 G AIGS (APPLYB H AIGS x))'.
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Ap~pendix 2.1.12 Insert

Name(s): Insert, Insertion, sometimes: Add, Merge;
Definitions:

Quasi-recursive cases: X (x,A,B) [determine the type of structure that A and
B are, say S, then use S-insert.Defn(x,A,B)].

Necessary, Nonrecursive, Quick: X. (x,A,8) Member.Defn(x,B).

V N Necessary Declarative: X (x,A,B) z(8 iff z(A or znx.
Necesary, Declarative: X (x,A,B) ((Vs(A)(a(B), and (Ybjx (B3)(b(A), and x(B]
Sufficient, Quick: Bxlnsert.Algs(x,A).

- Domain/range: (Anything, Structures -# Structures>
Algorithms:

Quasi-recursive, cases: X~ (x,A) (determine the type of structure A Is,
say S, then use S-insert.Algs(x,A)J.

Isa's: Operation
Specializations: Bag-insert, Set-insert, List-insert, Oset-insert.
Worth: 100

* Check: I heuristic.

Xh. 14
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Appendix 2.1.13 Set-insert

Name(s): Set-insert, Set insertion, sometimes: Insert, Tog.
Definitions:

Declarative Slow: X (x,A,B) [(YaEA)((B), and (Ybjx (B)(b(A), and x(B]
Recursive Slow: X~ (x,A,B) (An() and Bwfx), or else:

[AND:. 2+-Momber.Alg(A); Member.Defn(z,8);
Set-insert.Defn(x,Set-delete.Alg(z,A),Set-delete.Alg(z,B)) 3

Recursive: X (x,A,B) (Am() and Buix), or else:
[AND: zs-CAR(A); Member.Defn(z,B);

Set-insert.Defn(xCDR(A),Set-delete.Alg(z,B)) 1
Declarative: X (x,A,B) (Vz) z(B 1ff V(AS zsx.
Quick: BuSet-insert.Algs(x,A).

Domain/range: <Anything, Sets -4 Sets>
Agrtm:13

Non-recursive quick: X. (x,A) (if Member.Defn(x,A) then A, else MERGE(x,A)?)
Non-recursive quick: X. (x,A) (MERGE(x,A) and Elim-adjacent-mult-elements(A))
Recursive: X (x,A) (if An() then (x), else if Auix) then A, else

[z#-CAR(A); if zux then A, else CONS (z,Sot-insert.Alg(x,CDR(A))))).
Generalizations: Insert
Worth: 100

What: 4 If x isn't already in A, then add it and re-sort the set A.

13 Actually, this operation, like all the other structural opokstions, are much more sophisticated than this simple presentation
implies In this case, if A is not supplied, AM choosesi a random example of a Set and inserts x into that set.
If x is missing, then AM finds a random example of Anything and inserts it into A.

14 The 'What' foae doesn't roslly exist, but is occasionally present in this Appendix for the aid of the reader. A fuller
English description of any concept can be obtained by lo"ing in the alphabetical summary of concepts, in
Chapter 5, beginning on page 107.

'_7
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Appendix 2.1.14 Oset-insert

Name(s): Oset-insert, Oset insertion, sometimes: Insert;
Definitions:

Delcarative Slow: X. (x,A,B) [(Va(A)(a(8), and 1Wbjx (B)(b(A), and xXCAR(B)]
Recursive Slow: X (x,A,B) (Ar[] and Brx], or else:

[AND: zt-Member.Alg(A); Member.Defn(z,B);
Oset-insert.Defn(x,Oset-delete.Alg(z,A),Oset-delete.Alg(z,B)f)

Non-recursive, Quick: X (x,A,B) (BzCONS (x,Oset-dete.Algs(x,A)).
Quick: X (x,A,B) (B.Oset-insert.Algs(x,A)).
Necessary Quick: X, (x,A,B) (xuCARW8)).
Necessary, Declarative: X (x,A,B) (Yz) zEB iff V(A 0 zax.

Domain/range: (Anything, Osets -+ Osets>
Algorithms:

Non-recursive quick: X (x,A) (CONS(x,[if Member.Defn(x,A) then DREMOVE(x,A)' 5

else A]))
Non-recursive quick: X (x,A) (CONSNx,A) and DREMOVE(x,COR(A)))

* Non-recursive quick: X, (x,A) (CONS (x,DREMOVE(x,A))
Recursive: X (x,Ai (if As[] then [x], else if Aa[x ...] then A, else

CONS (x,Oset-d@lete.Algs(x,A))).
Generalizations: Insert
Worth: 100
What: Eliminate x from A and add x as the first element of the oset A.

15 The INTERLISP function DREMOVENx,A) destructively remove* all occurrenc. of x from the list structure A.

1. -....---
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Appendix-2.1.15 List-insert

Name(s): List-insert, List insertion, sometimes: Insert, sometimes: CONS;
Definitions:

Nonrecursive Quick: X (x,A,B) (BuCONS(x,A)).
Nonrecursive: X (x,A,B) (AsCDR(B) and xaCAR(B)).16
Quick: X (x,A,B) (BaList-inzert.Algs(x,A)).
Necessary Quick: X~ (x,A,B) (xnCAR(%B)).
Necessary Quick: X% (x,A,B) (AaCDR$B)).

Domain/ranige: (Anything, Lists -4 Lists>
Algorithms:

Non-recursive quick: X (x,A) CONSNx,A).
Recursive slow: %. (x,A) (if Au<> then Wx, els*

NCONCI 1 (List-insert.Algs(x,All-but-last.Algs(A)),CAR(A)).
Generalizationi: Insert
Worth: 100
What: Add the element x onto the front of the List A.

Appendix 2.1.16 Bag-insert

Name(s): Bag-insert, Bag insertion, sometimes: Insert;
Definitions:

Nonrecursive Quick: X (x,A,B) (BsSORT(CONS(x,A))).
Quick: X (x,A,B) (BaBag-Insert.Algs(x,A)).

Domain/range: <Anything, Bags -4 Bags)
Algorithms:

Non-recursive quick: X (x,A) MERGE(x,A).
Non-recursive: X. (x,A) SORT(CONS(x,A)).
Recursive slow: X. (,A) (if Aa() then (x), else

ii CAR(AX' 8x the.i CONS (CAR(A),Bg-insertAlgs(x,CDR(A))), eIse CONS(x,A)).
Generalizations: Insert
Worth: 100
What: Merge the element x into the Bag A.

He,-e's how this would really appear in LISP: (LAMBDA (x A B) (AND IAPPLYB OBJ-EQUAL AIDS A (APPLYB ALL-BUT-
FIRST-ELE AIDS 8)] (APPLYB OBJ1-EQUAL AIDS x (APPLYB FIRST-ELE ALGS B)])),

17This LISP function means 'A(S,z) add-the element x to the and of list S'. CDR means All-but-the-first-element, CAR
means The-first-elementl.

ISHere, 'less then' means 'precedes alphanumerically', using AIPHORDER.
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Appendix 2.1.17 -Delete

Name(s): Delete, Deletion, Remove, sometimes, Subtract;
Definitions:

Quasi-recursive cases: X. (x,A,B) [determine the type of structure A and
B are, say S, then use S-Delete.Defn(x,A,8)].

Slow 19 : X (x,A,B) List-caelete.Defn(x,A,B)
Sufficient, Nonrecursive, Quick: X (x,A,B) NOT(Member.Defn(x,B)).
Sufficient, Quick: BuDelete.Algs(x,A).

Domain/range: <Anything, Structures -# Structures>
Algorithms:

Quasi-recursive cases: X~ (x,A) [determine the type of structure A is,
say S, then use S-Delete.Algs(x,A)].

Slow: X (x,A) List-cdelete.Algs(x,A).
isa's: Operation
Specializations: Set-delete, List-delete, Oset-deletiii, Bag-delete.
Worth: 100

4 What: Remove (one occurrence of) x from (the front of) structure A.

Appendix-2.1.18 Set-Delete

Name(s): Set-Delete, Set Deletion, sometimes: Delete;
Definitions:1

Declarative Slow: X (x,A,B) (Ya(A)(a(E3 xor a=X) A (Vb(B)(b(A) A 08(

Recursiv~e Slow: X (x,A,B) (Axil and Bull, or else Auix} and Bu{), or else:
[AND: zs-Membor.Alg (A) until zjx; Member.Defn(z,B);

Set-Delete.Defn(x,Set-delete.Alg(z,A),Set-delete.Alg(z,6)) 1
Quick: BuSist-Dolete.Algi(x,A).

Domain/range: <Anything, Sets -+ Sets>
Algorithms:

Non-recursive quick: X (x,A) DREMOVENx,A)
Non-recursive quick: X. (,A) (if NOT(Member.Defn(x,A)) then A,

else DREMOVE(x,A)))
Recursive: X (x,A) (if As[) then J), else if Asjx} then (), else

[z-CAR(A); if zxx then CDR(A), else CONS (z,Set-Delete.Alg(x,CDR(A)))]).
Generalizations: Delete
Worth: 100
What: remove the element x from the set S, if it's there initially.

I1
19The List-delsto definitions and algorithims or# relatively slow, since v might occur anywhere in A, and it might occur more

than once Special tricks are available to speed up the other kinds of deletion*. For Set-delete and oet-
delete, we. can use DREMOVE, since deleting all occurrences of x is fine -- there can only be at most one
occurrence. For Bag-delete, we can walk down the bag and quit when any element is seen to be
alphabet ically-g reate r-tban x. These speed-upsi are the reason for maintaining four separate hind of deletion
operations.
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Appendix 2.1.19 Bag-Delete

Name(s): Bag-Delete, Bag Deletion, sometimes: Delete;
Definitions:

Recursive Slow: X. (x,A,B) (AmO and B=O, or else (Au(x...) and BuCDR(A),
or else Bag-delete.Dofn(x,CDR(A),CDR(B).

Quick: BaBag-Delete.Algs(x,A).
Domain/range: (Anything, Bags -- Bags>
Algorithms:

Non-recursive quick opaque20: X (x,A) [z-(MEMBER(x,A);
RPLACA(z,CADR(z)); RPLACD(z,CDDR(Z))]

Recursive: ) (x,A) (if AsO then 0, else If CAR(A)sx then CDR(A), else
CONS (CAR(A),Bag-Delete.Aig(x,CDR(A)))). ,

Generalizations: Delete
Worth: 100
What: remove one copy of x from the Bag A, if x was int there initially.

Apendix 2.1.20 List-Delete

Name(s): List-Delete, List Deletion, sometimes: Delete;
Definitions:

Recursive Slow: X (x,A,B) (Au<> and B<, or else CAR(A).x and CDR(A).B,
or else List-delete.Defn(x,COR(A),COR(B).

Quick: BaList-Delete.Algs(x,A).
Domain/range: <Anything, Lists -+ Lists>
Algorithms:

Non-recursive quick opaque: . (x,A) FRPLACD(z-(MEMBER(x,A),CDDR(Z))
Recursive: X (x,A) (if Aso then 0, else if CAR(A)sx then CDR(A), else

CONS (CAR(A),List-Delete.Alg(x,CDR(A)))).
Generalizations: Delete
Worth: 100
What: remove the first copy of x from the List A, if x is in A.

20 This algorithm is labelled Opaque because it contains very tight 'sneaky' code, implementing a highly non-standard linked

data structure deletion algorithm. The call on the Interlisp function MEMBER binds z to the tail of A,
beginning with the first occurrence of x.

%K.-~~:..,:*:
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Appendix 2.1.21 Oset-Delete

Name(s): Oset-Delete, Oset Deletion, sometimes: Delete;
Definitions:

Recursive Slow: X (x,A,B) (A4]j and Br[], or else CAR(A)=x and CDR(A)-6,
or else Oset-dlte.Dfn(x,CDR(A),CDR(B)

Recursive Slow: X (x,A,B) (A=[] and B=[], or else Ac[xJ and Bz[J, or else:
[AND: z4-Member.Alg(A) until zjx; Member.Defn(z,B);

Set-Delete.Defn(x,Set-delete.Alg(z,A),Set-delete.Alg(z,B)) ]
Necessary Quick: XMx,A,B) (CAR(A)nCAR(S) xor CAR(A)ax).

4 Quick: BnOset-Deete.Ags(x,A).
Domain/range: [Anything, Osets -+ Osets]
Algorithms:

Non-recursive quick opaque: X (x,A) DREMOVENxA).
Non-recursive quick opaque: X (x,A) FRPLACD (z+- (MEMBER (x,A),CDDR(z))
Recursive: X (x,A) (if As[] then [], else if CAR(A)sx then CDR(A), else

CONS (CAR (A),Oset-D9lete.Ag(x,CDR (A)))).
4W. Non-recursive quick: X (x,A) (if NOT(Member.Defn(x,A)) then A,

else DREMOVE(x,A)))
Non-recursive quick: X~ (x,A) DREMOVE(x,A)
Recursive: X (x,A) (if Ax[] then [], else if Au[x] then [], else

[24-CARCA); if z-x then CDR(A), else
if z>x then A, else Os6.-D9let.AIZ(x,CDR(A)))]).

Generalizations: Delete
Worth: 100
What: remove the element x from the Oset A, if it's present there initially.

_Z-Zp:
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5 Appendix 2.1.22 Intersect

Name(s): Intersect, Intersection, sometimes: Product;
Definitions:

Quasi -recurs ivi\c asez X (A,B,C) [determine the type of structure A and
8 are, say S, then us* S-Intersect.Dofn(A,B,C)].

Slow: X (A,B,C) LIst-intersect.Oefn(A,B,C)
Necessary, Nonrecursive: X~ (ABC) Member.Defn(x,C) iff

Member.Dofn(x,A) and Momber.Defn(x,B).
Quick: Calntersoct.Algs(A,R).

Domain/range: (Structures Structures -+ Structures>
Algorithms:

Quasi-recursive cases: X (A,6) [determine the type of structure A and 0 are,
saly S,21 then use S-lntersect.Algs(A,BJ].

r Slow: X (A,B) List-lntersoctAlgs(A,B).
Isa's: Operation
Specializations: Set-Intersect, Bag-intersect, List-intersect, Oset-intersect.
Worth: 100

-Appendix 2.1.23 List-Intersect

S Name(s): List-Intersect, List-Intersection, sometimes: Intersect.
Definitions:

Recursive slow: X (A,BC) if Au() then Cu<), ele
If Member.Dofn(CAR(A),S) then [CAR(A)sCAR(C) and
List-intersect.Defn(CDR(A),List-delet.Ag(CAR(A),B),CDR(C))] eile
List-intersect.Def n(CDR(A),B,C).

Quick: CoList-lntorsect.Algs(A,B).
DomaIn/range: (Lists Lists -4 Lists>
Algorithms:

Non-recursive: X (A,B) (for each x in A (in order), do the following:
if Member.Dofn(x,B) then Llst-dlelto.Alg(x,B), else List-deloto.Alg(x,A).
Finally, return the value of 'A' as the result.

Recursive: X (A,B) if Au<> then O, else if Memiber.Defn(CAR(A),B)
then CONS (CAR(A),Lst-intersect.Alg(CDR(A),List-delete.Alg(CAR(A),B))),
else -List-interset.Alg(CI)R(A),B).

Generalizations: Intersect
Worth: 100
What: Move along list A. Remove it (once) from B if it's there, else from A. Return A.

21 -S might be 'Sets', or S can be 'Lists', etc.
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Appendix 2.1.24 Oset-Intersect

Naes:Oset-Intersect, Oset-Intersection, sometimes: Intersect.

Recur~osive 22 :X (A,B,C) if A--[ then Cs[], else
if CAR(A )( 3E, then (CAR(A)aCAR(C) and
Oset-intersect.Def n(CDR(A),Oset-d@let.Ag (CAR (A),B),CDR(C))J, else
Oset-intersect.DfnCDR(A),B,C).

Quick: CzOset-lntersect.Algs(A,B).
Once Early Quick Opaque: X (A,B,C) if B is shorter than A,

then Oset-intersect.Defn(B,A,C).
Domain/range: <Osets Osets - Osets>
Algorithms:

Once Early Quick Opaque:. X (A,B) if B is shorter than A,
then Oset-intersect.Alg(B,A).

Non-recursive: X (A,B) [for each x in A (in order), do the following:
if x-EB then DREMOVE(x,A). Finally, return the value of A.

i 'Yon-recursive: X (A,B) [for each x in A (in order), do the following:
V" if x(B then Oset-delete.Alg(x,B), alse Oset-detlete.Alg(x,A).

Finally, return the valuei of 'A' as the result.
Recursive: X (A,B) if As[] then [], else if CAR(A)XB

then CONS (CAR(A),Ost-intersect.Alg(CDR(A),st-delete.Alg(CAR(A),B))),
else Oset-intersect.Alg(CDR(A),B).

Generalizations: Intersect
Worth: 100

_Nil What: Move along Oset A, eliminating elements not found in Oset A.

22The difference between this definition and the similar one for List-intersect is that here we can use the very fast
DREMOVE algorithm stored in 9st-Delete Al, whereas for lists it was necessary to use a slow List-delete

W algorithm.
23To save space, we may henceforth write 'xEWI to mean 'Msmber.Defn(x,B)'.
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Appendix 2.1.25 Set-Intersect

Name(s): Set-Intersect, Set-Intersection, sometimes: Intersect.
Definitions:

Once Early Quick Opaque: X (A,B,C) if B is shorter than A,
then Set-intersect.Defni(I,A,C).

-' Recursive: X (A,B,C) if As() then Cal), else
z'-Somne-memb.Alg(A);
If Member.Defn(z,B)
then [Member.Defn(z,C) and Set-intersect.DOfn(Set-delete.Ag(z,A),

Set-delat.Alg(z,B),
Sot-delet.AIg(z,C))J

else Set-intersect.Defn(Set-delet.Alg(z,A),5,C).
Nonrecursive Declarative: For all x, x(C iff O(A and O(B.
Quick: CuSot-lntersect.AIgs(A,B).

Domain/range: (Sets Sets -+ Sets>
Algorithms:

Once Early Quick Opaque: X (A,B) if B ic shorter than A,
then Set- into rsect.Alg(B,A).

Non-recursive: X~ (A,B) [for each x in A, do the following:
if x,(13 then DREMOVE(x,A). Finally, return the value of A.

Recursive: X~ (A.8) if As() then 1), else if CAR(A)(B
then CONS (CAR(A),St-intersect.Alg(CDR(A),St-delete.Aig(CAR(A),B))),
olsm Set-intersect.Alg(CDR(A),B).

Generalizations: Intersect
Worth: 100
WI-t: Eliminate any elements of Set A which are absent from Sot B.
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Appendix 2.1.26 Bag-Intersect

Name(s): Bag-Intersect, Bag-intersection, sometimes: Intersect.
Definitions:

Once Early Quick Opaque: X~ (AIBC) if B is shortir than A,
then Bag-intersect.Defn(B,A,C).

Recursive: k (A,B,C) if Aru() then CuO), else
z4-CAr(A); If Member.Oefn(z,B) then [Member.Defn(z,C) and
Bag-intersect.Defn(CDR(A),Bag-delete.Aig(z,B),Bag-delete.Aig(z,C))]
else Bag-intersect.Defn(CDR(A),B,C).

Quick: CuBag-Intersect.AIgs(A,B).
Domain/range: (Bags Bags -4 Bags>
Algorithms:

Once Early Quick Opaque: X (A,B) if B is shorter than A,
then Bag-intersect.Alg(B,A).

Non-recursive: k (A,B) [for each x in A, do the following:
if x(B then B'-Bag.delete.Alg(x,B), else A'-Bag-dealete.Alg(x,A).
Finally, return the value of A.

Generalizations: Intersect
Worth: 100

* What: the intersection of bags A and 8 should contain all common elements,
* with each element occurring the mrinimum number of times it occurs in A or B.

Appendix 2.1.27 Union

Namne(s): Union, Join, Unite, sometimes: Combine, Append, Sum.
Definitions:

Quasi-recursive cases: X (A,B,C) [determine the type of structure A and
V B are, say S, then use S-Union.Defn(A,B,C)J.

Necessary, Nonrecursive: k (ABC) For all x, x(C itt x(A or x(B
Quick: CrUnion.Aigs(A,B).

Domain/rangea: <Structures Structures -. Structures>
Algorithms:

Quasi-recursive cases: X. (A,B) [determine the type of structure A and B are,
say S, 24 then use S-Union.Algs(A,B)].

Quasi-recursive cases: k (A,8) [determine the type of structure A and B are,
say S, then do S-insert.Alg (CAR (A),Union(CDR(A),B))J.

Isa's: Operation
Specializations: Set-Union, Bag-Union, List-Union, Oset-Union.
Worth: 100

* ~.24 S might be 'Sets', 0r S can be 'Lists', etc.

..........................................J * .. ~
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Appendix 2.1.28 List-Union

Name(c): List-U'iion, Append, Nconc, List-join, sometimes: Union.
Definitions:

Recursive %. :w: X (A,B,C) if Au(> then CmB, else
CARCO)CAR(C) and List-union.Defn(CDR(A),B,CDR(C)).

Quick: CaList-IVnion.Algs(A,B).
Doma&In/range: <Lists ists -4 Lists>
Algorithms:

Nonrecursive, Quick, Non-destructive, Opaque: X (A,B) (APPEND A B).
Nonrecursive, Quick, Destructive, Opaque: X~ (A,B) (NCONC A B).
Recursive: X. (A,B) if Ar<> then B, else

CONS (CAR (A),List-Union.Alg (CDR(A),B)).
Generalizajtions: Union
Worth: 100
What: Append list B to the end of list A.

Apendix 2.1.29 Oset-Union
Naos:Oset-Union, Oset-join, sometimes: Union, Append.

Definitions:
Recursive slow: X~ (A,B,C) if Am[) then CmB,

else CAR(A)CAR(C) and
Oset-union.Dafn[COR(A),

Oset-dalete.Alg(CAR(A),B),
Oset-dolte.Alg(CAR(A),C)].

Quick: CxOsot-Union.Algs(A,B).
Domain/range: <Osets Osets -+ Osets>
Algorithms:

Nonrecursive, Quick, Non-deostructive, Opaque: X. (A,B) (APPEND A B).
Nonrecursive, Quick, Destructive, Opaque: X. (A,9) (NCQNC A 8).
Recursive: X. (A,8) if Amfl then B, else

CONS (CAR(A),Ot-Union.Alg(CDR(A),Ost-dlete.Alg(CAR(A),8))).
Generalization.: Union
Worth: 100
What:, Append onto Oset A any new members of Oset B.
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Appendix 2.1.30 Set-Union

Name(s): Set-Union, Set-join, sometimes: Union, Append.
Definitions:

. 4 1 Nonrecursive Declarative-. X (A,B,C.) Vx, x(C iff x(A or x(B.
Recursive slow: X. (A,B,C) if Anil then CsB, else CAR(A)(C and

Set-union.Dofn(CDR(A),

Quick: CuSet-Union.Algs(A,B).
Domain/range: <Sets Sets -# Sets>

Nonrecursive, Quick, Destructive, Opaque: X. (A,B) (UNION A B).
Nonrecursive, Quick, Non-destructive, Opaque: X (A,6)

(Self-intersect (APPEND A 13)).
Recursive. X (A,8) if Axi) then B, else

Set-insert.Alg (CAR (A),Set-Union.Alg (CDR (A),Set-delete.Alg (CAR(A),B))).
Recursive: ;k (A,(J) if Axil then B, else

MERGE (CAR (A),Set-UnIon.Alg(CDR (A),DREMOVE(CAR(A),B))).
Gone ralizaticns: Union
Worth: 100
What: Merge into Set A any new membars of Set 15.

Appendix 2.1.31 Bag-Union

Defniios: Ba-noBag-join, sometimes: Union, Append.

Recursive slow: X~ (A,B,C) if At() then CzB, else CAR(A)(C and
Bag-union.Dafn(

Bag-delete.Alg(CAR(A),A), 25

Bag-delet.Alg(CAR(A),B),
- .~ Bag-delete.Alg(CAR(A),C)).

Quick: CzBag-Union.Algs(A,B).
Domain/range: <Bags Sags 4# Bags>
Algorithms.

Recursive: X (A,B) if As() then B, else
L ag-insert.Alg (CAR(A),B ag-Union.Alg (CDR(A),Bag-d*I-st9.Alg (CAR (A).B))).

Generalizations- Union
Worth: 100

* What: Bag-union(A,B) contains any x belonging to either bag, with multiplicity of x
equal to the maximum of the multiplicity of the element x in A cnd ir, B.

25 Yes, this is really the same as COR(A), and in the other concepts in this appendix the shorter form is the one used.
Here, we decided to shiow the nice, symrne'ric form that AM actually contains.
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Appendix .1.32 Difference

Name(s): Difference, Structure-differenct,, -ometimes: Minus, Subtract, Complement.
Definitions:

Quasi-recursive cases: X (A,B,C) [determine the type of structure A and
B are, say S, then use S-Diff.Defn(A,B,C)].

Necessary, Nonrecurrsive: X (A,B,C) For all x, x(C iff x(A and -x(B
Quick: C.Difference.Algs(A,B).

Domain/range: <Structures Structures -. Structures>
Algorithms:

Quasi-recursive cases: ) (A,B) [determine the typo of structure A and B are,
say S, then use S-Diff.Algs(A,B)].

Quasi-recursive cases: X (A,B) [determine the type of structure A and B are,
say S, then do S-delete.AIg(CAR(B),Difference(A,CDR(B)))].

Isa's: Operation
Specializations: Set-Diff, Bag-Diff, List-Diff, Oset-Diff.

Worth: 100

Appendix 2.1.35 List-Diff

Name(s): List-Difference, List-diff.
Definitionas

UI Recursive slow: ). (A,B,C) if AsO then CO, else
If CAR(A)(B then List-Diff.Dafn(CDR(A),List-delete.Alg(CAR(A),B),C),
else CAR(A).CAR(C) and LIst-Diff.Defn,(CDR(A),B,CDR(C)).

Quick: C.List-Diff.Algs(A,B).
Domain/range: <Lists Lists -4 Lists)
Algorithms:

Nonrecursive: X. (A,B) for x in A (in order), if x Is in B,
then use List-delete to remove -n x from A end B.

Recursive: X (A,B) if Au<> then <, else
If CAR(A)(B then List-Diff.Alg(CDR(A),Lit-delete.Alg(CAR(A),B))I
else CONS (CAR(A),List-Diff.AIg(CDR(A),B)).

Generalizations: Difference
Worth: 100

V What: Move x along A. If x is also in B, remove it from A and from B.
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Agp.endix 2.1.34 Oset-Diff-

Name(s): Oset-Difference, Oset-diff.I
Definition%,

Recursive slow: X.. (A,3,0) if Am[] then Cc[], else
If CAR(A)(8 then Obetif f.Def n(CDR(A),Oset-delete.Alg (CAR (A),B),C),
else CAR(AKuAR(C) and Oset-DiffDefn(CDR(A),B,CDR(C)).

Quick: CsOset-Diff.Algs(A,B).
Domain/roenge: <Osets Osets -4 Osets>
Algorithms:

Nonrecursive: X~ (A,B) for x in A, if x is in B, then remove x from A and B.
Recursive: X (A,8) if As[] then [], else

If C0AR(A )(B then Oset-Dif f.Alg (CDR (A),Oset-d9lete.Alg(CAR(A),B)),
else CONS (CAR (A),Oset-Dif f.Alg (CDR (A),B).

Recursive: X (AIB) if Ax[] then Ql, else
If CAR(A)(B then Oset-Diff.Alg(CDR(A),B),
else CONS (CAR(A),Oset-Diff.Alg(CDR(A),B)).

Generalizations: Difference
Worth: 100
What: Moving along A, when an element also in B is encountered,

use Oset-delete to remove it from A and from B.

Apndix 2.1.35 Set-Diff

Name(s): Set-Difference, Set-dliff.
Definitions:

Recursive slow: X (A,B,C) if A-1) then Cc(), elso
If CAR(A)( then Set-Diff.Oefn(CDR(A),Set-delete.Alg(CAR(A),B),C),
else CAR(A)sCAR(C) and Set-Diff.Defn(CDR(A),B,COR(C)).

Quick: CuSet-Diff.Algs(A,B).
Declarative Nonrecursiva.: *, (A,B,C) Yx, x(C if f x(A and -.09.

Domain/rango: (Sets Sets -4 Sets)
Algorithms:

Nonrecursivei: X. (A,B) for x in A, if x is in 8, ther, remove x from A and B.
Recursive: X (A,B) if At() then 1,1, else

If CAR(A)( then Set-Diff.Alg(CDR(A),Set-delete.Alg(CAR(A),B)),
else CONS (CAR(A),Set-Diff.Alg(CDR(A),B)).

Recursive: X (A,B) if Axi) then J), else
If CAR(A)(B then Set-Diff.Alg(CDR(A),6),
else CONS (CAR(A),Sot-Dif f.Alg(CDR(A),B)).

Generalizations: Difference
Worth: 100
What: Members of set A which are not in Set S.
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Appendix 2.1.36 Bag-Diff

Name(s): Sag-Difference, Bag-dill.
Definitions:

Recursive slow: X. (A,B,C) if A'() then CaO, else
If CAR(A)(B then Bag-Diff.Defn(CDR(A),Bag-delete.Alg(CAR(A),B),C),3 elIse CAR(A)CAR(C) and Bag-Diff.Defn(CDR(A),B,CDR(C)).

Quick~: CaBag-Diff.Algs(AB).
Domain/range: <Bags Bags -4 Bags)
Algorithms:

V Nonrecuwsive: X (AID) for x in A, if x is in B, then remove an x from A and B.
Recursive: X (A,B) if Aso) then (), else

If CAR(A)(B then Bag-Diff.Alg(COR(A),Bag-delete.Alg(CAR(A),B)),
else CONS (CAR (A),Bag-0iff.Alg(CDR (A),B)).

Recursive: X (A,6) If So() then A, else
If CANSO)( then Bat-diff.Alg(Bag-delete.Alg(CAR4B),A),CDR(B)),

F,. else Bag-diff.Alg(A,CDR(9)).
I Generalizations: Difference

Worth: 100
What: Move, x along Sag B, remo-ving one copy of each x from Bag A.

L2:-.
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Appendix 2.1.37 Coalesce

Name(s): Coalesce, Self-apply, Condense, Collapse, Argument coincidence.
Definitions:

Declarative slow: X (F,G) The domain of G has been collapsed, compared to F's,
by the removal of one domain component 0, and an algorithm for G
is just a call on F, with two arguements the same. The only constraint
on this situation is that the domain component from which

duplicate argument is drawn Is itself a specialization of D0.26
Necessary, quick: X. (F,G) The length of each Domain/range entry for

F Is one larger than the length of each entry on G.Dom/range.
Necessary, quick: X (F,G) The range of both F and G are equal.
Sufficient, slow: X. (F,G) Are-equivalent(G,CoalesceAlgs(F)).
Sufficient, quick: X~ (F,G) G.Coalesce.Algi(F).

Domain/range: (Active -# Active>
<Operation -. Operation>
<predicate -~Predicate>

* Algorithms:
Distributed: use the heuristics attached t.- Coalesce to guide the tiffing

in of various facets of the new Coalesced concept.
Generalizations: Operation
Isa's: Operation
Worth: 300
Fillin: 4 heuristics.
Check: 1 heuristic.
Suggest: 2 heuristics.

~.0me examples of this. (W Coolesce.Dsfn(TIMESSquare), because TIMES Domain/range contains <Nvm~,,r Number -i
Number> end Square.Domain/range contains (Number 4 Number>, and a definition of Square it, 'Ti.-,e*(x,x)',
and clearly Number it a specialization of Number (a vacuous specialization). So Square is z~ uoazascmd fnrin
of TIMES. 00i Coolesce.Def n(InsertSelf -insert), where the l10tr concept is defined as lnssrt(S,ZJ. Tho
domain of Insert is Anything x Structure; the domain of the new operation is just Structure. This p A:408
Coslesce.Defn because Structure is a specialization of Anything: if we can insert ANYTHING into a structure,
then certainly it is permissable to insert a STRUCTURE into a structure. (iii)
Coalesce.Def n(EqualityConstant-T) because Equality is raf lexive (xex always).

~4*7
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Appenix 2.1.36 Canonize

t~. Name(s): Canonize, Canonicalize, Standardize, sometimes: normalize.
Definitions:

Slow: X. (P1,P2,F) PI and P2 are predicates over AxA,
and F is at% operation from A to A,
and (Vx,y(A) P1 (x,y) itt P2(F(x),F(y)).27

Sufficient, slow: Are -equivaleant (F,Cananize.Algs.(P 1,P2)).
Sufficient, quick: FzCanonize.Algs(PI ,P2).

Domain/range: <Predicate, Predicate 4 Operation>
Algorithms:

Distributed: use the heuristics attached to Canonize to guide the filling

711- in of various facets of the new canonization.
Generalizations: Operation
Isa's: Operation
Worth: 200
Fillin:. 6 heuristics.
Suggest: 5 heuristics.

LA ~ Some eapsofthis. (1) PI.Some-iongth, P24usliaty, F.Length, A-List.(ii)P I -Revsrsed-at-top-Iloes1, P2.Roversod.

FaHosh-esch-sisment, A-Lists. (iv) Pt .Congruent-Irisngles, P2.denticolly-eqlual, F.Translate-ond-rotsto-to-
stendard-position, A-Triangles. The typical use for the concept is: given P2, find PI and F. Or: given P I and
P2, find F.

% ~-.-* - -
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Appendix 2.1.39 Parallel-rephlcd2

Name(s): Parallel-replace2, Map-replac*2, Parallel -substitute.
Definitions:

-. Quick: GuParalIel-Replace2.AIgs(S I,S2,F).
Domain/range: (Type-of -structure Type-of -structure Operation -4 Operation>
Algorithms:

Nonrecursive: X (SI,S2,F,G) G is an operation whose domain is SIxS2 and
whose range is Range(F). For any siructures sl(SI, s2(S2,
G(sI,s2) is compute by replacing each element x of si by the
value of F(x,s2). Notice this means that F must be an operation
with a domain/range entry of the form (D S2 --* R>, where R is
unconstrained, but 0 is either 'Anything' or -- if SI is
of the form 'Structure-of-E's' -- E.

Non-recursive quick: X~ (SI,S2,F) if F(x,y) doesn't depend on y,
then just do Parallel-replace.Algi(S1,F).

Specializations: Parallel-replace
Isa's: Operation
Worth: 100
What: create a new operation, which takes 2 structures S I and S2, and replaces 68ad

member x of SI by F(x,S2).

Appendix 2.1.40 Parallel-replace

Name(s): Parallel -replace, Map-replace, Parallel-substitute, MAPCAR.
Definitions:

Quick: X (SI,F,G) G=Parallel-Replace.Algs(S1,F).
Domain/rangei: <Type-of -structure Operation -4 Operation>
Algorithms:

Nonrecursive: % (SI,F,G) G is an operation whose domain is SI and
whose range is Range(F). For any structuve slISI,
G(sl) is computed by replacing each element x of sl by the
value of FWx. Notice this means that F must be an operation
with a domain/range entry of the form <0 -+ R>, where R is
unconstrained, but D is either 'Anything' or -- if SI is
of the form 'Structure-of-E's' -- E.

Generalizations: Parallol-replace2
Worth: 100

* J Sugg: 2 heuristics. 28

What: create a new operation, which takes a structures SI, and replaces each
member x of SI by F(x).

*29

28These actually deal with substitution operations, the RESULTS of applying Parallel- replace and Parallml-reptace2.
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Appendix 2.1.41 Repeat2

Name(s): Ripat2, Map-rapoat2, ltorate2, Map2, MAP2CONC.
Definitions:

Quick: X (SI ,S2,F,G) GvRepeat2.Algs(S I,S2,F).
Domain/range: (Type-of -structure Type -of -structure Operation -. Operation)
Algorithms:

Nonrecursive: X (SI.S2,F GsRepoat2(SI,S2,F) is an operation whose
domain is SlxS2 and whose range is Range(F).
For any structures sIESI, s2(S2,
G(sI,s2) is computed by the following algorithm:

y+-CAR(s1 ); s14-CDR(s1);
while si do: y.-F(y,s2,CAR(sl)); sli-CDR(sl);
Finally, retlurn y.

Notice this means that F must be an operation whose domain/range
has the form 0.1 S2 sI -. sI>.

-- 4 Non-recursive quick: X (Sl,S2,F) if F(x,y,z) doesn't depend on z,
then jLust do Ropoat.Algs(S1,F).

Specializations: Rope,'
loo's: Operation
Worth: 100
What: create a new operation, which takes 2 structures S I and S2, and repeats

F(x,y,et2) along the members x,y of S I.

Appendix 2..42 Repeat

Name(s): Repeat, Map, Iterate, Sequence.
Definitions:

Quick: X (SI,F,G) GaRepeat.Algs(SI,F).
Domain/range: <Type -of -structure, Operation 4 Operation>
Algorithms:

Nonrocursive: X (SI,F) Repoat(S1,F)sG is an operation whose domain
is SI and whose range is Rangs(F). For any structure sl(SI,
G(sl) is computed by the following algorithm:

y4-CAR(s I); slI.-CDR(s I);
while ii do: y4-F(y,CAR(oI));, h14-CDR(sl)l
Finally, return y.

Notice this means that F must be an operation whose domainlrange
has the form 4<si sI-# sI>.

General izations: Repeat2
Worth: 100
What: create a new operation which repeats F all the way along an S1,
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Appendix 2.1.43 Parallel-join2

Name(s): Parallel-join2, Map-join2, Parallel-union2, MAP2CONC.
Defiitions:

Quick: ) (SI ,S2,F,G) GzParallel-join2.Algs(S I,S2,F).
Domain/range: <Type-of-structure Type-of -structure Operation -4 Operation>
Algorithms:

Nonrecursive: X (SI,S2,F,G) G is an operation whose domain is S1x$2 and
whose range is Range(F). For any structures sl(SI, s2(S2,
G(sl,s2) is compute by appending together the va;ues of F(x,s2),

r ~.* I for each element x in sI. So F has to be an operation
-' with a domain/range entry of the form <D S2 - R>, where R is

a type of structure, but D is either 'Anything' or -- if SI is
of the form 'Structure-of-E's' -- E.

Non-recursive quick: X (SI,S2,F) if F(x,y) doesn't depend on y,
then just do Parallel-join.Algs(SI,F).

Specializations: Parallel-join
Isa's: Operation
Worth: 100
What: create a new operation, which takes 2 structures SI and S2, and joins

together F(x,s2) for each member x of SI.

Appendix 2.1.44 Parallel-join

Name(s): Parallel-join, Map-join, Parallel-union, MAPAPPEND, MAPCONC.
Definitions:

Quick: X (SI ,F,G) GaParallel-join.Algs(S I,F).
Domain/range: <Type-of-structure Operation -+ Operation>
Algorithms:

Nonrecursive: X (SI,F,G) G is an operation whose domain is SI and
whose range is Range(F). For any structure sIl(SI,
G(sl) is computed by appending together the values of F(x),

i.*12 for each x(sl. Notice this means that F must be an operation
with a domain/range entry of the form <D -- R>, where R is
a type of structure, and D is either 'Anything' or -- if SI is
of the form 'Structure-of-E's' -- E.

Generalizations: Parallel-join2
Worth: 100
What: create a new operation, which takes a structure SI, and joins together

* F of each member of S.

ii-:7

,p.-
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Appendix 2.1.45 Reyerse-ord-pair

Name(s): Reversei-ordl-pair, Revorie ordered pair, Switch CAR and CADR.
Definitions.,

Nonrecursive quick: X (P,Q) First.Alg(P)rFinaI.Alg(Q),
and Final.Alg(P)sFirst.Alg(Q).

Quick: X (P,Q) QsReverse-ord-pair.Algo(P).
Domainf range: (Ordered-pair -4 Ordered-pair>
Algorithms:

X Nonrecursive: X (P) Q4-P; First.Alg(Q,Final.Alg(p)) 29; Final.Alg(Q,Flrst.Alg(P)); Q.
Nonrecursive quick opaque, nondestructive: X (P) LIST(CADR(P),CAR(P).
Nonrecursive quick opaque, destructive: X (P) z4-Last-ele(P);

FRPLACA (CDR (P),CAR(P)); FRPLACA(P,z); P.
Nonrecursive quick opaque, nondestructive: X (P) REVERSE(P).
Nonrecursive quick opaque, destructive: X~ (P) DREVERSE(P).

Isa's: Operation
Worth: 100
What: turn the ordered pair <x,y> into the ordered pair <y,x>.

_jpendix 2.1.46 Last- em .

Name(s): Lost-element, Final member.
Definitions:

Recursive: X~ (Six) r-First-slement.Alg(S), and S4-Plete.Alg(zS),
and if Empty-struc.Dofn(S) then xsz, ese Last-@lement.Defn(S,x).

Quick: X~ (Six) xisLast-slement.Algs(S).
Domain/range: <Ordered-structure -4 Anything>
Algorithms:

Recursive: X (S) zoFirst-lement.Alg(S), and S'-Deletal.Alg(z,S),
and if Empty-strue.Defn(S) then z, alse Lost-element.Alg(S).

Nonrecursive quick opaque: % (S) CAR(LAST(S)).
Isa's: Operation
Worth.- 100

3What: find th-. flanal member of the ordered structure 0?0

29The expression First AI*(A,x) will result in a RPLACA: the first element of A will be removed, and in its place x will
appear, Thur. First Alg(.ca b c 6o, a) will return as its value the new list <z b c d0.

30Actually, this concept is much more sophisticated. If Last-elemnent.Algs is called with TWO arguments, S and v, then the
intention is taken to be to REPLACE the last element of S by the elem-)nt v. Thus that last element is
deleted, and v is added at the enid of S. This is done by: FRPLACA(LASI(S),V). To review; Last-
el~ment.Alg(A,x) resets the final member of A to x, while Last-element DfN(A,x) merealy tests whether the
lest member of A is x.
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Appendix 2.1.47 First-element

Name(s): First-element, Initial member, Head, Front element, CAR.
Definitions:

Recursive: X (Six) :e-Last-olement.Alg(S), and So-Delete-Alg(z,S),
and if Empty-strue.Defn(S) then xsz, else First-element.Defn(Siix).

Quick: X (SMx xal'irst-element.Algi(S).
Domain/range: <Ordered-structure -4 Anything>
Algorithms:

Recursive: X. (S) z..Last-slement.Alg(S), and S#-Dslete.Alg(z,S),
and if Empty-struc.Defn(S) then z, else First-element.Aig(S).

N Nonrecursive, very quick, opaque: X (S) CAR(S.
Isa's.: Operation
Worth: 100
What: find the initial member of the ordered structure S.31

Appeydix 2.1.48 All-but-the-first-elemenit

Name(s): Rear, All but the first element, All-but-first, CDR, Tail, sometimes: back.
Definitions:

Nonrecursive:t X (S,R) List-delet.Dsfn(CAR(S),S,R).
Nonrecjrsive: X. (S,R) List-lnsert.Dsfn(CAR(S),R,S).
Nonrecurslvoi X (S,R) CDR(S).R.
Quick: X (S,R) RnRear.Algs(S).

Domain/range: (Ordered-structurea -# Ordered-structure>
Algorithms:

Nonrecursives, very quick, opaque: X (S) COR(S)
Nonrecursive: X (S) iii-First-eile.Alg(S); List-deliste.Algs(zS).

Isa's: Operation
Worth: 100
What: remove th. initial member of the ordered structure S.

31 Actually, this operatso'es algorithm, if fed two arguments S and v, will replace the first element of S by v, using
FRPLACA(Sv). So this single concept contains both CAR and FRPLACA knowledge. This is not shown
explicitly in the entries for Firet-elementAlgs.
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Appendix 2.1.49 All-but-the-last-element

Name(s): All-but-the-last-element, All-but-last, sometimes: front.
Definitions:

Quick: X (S,R) RuAII-but-last.Algs(S).
Domain/range: <Ordered-structure -* Ordered-structure>
Algorithms:

Nonrecursive, very quick, opaque: %~ (S) FRPLACD(LAST(S),NIL).
Isa's: Operation
Worth: 100
What: remove the final element from the ordered structure S.

Appendix 2.1.50 Member

Name(s): Some-element, Random member, Any element of, Member, In, Somea-member.
Definitions:

Recursive: X (x,S) Nonempty-struc.Defn(S) and
if First-*eDefn(Sx) then True,

else Member.Defn(x,All-but-first-ele.Alg(S)).
Nonreicursive quick opaque: X (x,S) MEMBER(x,S)).
Sufficient, very quick, opaque: X (x,S) FMEkIB(x,$))#.
Quick: X (Six) xaMember.Aigs(S).

Domain/range: <Structure -+ Anything>
Algorithms:

Nonrecursive opaque: % (S) CAR(RAND-PERMUTE(S)).
Nonrecurslve, quick opaque: X~ CS) CAR(S)).
Recursive slow: if S is empty then fall, otherwise If Sn(x) then x,

else If RAND(0,1 )a1 then Flrst-ale.Alg(S),
else MemberAlg(AII-but-last.Alg(S)).

Isa's: Operation
Worth: 100
What: find a random member of the structure S.
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Appendix 2.1.51 Projectioni

Name(s): Projectioni, First-argument, Proj 1.
Definitions:

Nonretcursive quick: X (xoy,...) zRX
Quick: X (x,y,...q,z) zvSome-@ement.Ags(x,y,...q).

Domain/range: 0-1) Anything ... Anything -i VD) 32

Algorithms:
Nonrecursive quick: % (x,y,...,q) x.

Isa's: Operation
Specializations: Identity.
Worth: 100
What: accept a bunch of arguments and return the first one.

Appendix 2.1.52 Projection2

Name(s): Projectiom2, Second-argument, Proj2.
Definitions:

Nomrecursive quick: X~ (xIy, ...,1Z) zuy
Quick: k (x~y ...q,z) z:-Some-eement.Ags(x,y....q).

Domain/range: <Anything +,D Anything ... Anything -4 '0'>
Algorithms:

Nonrocursive quick: X (x,y, ... jq) y.
Isa's: Operation
Specializations: Identity.
Worth: 200
What: accept a bunch of arguments and return the second one.

432

32This meant that V0 con be anything, so long as it's the some in both places in the domain/range template. Thus this
inckodoe <Sets Anything Anything -s Sets.

' ' . . .C - . ~ . . . . ..%
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I Appendix .2.1.59 identity

Name(s): Identity, i dent ity-ope ration, no-op, Self, no change.
L~. Definitions:

Nonrecursive: X (x,y) Equality.Defn(x,y)
Nonrecursive transform:- X (x,y) Proji.Dofn(x,x,y)

* - Nonrecursive transform:%) (x,y) Proj2.Defn(x.,:,y)
Sufficient, v~ry quick, opaque: X (x,y) EQ(xy)).

* Quick: X~ (x,y) yaldentity.Algs(O.
Domain/range: <Anything -4 Anything>

<Object -4 Object>
(Structures -4 Structures>
<Active -4 Active>

Algorithms:
Nonrecursive quick: X (x) x.
Nonrocursive transform: X. (x) Projection 1 .A;gs(x,x).
Nonrecursive transform: X (x) Projection2.Algs(x,x).

Conjec: 'Identity, restricted to Objects, Is the same as Obj-Equality.'
Generalizations: Projection!, Projection2.

I Worth: 100
What: the identity operation, closely related to Equality.

Appendix 2.1-54 RestitL

Name(s): Restrict, Constrain the domain/range of an active.
Definitions: 

3Nonrecursive: X~ (F,G) The domain/range of G are more restrictive
than that of F, and G.Defn is just a call on F.Defn.

Sufficient, Quick: X (F,G) GaRestrict.Algs(F).
F: Domain/range: <Active -# Active>

<Operation -4 Operation>
<Predicate -4 Predicate>

r Algorithms:
Distributed: use the heuristics attached to Restrict to guide the filling

!-7, In of various facets of the new Restricted concept.
Plus: an explicit little program for making the substitullion

Isa': Oeraion in the Domain/range facet, which is the essence of this concapt.

Worth: 200H- Fillin: 3 heuristics.

33That is, one (or more) component of the G.Domain/rangs entry is a proper specialization of the corresponding F.Dom/ran
entry, and all the other components match up squally.

pF
I7
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Appendix 2.1.55 Invert-an-operation

Name(s): Invert, Find the inverse of an operation.
Definitions:

Declarative slow: % (F,G) T'te domain of G is the range of F, plus &l; the
domain components of F except one, D; the range of G is then D.
The value of G.Defn(xl,...,r,... d) must be the same as the value
the value of F.Defn(xl,...,d,...,r), for any xl,...,d, and r.

Necessary, quick: X (F,G) The length of each Domain/range entry for
F is the same as the length of each entry on G.Dom/range.

Necessary, quick: X (F,G) Taken as SETS, a domain/range entry from F
and one from G are actually Equal.

Sufficient quick: k (F,G) G has the Name 'F-inverse'.
Quick: X (F,G) Ginvert.Algs(F).

Domain/rainge: <Operation -+ Operation>
<Operation -# Inverted-op>

Algorithms:
Distributed: use the heuristics attached to Invert to guide the filling

in of various facets of the new Inverted Foncept.
Isa's: Operation
Worth: 300
Fillin: I heuristic.
Suggest: I heuristic.

Appendix 2.1.56 Inverted-op

Name(s): Inverted operationinverse, sometimes: converse.
Definitions:

Declarative slow: X (F) For some known operation G, Invert.Defn(G,F).
Necessary, quick: k (F) The range of F is one single known concept.
Sufficient quick: X (F) F has the Name 'G-inverse' for some G.

Generalizations: Operation
In-domain-of: Invert.34

In-range-of: Invert
Worth: 200

This just means that such operations are themselves easily invertable.

" m -. .=. . . . , = m =... . .bm •:. . .. ,m. m,.... . . ,.,
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Appendix 2.1.57 Relation

Name(s): Relation, relationship.
Definitions: none.
Generalizations: Active
Specializations: Logical -combination
Worth: 100
View: To view an operation F ar. a relation, consider it as the set of all ordered

pairs, a subset of Dom(F)xRan(F), containing <x,y> iff F.Dafn(x,y).
NOTE: This concept exists in only rudimentary form~ in AM at the moment.

A ppendix 2.1.58 Logi qal-combination

Name(s): Logical Combination, Boolean relation.
Definitions: none.
Generalizations: Relation.
Examples: Conjoin, Disjoin, Imply, Negate35

Worth: 200
Check: I heuristic
Interest: 3 heuristics
Sugg: 2 houristV'q
NOTE: This com.,pt exists in only rudimentary form in AM at the moment.

35These aren't coded separately as concepts in AM, Yet.
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Appendix 2.1.59 Object

Name(s): Object, static concept, Passive

Specializations: Structure, Atlom-obj, Conecture3

Generalizations: Any-conceapt

Examples: none.
p~s ~isa's: Any-concept

In-dlomain-of: Object-esquality
Worth: 100

'No Aeuristics)39

Appendix 2-1.60 Conjecture

Name(s): Conjecture, Conjec, Hypothesis, Guess, Observation, Thesis, Belief.
* Definitions:

Nonrecursive, Quick: X~ (x) MaIch x with (CONJEC: ... >
Generalizations: Object

I In-domain-of: Prove 39, Disprove, ThatI
In-rangv-c'ef none40

Worth: 2,-.,.

36Recall that all this means is that computat ionsally, any oritity x is considered to be an Object if f it is an example of sonme
Specialization of this concept Thus the list (3 A NIL) is an object, because it is a List, and List is one
Specialization of Structure, ard Structure is a Specialization of Object.

This should be 'Statement', and that concept should have Conjecture as a specialization, along with Theorem, Falsehood,
39 etc. This was never fully implemented in the AM code, however

38The paucity of heuristics here attests to the little that structures, statements, and atoms have in common. They are
merely non-actives. Thorp is much that do*3 not apply to any of them (see the Active and Operation
concepts), but very few rules of thumb applicable to all 3 of them.

At the mo.nent, none of these three concepts is in AM.

Conjectures are produced by heuristic rules, noot mechanically by running some Active concept.
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Appendix 2.1.61 Atom-pbj

Name(s): Atom, Atomic object, sometimes: element.
Definitions:

Nonreicursive, Quick, Opaque: X. (x) ATOM(x)
Specializations: Truth-value, Variable4 l , Identifier.
Generalizations: Object
In-domain-of: UNPACK; NthCH>AR
In-rangei-of: MKATTOM, PACK;
View: To view any structui-e S as an atom, apply PACK to it.

Worth: 100. 42

Appendix 2.1.62 Truth-value

Namea(s): Truth value, Logical constant, T/F, {T,F).
Definitions: none. 43

Examples. True (T,Y,Yes), False (NIL,F,N,No).
Generalizations: Atom-obj
In-domain-of: Negation
In-range-of: all predicate.; the Defn facet of each concept.
View: to view anything x as a truth value, do: X (x) NOT(Equality.Dfn(x,NL)).44

Worth: 100.- I

41Many of the nouns in this box are not implemented as concepts in AM; eg., Variable, Identifier, UNPACK, MKATOM,...

The absence of any heuristics here just emphasizesi the fact that liter, constants, identifiers, variables, T, etc. have very
little in common that ALL objects don't share.

Since no definition is provided, AM never generalized or specialized this concept, lookead for new examples of it, etc.

44Thus, as in Lisp iself, an entity is associated with False iff it is null, and with True iff it is anything elae in the world.

J,
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A "'pedix 2.1.63 Structure

Name(s): Structure, Data-s'-- jjre, sometimes: 45 List-structure.
Definitions:

Necessary, Non-Recursive, Quick, Opaque: X (x) LISTP(x)
Specializations: Ord-struc, Unord-struc, Empty-stric, Non-empty-struc,

Multipe-oIaments-struc, No-multiple-olements-struc, Struc-of-strucs.
Generalizations: Object
In-domain-of: Insert, Delete, Member, Empty, Nonempty, Difference, Union, Intersect,

Parallel -roplace (2), Parallel-join(2), Repeat(2).
In-range-of: Insert, Delete, Difference, Union, Intersect.
View: To view any entity x as a structure, insert x into an empty structure.
Worth: 200
Fillin: 2 heuristics.
Interest: 2 heuristics

Apopendix 2.1.64 Structure-of-Structures

Name(s): Structure-of -structures, struc-of-strucs.
Definitions:

Recursive: X (S) Empty-struc.Dofn(S) or
(Structure.Defn(S) and zo-Member.Alg(S) and Structure.Dofn(z) and

Structure -of -Str uctures.Dof n (Do Ieto.Al go(z,S))].
Declarative PC: X (S) Structure.Dofn(S) and MY(S) Structure.Dafn(x).

~ ~ Specializations: none.46

Generalizations: Structure

Worth: 300

That is, the user might erroneovsly type 'List-structure' when he really man* any kind of structure.

definition of a single type of structure, thereby creating, eg., Bag-of-Sets, List-of-Osets, Bag-of-Primes,
etc. These specialized concepts were then kept around so, e.g., the sample traces in Chapter 6 and in
Appendix 5 sometimes refer to them. Also, this concept and its specializations can be discovered

indeendntl byAMusing huitcrule number 232 (see Appendix 3) to form a new interesting type of
structure.

I.r
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Appendix 2.1.65 -Ord-Structure-

Name(s): Ord-truc, Ordered Structure, sometimes: List-structure.
Definitions: mno
Specializations: Osets, Lists
Generalizations: Structure
In-domain-of: First-oe, Last-ale, All-but-first-olo, All-but-last-e.
In-range-of: All-but-first-ole, AII-but-last-ele.
View: To view any unord-struc as an ord-struc, do nothing to it, or permute it.
Worth: 200
Fillin: 2 heuristics.
Check: 2 heuristics.

Interest: I heuristic

Appendix 2.1.66 Unord-Structure

Name(s): Unoird-struc, Unordered Structure, sometimes: Collection
1.:: Definitions: none

Specializations: Sots, Bags.
Generalizations: Structure
View: To view any ordered-struc as an unord-struc, SORT it.
Worth: 200
Check: I heuristic.

Appendix 2.1.67 Multiple-elements-structure

Name(s): Multiple -elements -structure, Mult-ele-struc, sometimes: Lists.
Definitions: none
Specializations: Lhits, Bxgs
Gene ral izat ions: 'Structure
In-dlomain-of: none. 47

View: To view siny nonmult-struc as a mult-struc, do nothing to it,
or: copy some elements inside it a random number of times.

Worth: 200
f:. Fillin: I heuristic.

47There are many special functions which can only make sense for multiple-eles structures, et., Re move- I-occurre nee (x,S),
versus Remove-all-occurrances(iiS) Such operations have not yet been coded and added to AM.
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Appendix 2.1.68 No-multiple-elements-structure

Name(s): No-Mutple-olements-structure, Nonmult-struc, sometimes: Sets.
Definitions: none
Specializations: Sets, Ordered-sets
Generalizations: Structure
View: To view any inult-struc as a nonmult-struc, eliminate multiple elements.
Worth: 200

Appendix 2Ji.69 Empty-,:ructure
Name(s): Empty-structure, Empty struc, sometimes: phi, NIL.
Definitivns:

Nonrecursive quick opaque: X (x) NULL(x)
Nonrecursive: X. Wx Structure.Dofn(x) and NOT(Member.Alg(x)).

Generalizations: Structure
View: To view any structure as an empty-structure, repeatedly apply Delete.
Worth: 100

Appendix 2.1.70 Nonempty-structure

Naes:Nonempty-structure, Nonempty struc, sometimes: structure
Deinitions:

Nonrecursive quick opaque: X (x) LISTP(x)
Nonrecursive: X~ Wx NOT(NOT(Member.AIg(x))).

Generalizations: Structure
In-range-of: Insert
View: To view any structure as an Nonempty-structure, Insert it into itself.
Worth: 100

0%
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Appendix 2.1.71 Sets

Name(s): Set, Class, Collection
Definitions:

48

Recursive: X (S) (Sal) or Set.Definition (Set-Delete.AIg(Member.AIg(S),S)))
Recursive quick: X (S) (So{) or Set.Definition (CDR(S)))
Quick: X (S) (Match S with {...)

Intuitions: none at preent.49

Specializations: Set-of -structures50

Generalizations: Unordered-Structure, No-multiple-elements-Structure
In-domain-of: Set-union, Set-intersect, Set-difference, Set-insert, Set-delete
In-range-of: Set-union, Set-intersect, Set-difference, Set-insert, Set-delete
View: To view any structure as a Set, do: X (x) Enclose-in-braces(x)

To view any predicate as a Set, do: X (P) S4-{).
Forall x in Examples(Domein(P)): If P(x) then Set-insert.AIg(x,S).

Worth: 400
Sugg: I heuristic.
Interest: I heuristic.

Appendix 2.1.72 Bags

Name(s): Bag, sometimes: Multiset, sometimes: Collection.
Definitions:

Recursie: X (S) (So( ) or Bag.Definition(Bag-delete.AIg(Member.Aig(S),S)))
Recursive quick: X (S) (So() or Bag.Definition (COR(S)))
Quick: X (S) (Match S with ...) )

Specializations: Bag-of-structures5

Generalizations: Unordered-Structura, Multiple-elements-Structure
Worth: 400
In-domain-of: Bag-union, Bag-intersect, Bag-difference, Bag-insert, Bag-delete
In-range-of: Bag-union, Bag-intersect, Bag-difference, Bag-insert, Bag-delete
View: To view any structure as a Bag, do: X. (x) Enclose-ln-parens(x)

A urprising idea, which fell out naturally while designing the entries for the definition facets of Sets, Bags, etc., is that

the differences between these structures is not in their definition so much as in the particular operators
which work on them. Thus all 4 kinds of structures appear to have syntactically similar concepts, even
including their definitions. The reader must examine, eg., the definition of Bag-insert and Set-insert to
discover the real differences between the Set and Bag structures which AM knows about.

49Several nice intuitions were originally provided, then scrapped when ALL intuitions were excised from AM.
50 This concept was synthesized by AM, but was then left 'permanently' in place.
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Appendix 2.1.73 Lists

Name(s): List, List-structure, Vector, Tuple, n-tuple, Sequence, Ordered-bag
Definitions:

Recursive: X (S) (STh > or List.Definition(List-Dulct.Alg,(MembS;x.Al(S),S)))
Recursive quick : (S) (So( or List.Definition (CDR(S)))
Quick: X (S) (Match S with <...> )

% Generalizationst Ordered-Structure, Multiple-elem*nts-Structure

Specializations: Orderd-pairs
Worth: 400
In-domain-of: List-union, List-intersect, List-differenct, List-insert, List-delete.

5 1

In-range-of: List-union, List-intersect, List-different*, List-insert, Lst-delete
View: To view any structure a a List, do: (x) Enclose -itn-hl-brackts (x)

n Appendix 2.1.74 srdered- pair

Nsme(s): Ord-pair, Opair Ordered pair, 2-tuple, sometimes: i/o pair, pair.
Definitions:

:TDeclarative: X (S) There exist x and y such that Sx,y>.
Nonrcursive opaque: List.Definition (S) and CDR(S) and Nul(CDDR(S)).

:Nonrecursve lows (S) List.Definitio(S), and S , and z Member.Al(S),
irstand S-List-dolete.Alg(z,S), and So , and y-Member.Al(S),
and w sst-d elem.Dfn(y,S,0). t

Nonre:ursive quicks X (S) (Match S with (4-x,#-y>)
Generalizetionst Lists
Worth: 200

;..' In-domain-of: Reverse-ord-pair
" In-tene-of: Reverse-ord-pair

View: To view any entity x s an ordered pair, consider the pair (x,x>.
51T View To viw ian wxample of an active concept F as ai orn-pair, construct the

, " pair whose first element is a list of the arguments to F
- ort THE argument to F, if there is only one), and whose

second element is the value of F an those arg(s).
i View: To view an (ordered) structure S as on Opoir, consider the pair whose

• :!, . first element is some member of (the first member of) S, and
,.-. .whose second element is all the remaining, members of S.

*: ""View: Transform the ordered structure (a b ...) into the Opoir (a b) or (a c).

" '-=. 1Thorie are any special functions which car, only mike sense for list$,t, this one: '8etwlsn(x,S)' which returns a list of

all elements lying after the first occurrence of x in S, but before the second occurrence. Such operations
have not yet been coded end added to AM.
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Appendix 2.1.75 Osets

Name(s): Oset, Oset-structuro, Ordered-set, sometimes: Set.
Definitions:

Recursive: X (S) (So[ ] or Oset.Definition(Oset-Delete.Alg(Member.AIg(S),S)))
Recursive quick: X (S) (S-[ or Oset.Definition (CDR(S)))
Quick: X4 (S) (Match S with [...] )

Generalizations: Ordered-Structure, No-multiple-elements-Structure
Worth: 400
In-domain-of: Oset-union, Oset-intersect, Oset-difference, Oset-insert, Oset-delete
In-range-of: Oset-union, Oset-intersect, Oset-difference, Oset-insert, Oset-delete
View: To view any structure as a Oset, do: X, (x) Enclose-in-square-brackets(x)

Appendix 2.2. Concepts never fully implemented

The following concepts were designed "on paper" before AM was coded, but were never put
into AM - at least not fully. Future work on AM may include their coding, insertion into
AM, and debugging. An asterisk () means that a crude, rudimentary version of the
concept was coded and placed in AM, but had little impact on its behavior.

Statement:: would include conjectures, theorems, axioms, hypotheses, conclusions,
relationships.

Prove, Disprove, Proof, Counterexample, Theorem, Techniques for proving existence,
Techniques for establishing universal conjectures,...: altogether about two dozen

concepts were designed.

Mathematical Induction, including double induction.

Mathematical theory, system, basis, foundation, axiom, isomorphism,...

Cause and effect: their relation to theory formation.

Variable, Assignment, Binding, Quantification, Scope,...: a dozen concepts along these lines.

Constant, Identifier, PNAME/P2NAME,...: AM never really needed any non-opaque
information about these, although future expansion of the system should probably
include the coding and insertion of these concepts.

Inverse-coalesce: Given an active concept F(x), replace some occurrences of x in F.Defn
by "y", thereby making a new operation which is a function of x and y.

Negate, Conjoin, Disjoin, Imply,...: These logical operators and relationships had too little
semantic information to make it necessary to encode each one into a concept.

(eo) Constructive, Destructive: these two predicates would judge any operation.

7, N
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(,) Non-concept: All entities which are not concepts. There was nothing to say about them, as
a whole.

7.

4V
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Appendix 2.3. Concepts and Heuristics as coded in LISP

The reader may wish to inspect the actual LISP encoding of concepts and their facets -
including heuristic rules. For that reason, a few pages are excerpted from the AM program
and shown below.

The facets of a concept are stored as properties on its property list. Each facet has a rigid
format that it must adhere to; that format varies from facet to facet.

Two concepts have been selected: Compose, which is larger than the typical concept, and
Ose-strucaure, which is a smaller and simpler concept.

Appendix 2.3.1. The 'Compose' Concept

Here is the property list of the atom "COMPOSE", when AM starts up. The reader should
look for (and find!) parallels between the complete entries below and the abbreviated
summaries on page 178. For that reason, after each entry, the corresponding summary line
is repeated (in a box).

ENGN 52 (COMPOSE Compose Composition (Afterwards))

Appearance on page 178:

Name(s): Compose, Composition, sometimes: afterwards; I

DEFN (TYPE NEC&SUFF PC DECLARATIVE SLOW (FOREACH X IN (DOMAIN BA2)
RETURN (APPLYB 53 BAI ALGS (APPLYB BA2 ALGS X]

DEFN-SUFF [[TYPE SUFFICIENT NONRECURSIVE QUICK
(AND (ISA BAI 'ACTIVE)

(ISA BA2 'ACTIVE)
(ISA BA3 'ACTIVE)
(ARE-EQUIV BA3 (ALREADY-COMPOSED 54 BAl BA2]

[TYPE SUFFICIENT QUASIRECURSIVE SLOW (ARE-EQUIV BA3
(APPLYB 'COMPOSE 'ALGS BAt BA2])5

[TYPE SUFFICIENT QUASIRECURSIVE QUICK (EQUAL BA3
(APPLYB 'COMPOSE 'ALGS BAI BA2]]

Appearance on page 178:

52 This is short for "English name", and is the facet called "Name(s)" everywhere else in this thesis.

The function "APPLYB" indicates that a concept's facet is to be accessed and then executed (APPLYB C F x y...) means:
access an entry on facet F of concept C, and then run it on the arguments x,y,...

This LISP function checks to see whether the two operations have been composed before.

The arguments to Compose.Defn (and to ComposeAlga as will) are cal!ed SAl, BA2,.. Thus we would write etch
definition of Compose as * (BAI GA2 8A3) ..
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-- .. , Definitions
CVelarativai slow: X (A,B,C) Yx, C(x)aA(B(x).
Sufficient Nonrecuruive Quick: X (ABC) C has the Name 'AoB'.
Sufficient, Slow: Ar.-equivalent(C,Comnpos..Algs(A,B)).
Sufficient, Quick: CoCompose.Alge(AB).

D-R (OPERATION ACTIVE OPERATION)
(RELATION RELATION RELATION)
(PREDICATE ACTIVE PREDICATE)
(ACTIVE ACTIVE ACTIVE))

D-R-FILLINI (PROGN (ARGS-ASA COMPOSE Fl F2) (CADAR (CON-MERGE-ARGS 56 F1 F2)))
EXS-D-R-FILLINI (PROGN (ARCS-ASA COMPOSE F1 F2)

[SETQ RANI (LAST (ANY1OF (GETS F1 'D-R] (* RANI is the range of Fl)
[SETQ DOMI (ALL-BUT-LAST (ANYlOF (GETS Fl 'D-RJ
(SETQ RAN2 (LAST (ANY1OF (GETS F2 'D-RJ (* RAN2 is the range of 172)
(SETQ DOM2 (ALL-BUT-LAST (ANYlOF (GETS F2 'D-R]
[SETQ X (MAXIMAL RAN2 DOMI 'FRAC-OVERLAPJ
(NCONC1 (LSUBST DOM2 for X in DOMi) RANI]

Appearance on page 178:

Domain/rang.: <Active Active -+ Active>
<Operation Active -. Operation>
<Predicate Active -Predicate>

(Relation Relation -,Relation>

Fillin: 2 (out of a total of 9) heuristics.
In Appendix 3, these are heuristics numbers 175 and 176.

ALGS ((TYPE QUASIRECURSIVE INDIRECT CASES [PROON
(COND

((NULL BAl)
(APPLYS 'COMPOSE

'ALGS
(RAND-MEMB (EXS 57 ACTIVE))
BA2 BA3 BA4))58

56 This is a LISP function, opaque to AM, which anialyzest the Domain/range facets of the two operations F1 and F2, and
sees how (if at all) the range of Fi can be made to overlap the domain of F2. Note that F2 is applied
AFTER F 1. The LISP code for this function is presented on page 22 1.

T7 he function "EXS' ripples outward from its argument, collecting examples as it go*..
Note what this clause says; if Compose Alits is ever called with its first argument missing, randomly selct an Active to

use as that constituent of the composition.
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((LREADY-COMPOSED BAI BA2) (* Note: this sets GTEMP12) GTEMPI2)
((ND BAI 8A2 (IS-CON' 0 BAt)

(IS-CON BA2)
(ISA BA1 'ACTIVE)
(ISA BA2 'ACTIVE)
(%SETQ GTEMPI 1 (CON-MERGE-ARGS BAl BA2 GTEMPI 2M)

(GTEMP12 is now the nams of the new composition)
(CREATEB 1 GTEMP1 2)
(SETQ GUPI (COND ((SAG CS-B 'COMPOSE) CS-B) (T 'COMPOSE)

(GUPI is now the KIND of concept which GTEMP12 is to be an example of.
This will usually be "COMPOSE" or some variant of it.

(INCRB 2 GTEMPI2 'DEFN
(LIST 'TYPE 'APPLICATION 'OF GUPI
(APPEND (LIST 'APPLYB (Q63 COMPOSE) (Q ALGS) (KWOTE BA1) (KWOTE BAM)

(FIRSTN (LENGTH (CAAR GTEMP1 1)) BA-LIST)
(*Another way to fill in an entry for GTEMPI2.Defn)

(COND
([SETQ GTEMP308 (CAR (SOME (EXS COMPOSE)

(FUNCTION (LAMBDA (C)
(MEMBER (LASTELE (GETB GTEMP12 'DEFN))

(GETB (LASTELE C) 'DEFNJ
(FORGET-CONCEPT GTEMPI 2)
(CPRINIS 8 GTEMP12 turned out to be equivalent to GTEMP308 DCR)64

GTEMP308)
(T (INCRB GUPi 'EXS (NCONCI (GEARGS GUPI) GTEMP12))

[SOME (RIPPLE GUPI 'GENL)
(FUNCTION (LAMBDA (G)

(SOME (GETB G 'D-R)
(FUNCTION (LAMBDA (D)

(AND (ISA BAI (CAR D))
(ISA BA2 (CADR D))
(INCRB GTEMPI 2 'UP's (CADDR D))
(INCRB (CADDR D) 'EXS GTEMPI2J

(This lost INCRB says that if an operation f maps onto range C,
and we apply f and get a new Being, then that Being ISA C)66

(INCRB3 GTEMP12 'IN-RAN-OF GUPi)
(INCRB BA2 'IN-DOM-OF GUPi)

Similar to last case. takes care of missing second argument. The ampersand, "A', indicates an omission from this listing.
60An abbreviation for (APPLYB 'ANY-CONCEPT 'DEFN BAI); is., test whether BlAt is a bons fide concept or not.
SICREATEB is a function which sets up a now blank data structure for a new concept.

62The function call (INCRB C F X) means: add entry X to the F facet of concept C.

63The LISP functson *0* is like a double quote; after one evaluation (0 X) returns %X after one more evaluation, X returns
X; after a final evaluation, we get the VALUE of X

04 A conditional print statement. If the verbosity level is high enough (>9), this message is typed out to the user. Note the
intermixing of variables (eg., "GTEMP3OS") and undefined atoms (eg., 'equivalent"). CPRINIS examines
each argument, and if it is undefined, it quotes it.

-5The ISA's facet is called "UP" in the LISP program.
66 This is a streamlined, specialized version of the more general heuristic rule number 154; see page 259.
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(INCRB BAI 'IN-DOM-OF GUPI)
(Now see if the composition GTEMP12 shares any I$A's entries with

either constituent operation: BAI or 8A2) 7

[MAPC (INTERSECTION (SET-DIFF (UNION (GET8 BAl 'UP) (GETB BA2 'UP)
(GETB GTEMPI ? 'UP)

(FUNCTION (LAMBDA (Z)
(COND

((DEFN Z GTEMPI2)
(INCRB Z 'EXS GTEMP12)
(INCRB GTEMP1 2 'UP Z]

(COND
[(GETB GTEMP12 'UP)

(SETB GTEMP12 'GUP (COPY (GETB GTEMP12 'UP]
(T (INCRB GTEMP12 'UP 'OPERATION)

(INCRB 'OPERATION 'EXS GTEMP12)))
& (* A similar search now for GENL/SPEC of the composition)
(SETs3 QTEMPI 2 'D-R (CAR GTEMP1 J))
(INCRB GTEMP1 2 'ALOS

(LIST 'TYPE 'NONRECURSIVE 'APPLICATION 'OF GUPi (CADR GTEMP1 1))
3 & (* Code for synthesizing a Defn entry for GTEMP12)

(SETB GTEMP12 'WORTH
(MAP2CAR (GET8 BAl I'WORTH) (GETS BA2 'WORTH) 'TIMES 1000))

(GS-CHECK6' GTEMP12]))))

V Appearance on page 178:

Algorithms:
Distributed: use the heuristics attached to Compose to guide the filling

in of various facets of the now composition.
(The heuristics referred to oae shown In Appendix 3.6, on page 263.)

Fillin: 5 (out of a total of 9) heuristics.
Check: 1 heuristic (out of a total of 2)

UP (OPERATION)

Appearancc on page 178:

This next MAPC is thus the LISP encoding of heuristic ruie number 177; see page 263.
68This is a general-purpose function for testing that there is no hidden cycle in the Generalization network, that no two

concepts are both generalizations and specializations of each other, unless they are tolled as being
equivalent to each other.
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WORTH (300)

Appearance on page 178:
[ ' W rth : 3 0 0

INT11 [(IMATRIX (1 2 3) (4 5))
(COND [(INTERSECTION (MAPAPPEND (GETB BA2 'D-R) 'LAST)

(MAPAPPEND (GETB BAI 'D-R) 'ALL-BUT-LAST))
300
(1DIFF 400 (ITIMES 100 (IPLUS (LENGTH (GETB BA1 'D-R))

(LENGTH (GETB BA2 'D-R]
(REASON (* In some interpretation, Range-of-op2 is 1 component of Domain-of-opl)))

(COND ([MEMB [CAR (LAST (CAR (GETB BA2 'D-R]
(ALL-BUT-LAST (CAR (GETB BAI 'D-R]

400
(1DIFF 1000 (ITIMES 100 (LENGTH (CAR (GETB BAl 'D-R]

(REASON (* In canonical interpretation, Range-of-op2 is a component of Domain of opl)))
(COND [(INTERSECTION (GETB CS-B TIES)

(UNION (GETB BAI TIESXGETB BA2 TIES)))
100
(ITIMES 100 [LENGTH (INTERSECTION (GETB CS-B TIES)

(UNION (GETS BAt TIESXGETB BA2 TIES])
(REASON (* This composition preserves some good properties of its constituents))])

(COND [(SET-DIFFERENCE (GETB CS-B TIES)
(UNION (GETB BA1 TIESXGETB BA2 TIES)))

100
(ITIMES 100 [LENGTH (SET-DIFFERENCE (GET8 CS-B TIES)

(UNION (GETB BAl TIESXGETB BA2 TIES])
(REASON (* This composition has some new props, not true of either constituent)))

(COND [(OR (GREATERP (GETB BAI 'WORTH) 500))
(GREATERP (GETB BA2 'WORTH) 500)))

300
(IQUOTIENT (ITIMES (GETB BAI 'WORTH)(GETB BA2 'WORTH))

1000)
(REASON (* Opl and/or Op2 are very interesting themselves))])

(COND [[IS-ONE-OF [CAR (LAST (CAR (GETB BA2 'D-RJ
(ALL-BUT-LAST (CAR (GETB BAl 'D-R]

350
(IDIFF [ITIMES 100 (1DIFF

[LENGTH (CAR (GETS BAl 'D-R)
(LENGTH (RIPPLE [IS-ONE-OF

[SETQ TMP4 (CAR (LAST (GETB BA2 'D-RJ
(ALL-BUT-LAST (CAR (GETB BAI 'D-R)

'GENLI
(ITIMES 50 (LENGTH (RIPPLE TMP4 'GENLJ

(REASON (* In canonical interpretation, Range-of-op2 is a specialization of a component
of Domain-of-opi)))

69 Note that although the Fillin and Suggest heuristics are blended into the relevant facets (e.g., into the Algorithms for

COMPOSE), the INTERESTINGNESS type heuristics are kept separate, in this facet.
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(COND ([MEIVB [CAR (LAST (CAR (GETS BA1 'D-RJ
~ALL-BUT-LAST (CAR (GETS BA2 'D-R]

450
(IPLUS 300 (COND ((EMB [CAR (LAST (CAR (GETS SA1 'D-R]3

(ALL-BUT-LAST (CAR (GETS BAI 'D-RJ
10)

(T 250))
(CONO ([MEMB [CAR (LAST (CAR (GETS 8142 'D-RJ

(ALL-BUT-LAST (CAR (GETS BA2 'D-RJ

(T 250))
(ITIMES 70 (LENGTH (RIPPLE [CAR (LAST (CAR (GETSBSAl 'D-R) 'GENL)

(REASON (* In canonical interpretation,
Range-of-opi is one component of Domain-of-op2))

(COND ((ISA [CAR (LAST (CAR (GETS SAl 'D-RJ
(ALL-BUT-LAST (CAR (GETSB A2 'D-RJ

250
(IPLUS 50 (MOND ((ISA [CAR (LASt (CAR (GETS SAl 'D-RJ

10 (ALL-BUT-LAST (CAR (GETSB Al 'D-R)

(T 100))
(COND ((ISA (CAR (LAST (CAR (GETS BA2 '0-R]

(ALL-BUT-LAST (CAR (GETS 5A2 'D-RJ
11)

(T 100))
(ITIMES 50 (LENGTH (RIPPLE [CAR (LAST (CAR (GETS SAl 'D-R) 'GENL)

* (REASON (* Range-of -opi is a specialization of a component of Domain-of-op2J

Appearance on page 178:

* Interest: I1I heuristics.

Here is the code for CON-MERGE-AROS, the function which decides how to overlap
the domain/range facets of its two arguments, F) and F2:

(CON.MERGE.ARGS
(LAMBDA (Ft F2 F12 PGMI SCHK SAPL DOMI 0GM2 RANI RAN? TIL 00M3)

(SETO RANI (LAST (CAR (GETS Ft '0-RJ
* (SETO 0GMI (101FF (CAR (GETS Ft 10.R))

RAN]I))
[SETO RAN? (LAST (CAR (GETS F2 '0-Ri
(SETO 0GM? (LDIFF (CAR (GETS F2 'D-R))

~SETQ00M3RAN?))
[ST O3(AND (CDR DOMI)

(LIST (CADR (MIN2 (APPEND RAN? RAN? RAN?
RAN?) DCMI 'FRAC-OVERLAPJ

(As DOMi and RANi are located, Switching of Arg. may be required, inside PGMt)
(AND (MEMS (CAR DOW3 0GM2) (SETO 00113 NIL)
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(SETQ GTEMP20 (LENGTH 00M2))
[SETO SAPL (NCONC (LIST 'APPLYB (KWOTE Fl1) (0 AIGS))

(MAPCAR (SUB-ONCE 'X
(SETO GTEMP19 (COND

((S-ONE-OF (CAR RAN2) 001.4)
((SETO SCHK (ONE.ISAG DOM I (CAR RAN21
((SETQ SCHK (AND (SETO TIL (EXS (CAR RAN2))

(CAR (SOME DOMI (FUNCTION (LAMBDA (D)
(INTERSECTION

TIL

DOMI)(EXS 0]

(FUNCTION (LAMBDA (Z)
(COND

((Q Z 'X)
'X)

(T (SETO GTEMP20 (ADD I GTEMP2O))
(CAR (FNTH BA-LIST GTEMP201

(SCHK is a flag which. means that 112 maps us into in element of RAN2 vthich is not guaranteed
a priori to be an element of DOM I, hence a check for this applicability z1 ftI will then have to be made)

(COND
((FMEMB 'X SAPL)

(SETQ DOM3 (REM-ONCE GTEMP IS DOM0)
(SETO GTEMP7 (APPEND 00M3 DOM2))
[COND

[(NEQ (LENGTH GTEMP7)
(LENGTH (SEIF-INT GTEMP7)))

(CPRIN IS g CRLF CRLF AM can later coalesce the D.R of F 12 OCR)
(ADD-CANDS (LIST (LIST (LIST 'APPLYS (0 COALESCE) (0 ALGS) (KWOTE F 12))

(IPIIJS 100 (IQUO (DOTPROD (FIRSTN 2 (GETB Fl 'WORTH))
(GETB F2 'WORTH)) 2000))

(LIST (SPLIST There is an overlap in the new combined
domain of the operation F 12)

(SWHY C) (There is an obvious overlap in (v GTEMP7),th. new combined domain of (0 F 12)
The next piece of this function is the heuristic rule numbered 186 in Appendix 3.

([SOME GTEMP7 (FUNCTION (LAMBDA (X)
(IS-ONE-OF X (CDR (FMEMB X GTEMP7]

(CPRINIS 10 CRLF CRLF AM may later coalesce the D-R of F12 OCR)
(ADO-CANDS (LIST (LIST (LIST 'APPLYB (0 COALESCE) (0 ALOS) (KWOTE F 12))

(IQUO (DOTPROD (FIRSTN 2 (GETB Fl 'WORTH))
(GETB F2 'WORTH)) 2500))

(LIST (SPLIST There may be an overlap
in the new combined domain of the operation F 121

(SWHY 1O (There is a subtle overlap in (@ GTEMP7),the new combined domain of (0 F121
[SETO POMI (LIST 'PROG

(LIST VX
[LIST 'SETO 'X

(NCONC (LIST 'APPLYB (KWOTE F2) (Q ALGS))
(FIRSTN (LENGTH DOM2) (LIST 'BAI 'BA2 'BA3J

(LIST 'RETURN
(COND

(SCHK (LIST 'AND
(LIST 'APPLY, (0 DEFN) (KWOTE SCHK)'X
SAPL))

(T (LIST 'AND 'X SAPL)
(LIST (LIST (APPEND DOM2 DOM3 RAN))) PGM)

(T (Composing is not possible) NIL)

~~~~~~~~. *'.-...-*-:-- 0 -- , -- - -
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Aependix 2.3,2. The 'Osets' Conept

Here is the actual property list of the data-structure corresponding to the Osets concept:

ENGN (OSET Oset Oset-structure OSET-STRUC, Ordered-set (Set))
DFYNi (TYPE NEC&SUFF RECURSIVE TRANSPARENT [COND

((QUAL BA! (OSET )) T)
(T (APPLYB 'OSET 'DEFN (APPLYB 'OSET-DELETE 'ALGS

(APPLYB 'SOME-MEMS 'ALOS BA!I)
BA!))

(TYPE NEC&SUFF RECURSIVE QUICK (COND
((EQUAL BAI '(OSET )) T)
((CDDR BA 1) (APPLYS 'OSET 'DEFN (RPLACD BA!I (CODR BA!1)))
(T NIL)

(TYPE NEC&SUFF NONRECURSIVE QUICK (MATCH BAI WITH ('OSET 8)
GLNL (ORD-STRUC NO-MULT-ELES-STRUC.)
WORTHi (400)

N-DOM-OF (OSET-JOIN OSET-INTERSECT OSET-DIFF OSET-INSERT 0SET-DELETE)
IN-RAN-OF (OSET-JOIN OSET-INTERSECT OSET-DIFF OSET-INSERT OSET-DELETE)
VIEW (STRUCTURE (RPLACA B3A! 'OSET))

Compare this with the way that the "Osets" .concept appeared, on page 214 of Appendix
2.1:

*Namne(s): Oset, Oset-atructure, Ordered-set, somestImes: Set.
Definitions:

Reursive: X~ (S) (Sol ] or Oest.Detintlon(Oset-Deite.A(MembrAlg(S),S))j
Recursive quick: X. (S) (So[ ] or Oset.Definltion (COR(S)))
Quick: X (5) (Match S with (...] )

Generalizations: Ordered-Structure, No-mutipe-oeents-Structure
Worth: 400
In-domaln-of: Oset-union, Diet-intersect, Oset-differenco, Diet-Insert, Duet-delete,
In-range-of: Oset-unlon, Duet-intersect, Duet-difference, Oset-Insert, Ost-delete
Views To view any structure as a Oset, do: X~ (x4 Enclose-in-square-brackets(x)
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Appendix-". Concepts created by AM

The list below is meant to suggest the range of AM's definitions; it is far from complete, and
most of the omissions were real losers. The concepts are listed in the order in which they
were defined.70 In place of the (usually-awkward) name chosen by AM, I have given either
the standard math/English name for the concept, or else a short description of what it is.

Sets with less than 2 elements (singletons and empty sets).
Sets with no atomic elements (nests of braces).
Singleton sets.
Bags containing (multiple occurrences of) just one kind of element.
Superset (contains).
Doubleton bags and sets.
Set-membership.
Disjoint bags.
Subset.
Disjoint sets.
Singleton osets.
Same-length (same number of elements).
Same number of left parentheses, plus identical leftmost atoms.
Count (find the number of elements of a given structure).
Numbers (unary representation).
Add.
Minimum.SUB I (;k (x) X- 1).
Insert x into a given Bag-of-T's (almost ADD I, but not quite).
Subtract (except: if x<y, then the result of x-y will be zero 71).

Less than or equal to.
Times.
Union of a bag rf structures.
& (the ampersand represents the creation of several real losers.)
Compose a given operation F with itself (form FoF).
Insert structure S into itself.
Try to delete structure S from itself (a loser).
Double (add 'x' to itself).
Subtract x' from itself (as an operation, this is a real zero 72).
Square (TIMES(x,x)).
Union structure S with itself.
Coalesced-replace2: replace each element s of S by F(s,s).
Coalesced-join2: append together F(s,s), for each member s(S.
Coa-repeat2: create a new op which takes a struc 5, op F, and repeats F(s,tS) all along S.
Compose three operations: (F,G,H) Fo(GoH).
Compose three operations: ;,(F,G,H) (FoG)oH.

70 See Appendix 5.2, p. 294, for a detailed trace of how these concepts were discovered. Or see Section 6.1, p. 1 15,

for a briefer version of the same development.
72 This is "natural-mumber subtract', in the same spirit of nhming as we find for "Integer division*.

72 s natural zero?



Appendix 2 AM Discovery in wheImatics as Heuristic Search -225-

& (ts of losing compositions c".isted, e.g. Self-lnsertoSet-union.)
ADD1I(x): all ways of representing x as the sum of a bunch of nonzero numbers.
GeH, s.t. H(G(H(x))) it Always defined (wherever H Is), and G and H- are Interestin~g.
InsertaDelete.
Deleteolnsert.
SizeoADD-1. (A (n) The number of ways to partition n)
Cubing

Exponentiation.
44 Halving (in natual numbers only; thus Halving(15).7).

Even numbers.
Integer square-root.
Perfect squares.
Div isors-of.
Numbers.with-O-dlvisors.
N umbers-wi th - 1-d iv isor.
Primes (Numbers-wlth-2-divisors).
squares of primes (Numbers-wlth.SMivlsors).

* Squares of squares of primes.
Square-roots of primes (a loser).
TIMES'I(x): all ways of representing x as the product of a bunch of numbers (W).
All ways of representing x as the product of just one number (a trivial notion).
All ways of representing x as the product of primes.

-. .~.All ways of representing x as the sum of primes.
All ways of representing x as the sum of two primes.
Numbers uniquely representable as the sum of two primes.
Products of squares.
Multiplication by 1.
Multiplication by 0.
Multiplication by 2.
Addition of 0.
Addition of 1.
Addition of 2.
Product of even numbers.
Sum of squares.
Sum of even numbers.
& (losers: various compositions of 3 operations.)
Pairs of perfect squares whose sum is also a perfect square (x2.y2uz2).
Prime pairs (pp.2 are prime).

.
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Appendix 3. AM's Heuristics

Infallible rules of discovery leading to the solution of all possible mathematical
problems would be more desirable than the philosophers' stone, vainly sought by
the alchemists. Such rules would work magic; but there is no such thing as magic.
To find unfailing rules applicable to all sorts of problems is an old philosophical
dream; but this dream will never be more than a dream.

-- Polya

To the extent that a professor of music at a conservatoire can assist his students
in becoming familiar with the patterns of harmony and rhythm, and with how they
combine, it must be possible to assist students in becoming sensitive to patterns of
reasoning and how they combine. The analogy is not far-fetched at all

-- Dijkstra

This appendix lists all the heuristics with which AM is initially provided. They are
organized by concept, most general concepts first. Within a concept, they are organized into
four groups:

* Fillin: rules for filling in new entries on various facets.
* Check: rules for patching up existing entries on various facets.
* Suggest: rules which propose new tasks to break AM out of stagnant loops.

interest: criteria for estimating the interestingness of various entities.

Each heuristic is presented in English translation. Whenever there is a very tricky, non-
obvious, or brilliant translation of some English clause into LISP, a brief note will follow
about how that is coded. Also given (usually) are some example(s) of its use, and its overall
importance. Concepts which have no heuristics are not present in this appendix.

Hundreds of heuristics were planned on paper but never :oded (e.g., those dealing with
proof techniques, those dealing with the drives and rewards of generalized message
senders/receivers), and whole classes of rules were coded but never used by AM during any
of its runs (e.g., how to deal with contradictions, how to deal with Intu's facets). Such
superfluous rules will not be Included here. They would raise the total number of heuristic
rules from 242 to about 500.

The rule numbering in this Appendix is referred to occasionally in other appendices. The
total number of rules coded in AM is actually higher, since many rules are present but
never used, and since many rules listed with one number here are really several rules in
LISP (e.g., see rules 97 and 129).
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It would be advantageous to have a cross-indexing of the body of heuristics along several
dimensions (a multiple sorting by a small set of key parameters): sorted by interest, by
relevance (the current arrangement), by cost, by payoff, by frequency of usage, etc. This is
left as a starred excercise for the interested reader.

. ', .%

.=. . .
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Appendix 3.1. Heuristics for dealing with Anything

All these rules deal with any item X, be it concept, atom, event, etc. These rules are about
as general - and as weak - as one can imagine.

Anything. Suggest

I. If AM has recently referenced entity X,
Then boost the priority of any tasks involving X.

2. If the user has recently referred to X,
Then boost the priority of any tasks involving X.

The above two rules simply reaffirm the idea of "focus of attention". The boost in ratings is
only slight, and only temporary (it decays toward zero exponentially with time). Besides this
gradual decline in task ratings, the rule below explicitly modulates this boosting, so that
infinite loops can be . ided.

3. If AM has recently dealt with X with poor results,
Then lower the priority rating of all tasks involving X.

4. If AM just referenced X and almost succeeded, but not quite,
Then look for a very similar entity Y, and retry the activity with Y in place of X.

There is a separate precise meaning for "almost succeed", "similar entity", and "retry" for
each kind of entity and activity that might be involved. For example, if the activity were a
task (say to fill in examples of Odd-primes) and the entity X were a concept (in this case,
Odd-primes), then a 'similar entity' might be the concept Odd-numbers, and in that case the
result of this rule would be a new task (to fill in examples of Odd-numbers). If the failure
occurred while AM was trying to access the examples facet of Primes, with X-Examples,
then a 'similar entity' might be the Boundary-examples facet, and the above rule would
suggest that AM access instead the Boundary-examples facet of Primes. Of course, this rule
is so weak that it is not often of much help.

5. If space is running out, and AM has not referenced X for a long time, and X is taking up a lot of
space, and no important conjectures reference X,

Then X may be forgotten and its space liberated. Probably the user should be informed of this,
at least tersely.

just a general-purpose directive for emergency garbage-collection.
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Anything. Interest

6. Any entity X is interesting if it is referrm. to In several interesting conjectures.

7. Any entity X Is interesting if it is related (via a rare, Interesting relation) to another entity
which arose in a very different way and Is not obviously tied to X.

. Unexpected connections are worth closer examination, typically. X might be 'related to' Y
because F(X)-Y (for some very interesting operation F), because Y(X) is true (for some
rarely-satisfied predicate Y), because some conjecture involving X is syntactically identical to
the same conjecture involving Y, etc.

8. Entity X is (tentatively) interesting if there is an analogy in which X corresponds to Y, and Y
- has turned out to be very interesting.

9. If entity X is an example of concept C, and X satisfies some features on CInt,

Then X is interesting, and C's Interestingness features will indicate a numeric rating for X.

This is practically the definiton of the Int facet. Below is a much more ususual rule:

10. If entity X is an example of concept C, and X satisfies absolutely none of the features on C.Int,
and X Is just about the only C which doesn't satisfy something,

Then X is interesting because of its unusual boringness.

Since most singletons are interesting because all pairs of their elements are Equal, the above
rule says it would be interesting actually to find a singleton for which not all pairs of its
members were equal. While it would be interesting, AM has very little chance of finding
such a critter.

;,.'. .,.
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Appendix 3.2. Heuristics for dealing with Any-concept

This concept has a huge number of heuristics. For that reason, I have partitioned off -
both here and in AM itself' - the heuristics which apply to each kind of facet.

Appendix 3.2.1. Heuristics for any facet of Any-concept

The first set of heuristics we'll look at are very general, applying to no particular facet
exactly.

Any-concept. Fillin

11. When trying to fill In feczt F of .oncept C, for any C and F,
If C is analogout to concept X, and X.F has some entries,
Then iry to construct the analogs of those entries, and see if they are really valid ertries for

C.F.

Recall that "C.F" is shorthand for "facet F of concept C". This rule simply says that if an
analogy exists bctween two concepts C and X, then it may be strong enough to map entries
on X.F into entries for C.F. Note that F can be any given facet. There is an analogy
between Sets and Bags, and AM uses the above rule to turn the extreme example of Sets -
the empty set - into the extreme kind of bag.

Any-concept. Suggest

12. If the F facet of concept X i4 blank,
Then consider trying to fill it in.

The above super.weak rule will result in a new task being added to the agenda, for every
blank facet of every concept. It Is more of a legal move generator than a plausible move

V proposer. The rating of each such task will depend on the Worth of the concept X and the
overall worth of the type F facet, but In all cases will be ve y small. The "emptiness" of a
facet is always a valid re;son for trying to fill it in, but never an a priori important reason.

OSo the net effect of the rule is to slightly bias AM toward working on blank - rather than
non-blank - fRrets.

13. While trying to fill in facet F of concept C; for any C and F, if C is known to be similar to someK: other concept D, except for difference d,
Then try to fill in CF by selecting items from D.F for which d is nonexistent.

This rule is made more specific when F is actually known, and hence the format of d is
actually determined. For example, if C-Reverse-at-all-levels, F-examples, then (at one
particular moment) a note is found on the Conjecs facet of concept C which says that C is

i Thus the LISP program has a separate concept called "Exemples-of-any-concept", another concept called "Definitions-of-

any-concept", etc.

.! ; -......... ................. ..... ....
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just like the concept DReverse-top.level, except C also recurs on the nonatomic elements of
Its argumcnts, whcreas D doesn't. Thus d is made null by choosing examples of D forr *-" which there are no nonatomic elements. So an example like 'Reverse-top-level(<a b c>)-<c b
a>' will be selected and will lead to the proposed example 'Reverss-at-all-levelsl'a b c>)c
b &>', which Is in fact vplid.

14. After denling with concept C,
Siightly, temporarly boost the priority value of each existing task which involves an Active

4oncept whse domsn or range is C.

This is done efficiently using the In-dom-of and In-ran-of facets of C. A typical usage was
after checking the just-filled-in examples of Bags, when, AM slightly boosted the rating of
filling in examples of Bag-union, and this task just barely squeaked through as the next one
to be chosen. Note that the rule reinforced that task twice, since both domain and range of
Bag-union are bags.

Any-concept. Check

0N 15. When checking facet F of concept C, (for any F and C,)
J Prune away at the entries there until the facet's size is reduced to the size which C merits.

The algorithm for doing this is as follows: The Worth of C is multiplied by the overall
worth of facet type F. This Is normalized in two ways, yielding the maximum amount of list

Y.'.. cells that C.F may occupy, and also yielding the maximum number of separate entries to
keep around on C.F. If either limit Is being exceeded, then an entry is plucked at random
(but weighted to favor selection from the rear of the facet) and excised. This repeats as long
as C.F is oversized. As space grows tight, the normalization weirt".s decline, so each
concept's allocation is reduced.

1L. When checking facet F of concept C,
Eliminate redundant entries.

Zi: Although it might conceivably mean something for an entry to occur twice, this was never
desirable for the set of facets which each AM concept possessed.

Any-concept Interest

The interest features apply to tell how Interesting a concept is, and are rarely subdivided by
relevant facet. That is, most of the reasons that Any concept might be interesting will beF . given below.

17. A concept X is interesting if X.Conjecs contains some interesting entries.

k,. 18. A concept is interesting if its boundary accidentally coincides with another, well-known,
interesting concept.

"SJ
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The boundary of a concept means the items which just barely fall into (or just barely miss
satisfying) the definition of that concept. Thus the boundary of Primes might include 1,2,3,4.
If the boundary of Even numbers includes numbers differing by at most I from an even
number, then clearly their boundary is all numbers. Thus it coincides with the already-
known concept Numbers, and this makes Even-nos more interesting. This expresses the
property we intuitively understand as: no number is very far from an even number.

19. A concept is interestirg if its boundary accidentally coincides with the boundary of another,
very different, intresting concept.

Thus, for example, Primes and Numbers are both a little more interesting since the extreme
cases of numbers are all boundary cases of primes. Even numbers and Odd numbers both
have the same boundary, namely Numbers. This Is a tie between them, and slightly raises
AM's interest in both concepts.

20. A concept is interesting if it is -- accidentally -- precisely the boundary of some other,
interesting concept.

In the case mentioned for the above rule, Numbers is raised in interest because it turns out
to be the boundary for even and odd numbers.

21. A concept is boring if, after several attempts, only a couple examples are found.

Another rule indicates, in such situations, that the concept may be forgotten and replaced by
some conjecture.

22. Concept C is interesting if some normally-inefficient operation F can be efficiently performed
on C'IS.

Thus it is very fast to perform Insert of items into lists because (i) no pre-existence checking
need be done (as with sets and osets), and (ii) no ordered merging need be done (as with
bags). So "Lists" Is an interesting concept for that reason, according to the above rule.

23. Concept C is interesting if each example of C accidentally seems to satisfy the otherwise-
rarely satisfied predicate P, or (equivalently) if there is an unusual conjecture involving
C.

This is almost a primitive affirmation of intererestingness.

24- Concept C is interesting if C is closely related to the very interesting concept X.

This is intererestingness by association. AM was interested in Divisors.of because it was
closely related to TIMES, which had proven to be a very interesting concept.

25. Concept C is interesting if there is an analogy in which C corresponds to Y, ,nd the analogs of
the Interest features of Y indicate that G is intorusiing.

This might have been a very useful rule, if only there had been more decent analogies
floatin.g around the system. As it was, the rule was rarely used to advantage. It essentially
says that the analogs of Interest criteria are themselves (probably) valid criteria.
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26. A concept C is interesting if one of its generalizations or specializations turns out to be
unexpectedly very Interesting,

"Unexpected" means that the Interesting property hadn't already been observed for C. If C
is interesting in some way, and then one of its generalizations is seen to be interesting in
exactly the same way, then that Is "expected*. It's almost more interesting if the second
concept unexpectedly lacks some fundamental property about C. At least in that case AM
might learn something about what gives C that property. In fact, AM has this rule:

27. If concept C possesses some very interesting property lacked by one of its specializations S,

Then both C and S become slightly more interesting.

In the LISP program, ths Is closely linked with rule 104.

28. If a concept C is re-derived in a new way, that makes it more interesting.
If concepts Cl and C2 turn out to be equivalent concepts, then merge them. The combined

concept is now more interesting than either of its predecessors.

The two conditionals above are really the same rule, so they aren't given separate numbers.
Cl and C2 might be conjectured equivalent because their examples coincide, each is a
generalization of the other, their definitions can be formally shown to be equivalent, etc.
This rule is similar in spirit to rule number 114.

A endix 3.2.2. Heuristics for the Examples facets of Any.concept

The following heuristics are used for dealing with the many kinds of examples facets which
a concept can possess: non-examples, boundary examples, Isa links, etc.

Any-concept. Examples. Fillin

29. To fill in examples of X, where X is a kind of Y (for some more general concept Y),
Inspect the examples of Y; some of them may be examples of X as well.
The further removed Y is from X, the less cost-effective this rule is.

For the task of filling in Empty-structures, AM knows that concept is a specialization of
Structures, so It looks over all the then-known examples of Structures. Sure enough, a few of
them are empty (satisfy Empty.structures.Defn). Similarly, for the task of filling in examples
of Primes, this rule would have AM notice that Primes is a kind of Number, and therefore
look over all the known examples of Number. It would not be cost-effective to look for
primes by testing each example of Anything, and the third and final clause in the above
rule r-cognizes that fact.

30. To fill In non-examplos of concept X,
Search the specializations of X. Look at all their non-exemples. Some of them may turn out to

be non-examples of X as well.

This rule is the counterpart of the last one, but for non-examples. As expected, this was less
useful than the preceding positive rule.
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31. If the current task is to fill in examples of any concept X,
Then one way to got them is to symbolically instantiate a definition of X.

That rule simply says to use some known tricks, some hacks, to wring examples from a
declarative definition. One trick AM knows about is to plug already-known examples of X
into the recursive step of a definition. Another trick is simply to try to instantiate the base
step of a recursive definition. Another trick is to take a definition of the form "k (x) x isa
P, and <sub.expression>", work on instantiating just the sub-expression, and then pop back
up and see which of those items are P's.

32. If the current task is to fill in non-examples of concept X,
Then one fast way to get them is to pick any random item, any example of Anything, and check

that it fails X.Defn.

This is an affirmation that for any concept X, most things in the universe will probably not
be X's. This rule was almost never used to good advantage: non-examples of a concept X
were never sought unless there was some reason to expect that they might not exist. In those
cases, the presumption of the above rule was wrong, and it failed. That is, the rule
succeeded iff it was not needed.2

33. To fill in examples of concept X,
If X.View tells how to view a Z as if it were an X, and some examples of Z are known,
Then just run X.View on those examples, and check that the results really are X's.

Thus examples of osets were found by viewing other known examples of structures (e.g.,
examples of sets) as if they were osets.

34. To fill in examples of concept X,
Find an operation whose ringe is X,3 and find examples of that operation being applied.

To fill in examples of Even-nos, this rule might have AM notice the operation 'Double'.
Any example of Double will contain an example of an even number as Its value: e.g., <S-*6>
contains the even number 6.

35. If the current task is to fill in examples of concept X,
One bizarre way is to specialize X, adding a strong constraint to X.Defn, and then look for

examples of that new specialization.

Like the classical "insane heuristic"4 , this sounds crazy but works embarassingly often. If I
ask you to find numbers having a prime number of divisors, the rate at which you find
them will probably be lower than if I'd asked you to find numbers with precisely 2 divisors.
The variety of examples will suffer, of course. The converse of this heuristic - for non-
examples - was deemed too unaesthetlc to feed to AM.

2 Catch-22?

3 or at least INTERSECTS X Use the In-ran-of facets and the rippling mechanism to find such an operation.

A h.rder task might be; e;siir to do. A stronger theorem might be easier to prove. This is called 'The Inventor's Paradox",
on page 121 of [Poly, 57.

- i
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36. To fill in examples of X,
One inefficient method is to examine random examples of Anything, checking each by running

X.Defn to see if it is an X. Slightly better is to ripple outward from X in all directions,
testing ail the examples of the concepts encountered.

This is blind generate-and-test, and was (luckily) not needed much by AM.

37. To find more examples of X (or: to find an extreme example of X), when a nice big example is
known, and X has a recursive definition,

Try to plug the known example into the definition and produce a simpler one. Repeat this until
an example is produced which satisfies the base-step predicate of the definition. That

.- -entity is then an extreme (boundary) example of X.

For example, AM had a definition of a set as

"Set(S) If Si) or If Set(Remove-random.element(S))." When AM found the big example
{A,B,{{C),D},{{{Ef)},F) by some other means, it used the above rule and on he recursive
definition to turn this into {A,B,{{{EJ}},F} by removing the randomly-chosen third element.
-A,B,F} was produced next, followed by {B,F} and (F). After that, {) was produced and the
rule relinquished control.

38. To find examples of X, when X has a recursive definition,
One method with low success rate but high payoff Is to try to invert that definition, thereby

creating a procedure for generating new examples.
Using the previous example, AM was able to turn the recursive definition of a set into the
program "Insert-any-randomitem(S)", which turns any set into a (usually different and
larger) new set. Since the rules which AM uses to do these transformations are very special.
purpose, they are not worth detailing here. This is one very managable open problem,
where someone might spend some months and create a decent body of definition-inversion
rules. A typical rule AM has-says:
"Any phrase matching 'Removing an x and ensuring that P(x)' can be inverted and turned
into this one: 'Finding any random x for which P(x) holds, then inserting x'." The class of
definitions which can be inverted using AM's existing rules is quite small; whenever AM
needed to be able to invert another particular definition, the author simply supplied
whatever rules would be required.

39. While filling in examples of C,
if two constructs x and y are found which are very similar yet only one of which is an example

-" of the concept C,
Then one is a boundary example of C, and the other is a boundary non-example,
and it's worth creating more boundary examples and boundary non-examples by slowly

transforming x and y into each other.

N: Thus when AM notices that (a) and {a,b,a} are similar yet not both sets, it creates {a,b},
{b,a}, {a,a) and sees which are and are not examples of sets. In this way, some boundary

_ items (both examples and non.examples) are created. The rules for this slow transformation
are again special purpose. They examine the difference between the items x and y, and
suggest operators (e.g., Deletion) which will reduce that difference. This OPS-like strategy
has been well studied by others, and its inferior implementation inside AM will not be
detailed.

-x

S. . . ..- * - --: K 1--
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40. If the main task now is to fill in example:, of concept C,
Consider all the examples of "first couz'lns" of C. Some of them might be examples of C as

well.

By "first cousins", we mean all direct specializations of all direct generalizations of a concept,
or vice versa. That is, going up once along a Geni link, and then down once along a Spec
link (or going down one link and then up one link).

41. If the main task now is to fill in boundary (non-)examples of concept C,
Consider all the boundary (non-)examples of "first cousins" of C. Some of them might lie on

the boundary of C as well.

If they turn out not to be boundary examples, they can be recorded as boundary non-
examples, and vice versa.

42. To fill in Isa links of concept X, (that is, to find a list of concepts of which X is an example),
Just ripple down the tree of concepts, applying a definition of each concept. Whenever a

definition fails, don't waste time trying any -1 its specializations. The Iss's of X are then
all the concepts tried whose definitions passed X.

When a new concept is created, e.g., a new composition, this rule can ascertain the most
specific Isa links that can be attached to it. Another use for this rule would be: If the Isa
link network ever got fouled up (contained paradoxes), this rule could be used to straighten
everything out (with a logarithmic expenditure of time).

Any-concept. Examples . Suggest

43. If some (but not most) examples of X are also examples of Y' (for some concept Y),
and some (but not most) examples of Y are also examples of X,
Create a new concept defined as the intersection of those two concepts (X and Y). This will be

a specialization of both concepts.

If you hapen to notice that some primes are palindromic, this rule would suggest creating a
brand new concept, defined as the set of numbers which are both palindromic and prime.
AM never actually noticed this, since it represented all numbers in unary. If pushed, AM
will define Palindrome(n) to mean t.&t the sequence of exponents of prime factors is

symmetric; thus 23315171118133 is pa'indromic in AM's sense because the sequence of its
exponents (3 8 1 I 8 3) is unchanged upon reversal. In this sense, the only Prime
palindromes are the primes themselves (or: just '2', depending upon the precise definition).

44. If very few examples of X are found,Then add the following task to the agenda: "Generalize the concept X", for the following

reason: "X's are quite rare; a slightly less restrictive concept might be more
interesting".

Of course, AM contains a precise meaning for the phrase "very few". When AM looks for
primes among examples or already-known kinds of numbers, it will find dozens of non-
examples for every example of a prime It uncovers. "Very few" is thus naturally

implemented as a statistical confidence level. AM uses this rule when very few examples of
Equality are found readily.
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45. If very many examples of X are found in a short period of time,
Then try to create a new, specialized version of X.

This is similar to the preceding rule. Since numbers are easy to find, this might cause us to
look for certain more interesting subclasses of numbers to study.

46. If there are no known examples for the interesting concept X,
Then consider spending some time looking for such examples.

I've heard of a math student who defined a set of number which had quite marvelous
properties. After the 20th incredible theorem about them he'd proved, someone noticed that
the set was empty. The danger of unwittingly dealing with a vacuous concept is even worse
for a machine than for a human mathematician. The above rule explicitly prevents that.

47. If the totality of examples of concept C is too small to be interesting,
Then consider these reactions: (i) generalize C; (ii) forget C completely; (iii) replace C by one

conjecture.

This is a good example of when a task like "Fill in genoralizations of Numbers-with-I -divisors"
might get proposed with a high-priority reason. The class of entities which C encompasses
is simply too small, too trivial to be worth maintaining a separate concept. When C is
numbers-with-I-divisor, C is really just another disguise for the singleton set {1}. The above
rule might cause a new task to be added to the agenda, Fill in generalizations of Numbers-
with-I-divisor. When that task is executed, AM might create the concept Numbers-with-
odd-no-of-divisors, Numbers-with-prime-number-of-divisors, etc. Besides generalizing that
concept, the above rule gives AM two other alternatives. AM may simply obliterate the
nearly-vacuous concept, perhaps leaving around just the statement "I is the only number with
one divisor". That conjecture might be tacked onto the Conjecs facet of Divisors-of. The
actual rule will specify criteria for deciding which of the three alternatives to try. In fact,
AM really starts all three activities: a task will always be created and added to the agenda
(to generalize C), the vacuous concept will be tagged as "forgettable", and AM will attempt
to formulate a conjecture (the only items satisfying C.Defn are C.Exs).

48. If the totality of examples of concept C is too large to be interesting,
Then consider these three possible reactions: (i) specialize C; (ii) forget C completely; (iii)

replace C by one conjeciure.

This is analogous to the preceding rule, but is used far less frequently. One common use is
when a disjunction of two concepts has been formed which is accidentally large or already-
known (e.g., "Evens u Odds" would be replaced by a conjecture).

49. After filling in examples of C, if some examples were found,
Look at all the operations which can be applied to C's (that is, access C.In-dom-of), find those

which are interesting but which have no known examples, and suggest that AM fill in
examples for them, because some items are now known which are in their domain,
namely C.Exs.

This rule had AM fill In examples of Set-insertion, as soon as some examples of Sets had
been found.

50. After filling in examples of C, if some examples were found,
Consider the task of Checking the examples facet of concept C.

•



Appendix 3 AM Discovery in Mathematics as Heuristic Search -238-

This was very frequently used during AM's runs.

51. After checking examples of C, if many examples remain,
Consider the task of 'Filling in some Conjecs for C'.

This was used often by AM. After checking the examples of C, AM would try to
empirically formulate some interesting conjecture about C.

252 After successfully filling in non-examples of X, if no examples exist,
If AM has not recently tried to find examples of X, then it should do so.
If AM has recently tried and failed to find examples, consider the conjecture that X is vacuous,

empty, null, always-False. Consider generalizing X.

53. After trying in vain to find some non-examples of X, if many examples exist,
Consider the conjecture that X is universal, always-True. Consider specializing X.

54. After successfully filling ;n examples of X, if no non-examples exist,
If AM has not recently tried to find non-examples of X, then it should consider doing so.
If AM has recently tried and failed to find non-examples, consider the conjecture that X is

universal, always-True. Consider specializing X.

55. After trying in vain to find some examples of X,
If many non-examples exist,
Consider the conjecture that X is vacuous, null, empty, always-False. Consider generalizing X.

Any-concept. Examples. Check

56. If the current task is to Check Examples of concept X,
and (Forsome Y) Y is a generalization of X with many examples,
and all examples of Y (ignoring boundary cases) are also examples of X,
Then conjecture that X is really no more specialized than Y,
and Check the truth of this conjecture on boundary examples of Y,

and see whether Y might itself turn out to be no more specialized than one of its
generalizations.

This rule caused AM, while checking examples of odd-primes, to conjecture that all primes
were odd-primes.

57. If the current task is to Check Examples of concept X,
and (Forsome Y) Y is a specialization of X,
and all examples of X (ignoring boundary cases) are also examples of Y,
Then conjecture that X is really no more general than Y,
and Check the truth of this conjecture on boundary examples of X,
and see whether Y might itself turn out to be no more general than one of its specializations.

I nis rule is analogous to the preceding one for generalizations.
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58. When checking boundary examples of a concept C,
ensure that every scrap of C.Defn has been used.

It is often the tiny details in the definition that determine the precise boundary. Thus we
must look carefully to see whether Primes allows I as an example or not. A definition like
"numbers divisible only by I and themselves" includes 1, but this defintion doesn't:
"numbers having precisely 2 divisors". In the LISP program, this rule contains several
hacks (tricks) for checking that the definition has been stretched to the fullest. For example:
ii the definition is of the form "all x in X such that...", then pay careful attention to the
boundary of X. That is, take the time to access X.Boundary-exs and X.Boundary-non-exs,
and check them against C.Defn.

59. When checking examples of C,
Ensure that each example satisfie, C.Defn, and each non-example fails it. The precise member

of C.Defn to use can be chosen depending on the example.

As described earlier in the text, definitions can have descriptors which indicate what kinds
of arguments they might be best for, their overall speed, etc.

60. When checking examples of C,
If an entry e is rejected (i.e., it is seen to be not an example of C after all), then remove e

from C.Exs and consider inserting it on the Boundary non-examples facet of C.

There is a complicated5 algorithm for deciding whether to forg q entirely or to keep it
around as a close but not close enough kind of example.

61. When checking examples of C,
After an entry e has been verified as a bone fide example of C,
Check whether e is also a valid example of some direct specialization of C.
If it is, then remove It from C.Exs, and consider adding It to the examples facet of that

specialization, and suggest the task of Checking examples of that specialization.

62. When checking examples of C,
If an entry a is rejected,
Then check whether e is nevertheless a valid example of some generalization of C.
If it is, consider adding it to that concept's boundary-examples facet, and consider adding it to

the boundary non-examples facet of C.

This is similar to the preceding rule.

63. When checking non-examples of C, including boundary non-examples,
Ensure that each one fails a definition of C. Otherwise, transfer it to the boundary examples

fascet of C.

5 Not ni,;essarly sophisticated. First, AM accesses the Worth of C From this it determines how many boundary non-
examples C deserves to keep around (and how many total list cells it merits). AM compares these quotas
with the current number of (and size of) entries already listed on Cbdy-non-exs. The degree of need of
another entry there then eets the "odds" for insertion versus forgetting. Finally a random number is
computed, and the odds determine what range it must lie in for e to be remembered.
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64. When checking no,-examples of C, including boundary non-examples,
After an entry a has been verified as a bone fide non-example of C,
Check wheth'ir e is also a non-example of some direct generalization of C.
If it is, then remove it from C.Non-Exs, and consider adding it to the non-examples facet of

that generalization, and suggest the 'task of Checking examples of that generalization.

65. When checking (boundary) non-examples of C,
If an entry e is rejected, that is if it turns out to be an example f C after all,
Then check whether * is nevertheless a non-example of some specialization of C.
If it is, consider adding it to that concept's boundary non-examples facet.

This is similar to the preceding rule.

Apperndix 3.2.3. Heuristics for the Con lees facet of Any-concept

Any-concept . Conjecs . Fillin

When the task is to look around and find conjectures dealing with concept C, the following
general rules may be useful.

66. If there is an analogy from X to C, and a nice item in X.Conjecs, formulate and test the
analogous conjecture for C.

Since an analogy is not much more than a set of substitutions, formulating the 'analogous
conjecture' is almost a purely syntactic transformation.

67. Examine C.Exs for regularities.

What mysteries are lurking in the LISP code for this rule, you ask? Nothing but a few
special.purpose hacks and a few ultra-general hacks. Here is a slightly more specific rule for
you seekers:

68. Look at C.Exs. Pick one element at random. Write down statements true about that example e.
Include a list of all concepts of which it is an example, all Interests features it satisfies,
etc.

Then check each conjecture on this list against all other known examples of C. If any example
(except a boundary example) of C violates a conjecture, discard it.

Take all the surviving conjectures, and eliminate any which trivally follow from other ones.

This is a common way AM us-s: induce a conjecture from one example and test it on all
the rest. A more sophisticated approach might be to induce it by using a few examples
simultaneously, but I haven't thought of any nontrivial way to do that. The careful reader
will perceive that most of the conjectures AM will derive using this heuristic will be of the
form "X is unexpectedly a specialization of Y", or "X is unexpectedly an example of Y", etc.
Indeed, most of AM's conjectures are really that simple syntactically.

69. Formulate a parameterized conjecture, a "template", which gets slowly specialized or
instantiatbd into a definite co,tjecture.
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AM has only a few trivial methods for doing this (e.g., introduce a variable initially and
find the constant value to plug in there later). As usual, they will be omitted here, and the
author encourages some research in this area, to turn out a decent set of general rules for
accomplishing this hypothesis template instantiation. The best effort to date along these
lines, in one specific sophisticated scientific field, is that of META-DENDRAL [Buchanan].

Any-concept . Conjecs . Check

70. If a universal conjecture (For all X's, ...) is contradicted by empirical data, gather the data
together and try to find a regularity in those exceptions.

If this succeeds, give the exceptions a name N (if they aren't already a concept), and rephrase
the conjecture (For all X's which are not N's...). Consider making X-N a now concept.

Again note how "active" this little checking rule can be. It can patch up nearly-true
conjectures, examine data, define new concepts, etc.

71. After verifying a conjecture for concept C,
See if it also holds for related concepts (e.g., a generalization of C).

There are of course bookeeping details not explicitly shown above, which are present in the
LISP program. For example, if conjecture X is true for all specializations of C, then it must
be added to C.Conjecs and removed from the Conjecs facets of each specialization of C.

Any-concept . Conjecs . Suggest

72. If X is probably related to Y, but no definite connection is known,
It's worthwhile looking for a specific conjecture tying X and Y together.

How might AM know that X and Y are only probably related? X and Y may play the same
role in an analogy (e.g., the singleton bag "(T)" and "any typical singleton bag" share many
properties), or they may both be specializations of the same concept Z (e.g., two kinds of
numbers), or they may both have been created in the same unusual way (e.g., Plus and

-'i Tmes and Exponentiation are all creatable by repeating another operation).

Any-concept. Conjecs. Interest

73. A conjecture about X is interesting if X is very interesting.

74. A nonconstructive existence conjecture is interesting.

Thus the unique factorization theorem is judged to be interesting because it merely
0guarantees thac some factoring will be into primes. If you give an algorithm for that
factoring, then the theorem actually loses its mystique and (according to this rtule) some of
its value. But it increases in value due to the next rule.
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75. A constructive existence conjecture is interesting if it is frequently used.

76. A conjecture C about X is interesting if the origin and the verification of C for each
specialization of X was quite inidependent of each other, and preceded C's being noticed
applicable to all X's.

This would be even more striking if proof techniques were known, and each specialized case
had a separate kind of proof. Many number theory results are like this, where there exists
a general proof only for numbers bigger than 317, say, and all smaller numbers are simply
checked individually to make sure they satisfy the conjecture. Category theory is built upon
practically nothing but this heuristic.

Appendix 3.2.4. Heuristics for the Analogies facet of Any-concept

Any-concept . Analogies . Fillin

77. To fill in conjectures involving concept C, where C is analogous to D,
Consider the analogue of each conjecture involving D.

78. If the current task involves a specific analogy, and the request is to find more conjectures,
Then consider the analog of each interesting conjecture about any concept involved centrally

in the analogy.

That is, this rule suggests applying the preceding rule io each concept which is central to
the given analogy. The result is a flood of new conjectures. There Is a tradeoff (explicitly
taken into account in the LISP version of this rule) between how interesting a conjecture
has to be, and how centrally a concept has to fit into the analogy, in order to determine
what resources AM should be willing to expend to find the analogous conjecture. Note that
this is not a general suggestion of what to do, but a specific strategy for enlarging the
analogy itself. If the new conjecture is verified, then not only would it be entered under
some Conjecs facet, but it would also go to enlarging the data structure which represents the
analogy.

79. Let the analogy suggest how to specialize and generalize each concept into what is at least
the analog of a known, very interesting concept.

Like the last rule, this one simply says to use the analogy itself as the "reason" for exploring
certain new entities, in this case new concepts. When the BagsHNumbers analogy is made,

" AM notices that Singleton bags and Empty bags are two interesting, extreme specializations
of bags. The above rule then allows AM to construct and study what we know and love as
the numbers one and zero. The analogy is flawed because there is only one "one", although
there are many different singleton bags, But just as singletons and empty bags have special
properties under bag opeatuons, so do 0,1 under numeric operations. This was one caseI -where .n analogy paid off handsomely.

V-.
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80. If it is desired to have an analogy between concepts X and Y, then look for two already-known
analogies between XoZ and ZY, for any Z.

If found, compose the two analogies and see if the resultant analogy makes sense.

Since the analogies are really just substitutions, composing them has a familiar, precise
meaning. This rule was never really used by AM, due to the paucity of analogies. The user
can push AM into creating more of them, and ultimately using this rule. A chain from
X,-,Z"YoX can be found which presents a new, bizarre analogy from X to itself.,

Any-concept. Analogies . Suggest

81. If an analogy is strong, and one concept has a very interesting universal conjecture C (For all
x in 8...), but the analog conjecture C' is false,

Then it's worth constructing the set of items in 8' for which the conjecture holds. It's perhaps
even more interesting to isolate the set of exceptional elements.

With the Add+)Times analogy, it's true that all numbers n>1 can be represented as the sum
of two other numbers (each of them smaller than n), but it is not true that all numbers (with
just a couple exceptions) can be represented as the product of other (hence smaller)
numbers. The above rule has AM define the set of numbers which can/can't be so
represented. These are just the composite numbers and the set of primes. This second way

" of encountering primes was very unexpected - both by AM and by the author. It expresses
the deep fact that one difference between Add and Times is the presence of primes only for
multiplication. At the time of its discovery, AM didn't appreciate this fully of course.

82. If space is tight, and no use of the analogy has ever been made, and it is very old, and it takes
up a lot of space,

Then it is permissable to forget it without a trace.

83. If two valuable conjectures are syntactically identical, and can be made identical by a simple
substitution, then tentat /,ely consider the analogy which is that very substitution.

Thus the associative/commutative property of Add and Times causes them to be tied
together in an analogy, because of this rule.

84. If an analogy is very interesting and very complete,
Then spend some time refining it, looking for small exceptions. If none are found, see whether

the two situations are genuinely isomorphic.

85. If concepts X and Y are analogous, look for analogies between their specializations, or
between their generalizations,

['- This rule is not used much by AM, although the author thought it would be.

h'I'
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Any-concept . Analogies . Interest

86. An analogy which has no discrepancies whatsoever is not as interesting as a slightly flawed
analogy.

87. An analogy is interesting if it associates (for the first time) two concepts which are each
unusally fully filled out (having many conjectures, many examples, many interest
features, etc.).

Appendix 3.2.5. Heuristics for the CenI/Spec facets of Any-concept

Any-concept. Genl/Spec. Fillin

88. To fill in specializations of X, if it was very easy to find examples of X,
Grab some features which would indicate than an X was interesting (some entries from

X.lnterest, or more remote Interest predicates garnered by rippling), and conjoin them
onto the definition of X, thereby creating a new concept.

Here's one instance where the above rule was used: It was so easy for AM to produce
examples of sets that it decided to specialize that concept. The above rule then plucked the
interestingness feature "all pairs of members satisfy the same rare predicate" and conjoined
it to the old definition of Set!s. The new concept, Interesting-sets, included all singletons
(because all pairs of members drawn from a singleton satisfy the predicate Equal) and
empty sets.

89. To fill in generalizations of concept X,
Take the definition a, and replace it by a generalization of e. If e is a concept, use e.Genl; if

• is a conjunction, then remove a conjunct or generalize 6 a conjunct; if * is a
disjunction, then add a disjunct or generalize a disjunct; if e ismegated, then specialize
the negate; if e is an example of E, then replace e by "any example of E"; if • satisfies
any property P, then replace e by "anything satisf-,ing P"; if a is a constant 7, then
replace e by a new variable (or an existing one) which could assume value e; if a is a
variable, then enlarge Its scope of possible bindings.

This rule contains a bag of tricks for generalizing any LISP predicate, the definition of any
concept. They are all syntactic tricks, however.

90. To fill in generalizations of concept X, If some conjectur. axists about "all X's and Y's" or "in
X or Y", for some other concept Y,

Create a new concept, a generalization of both X and Y, defined as their disjunction.

10 . recut.

7 Of course it's unlikely that a concept is defined simply as a constant, but the preceding footnote shows that this little
program can be entered recursively, being fed a sub-expression of the definition.
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This rule contains another trick for generalizing any concept, although it is more
meaningful, more semantic than the previous rule's tricks. Many theorems are true about
numbers with I or 2 divisors, so this might be one reasonable way to generalize Numbers.
with-l-divisor into a new useful 8 concept.

91. To fill in generalizations of concept X,
If other generalizations GI, G2 of X exist but are TOO general,
Create a new concept, a generalization of X and a specialization of both GI and G2, defined as

the conjunction of G and G2's definitions.

Thus when AM generalizes Reverse-all-levels into Reverse-top-level and Reverse-first-
element, the above ruie causes AM to create a new operation, which reverses the top level
and which reverses the CARO of the original list. While not particularly useful, the reader
siould observe that it is in fact midway in generality between the original Reverse tutiction
and the first two generalizations.

.2 To fill in specializations of concept X,
-"i e the definition e, and replace it by a specialization of e. If e is a concept, use e.Genl; if e

is a disjunction, then remove a disjunct or specialize a disjunct; if e is a conjunction,
then add a conjunct or specialize a conjunct; if e is negated, then generalize the
negate; if a is "any example of E", then replace e by a particular example of E; if e is
"nything satisfying P", then replace e by a particular satisfier of P; if a is a variable,
..en ropidce it by a well-chosen constant or restrict its scope.

This rule contains a bag of tricks for specializing any LISP predicate, the definition of any
concept. They are all syntactic tricks, however. Note that the Lisp code for this rule will
typically call itLelf (recur) in order to specialize small pieces of the original definition.

-- 93. To fill in specializations of concept X, If some conjecture exists about "ali X's which are also
C eY's" or "in X and V", for some other concept Y,
Create a new concept, a specialir;,ion of both X and Y, defined as their conjunction.

This rule contains another trick for specializing any concept, although it is more
meaningful, more setantic than the previous rule's tricks. Many theorems about primes
contain the condition "p>2"; i.e., they are really true about primes which are odd. So this
might be one reasonable way to specialize Primes into a new concept: by conjoining the
definitions of Primes and Odd-numbers, into the new concept Odd-primes. Here's another
usage of this rule: If AM had originally defined Primes to include 'T', then the frequency of
conjectures where I was an exception would trigger this rule to define Primes more normally
(pM2)

94. To fill in specializations of concept X,
If other specializations SI, S2 of X exist but are TOO restrictive to be interesting,
Create a new concept, a specialization of X and a generalization of both S1 and S2, defined as

the disjunction of Si and S2's definitions.

..at least, several theorems will be stated more concisely using this new concept: Numbers with I or 2 divisors.

also the CAR of the CAR, etc, until a non-list is encountered.
7 t
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95. To fill in generalizations of concept X, when a recursive definition of X exists,
If the definition contains two conjoined recursive calls, replace then by a disjunction or

eliminate one call entirely.
If there is only one recursive call, disjoin a second call, this one on a different destructive

function applied to the original argument. If the original destructive function is one of
{CAR,CDR), then let the new one be the other member of that pair.

AM uses the first part of this rule to turn Equal-lists into two variants of Same-length-as.
The second part, while surprisingly unused, could work on this definition of MEMBER: "X
(x,L) LISTP(L) and: tx=CAR(L) or MEMBER(x,CDR(L))]", which is just "membership at the top
level of", or (, and transform it into this one of MEM, which represents membership at any
depth: "X(x,L) LISTP' 0(L) and: [x-CAR(L) or MEM(x,CDR(LI) or MEM(x,CAR(L)))". The rule
noticed a recursive call on CDR(L), and simply disjoined a recursive call on CAR(L).

96. To fill in specializations of concept Xwhen a recursive definition of C exists,
If the definition contains two disjoined recursive calls, replace them by a conjunction or

eliminate one call entirely.
If there is only one recursive call, conjoin a second on another destructive function applied to

the original argument. Often the two recursions will be on the CAR and the CDR of the
original argument to the predicate which is the definition for X.

This is closely related to the preceding rule. Just as it turned the concept of 'element of' into
the more general one of 'membership at any depth', the above rule can specialize the
definition of MEMBER into this one, called AMEM: "N, (x,L) LISTP(L) and: [x=CAR(L) or:
[AMEM(x,CDR(L)) and AMEM(x,CAR(L))]". I

97. To fill in specializations of concept X,
Find,, within a definition of X (at even parity of NOT's), an expression of the form "For some x

in X, P(x)", and replace it either by "For all x in X, P(x)", or by P(x,).

Thus "sets, all pairs of whose members satisfy SOME interesting predicate" gets specialized
into "sets, all pairs of whose members satisfy Equality". The same rule, with "even parity"
replaced by "odd parity", is useful for generalizing a definition. This rule is really 4
separate rules, in the LISP program. The same rule, with the transformations going in the
opposite direction, is also used for generalizing. The same rule, with the transformations
reversed and the parity reversed, Is used for specializing a definition. Here is that doubly-
switched rule:

98. To fill in specializations of concept X,
Find within a definition of X (at odd parity of NOT's) an expression of the form "For all x in X,

P(x)", and replace it either by "For some x in X, P(x)", or by P(x0). Or replace "P(oe)",
where ae is a constant, by "For rome x in A, P(x)" where A is a concept of which 0 is
on, ixample.

The Interliep function LiSTP(L) tests whether or not L is a (nonnull) list.
1IThis operationl is almost impossible to explain verbally. AMEMNx,L) moons that x it an element of L, srid for each member

M of L before the x, M is an ordered structure and x is an element of M, and for each member N of M
before the x which it inside M, etc, [.|, 4[x] I (<x a b> <x> x d 0) <x f> x 1 h I [<x i> x j] x k [1] m>.
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99. When creating in a specialization S of concept C,
Note that S.Geni should contain C, and that C.Spec should contain S.

The analogous rule exists, in which all spec and geni are switched.

Any-concept. Genl/Spec . Suggest

100. After creating a new specialization S of concept C,
Explicitly look for ties between S and other known specializations of C.

For example, after AM defines the new concept of Numbers-with-3-divisors, it looks around
for ties between that kind of number and other kinds of numbers.

101. After creating a new generalization G of concept C,
--' Explicitly look for ties between G and other close generalizations of C.

For example, AM defined the new predicates Same-size-CARs and Same.size-CDRs 12 as
two generalizations of Equality. The above rule then suggested that AM explicitly try to
find some connection between these two new predicates. Although AM (ailed, Don Knuth
(using a similar heuristic, perhaps) also looked for a connection, and found one: it turns out
that the two predicates are both ways of defining the relation we intuitively understand as

' -I "having the same length as".

: 102. After creating a new specialization $ of concept C,
Consider looking for examples of S.

This has to be said explicitly, because all too often a concept is specialized into vacuousness.

103. After creating a new generalization G of concept C,
Consider looking for non-examples of G.

This has to be said explicitly, because all too often a concept is generalized into vacuous
universality. This rule is less useful to AM than the preceding one.

% 104. If concept C possesses some very interesting property lacked by one of its specializations S,
% Then considering creating a concept intermediate in specialization between C and S, and see

whether that possesses the property.

This rule will trigger whenever a new generalization or specialization is created.

105. If concept S is now very interesting, and S was created as a specialization of some earlier
concept C,

Give extra consideration to specializing S, and to specializing concept C again (but in
different ways than ever before).

12 Two lists satisfy Same-size-CORe iff they have the same number of members. Two lists satisfy Same-size-CARs iff

(when written out in standard .LISP notation) they have the same number of initial left parentheses and also
have the same fist identifier following that last initial left parenthesis.
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The next rule is the analog of the preceding one. They incorporate tiny bits of the
strategies of hill-climbing and learning from one's successes.

106. If concept G is now very interesting, and G was created as a generalization of some earlier
concept C,

Give extra consideration to generalizing G, and to generalizing C in other ways.

The analogous rules exist, for concepts that have become so boring they've just been
discarded:

107. If concept X proved to be a dead-end, and X was created as a generalization of
(specialization of) some earlier concept C,

Give less consideration to generalizing (specializing) X, and to generalizing (spec;alizing) C in
other ways in the future.

Any-concept. Genl/Spec . Check

108. When checking a generalization G of concept C,
Specifically test to ensure that G is not equivalent to C.
The easiest way is to examine the non-examples (especially boundary non-examples) of C,

and look for one satisfying G; or examine the examples of G (esp. boundary) and look
for one failing to satisfy C.

If they appear to be the same concept, look carefully at G. Are there any specializations of G
whose examples have never been filled in? If so, then by all means suggest looking for
such concepts' examples before concluding that G and C are really equivalent.
If they are the same, then replace one by a conjecture.
If they ore different, make sure that some boundary non-example of C (which is an

example of G) is explicitly stored for C.

This rule makes sure that AM is not deluding itself. When AM generalizes Numbers-with-
I-divisor into Numbers-which-equal-their-no-of-divisors, it still hasn't gotten past the
singleton set {1). The conjecture in this case would be "The only number which equals its own
number of divisors is 1". Typically, when a generalization G of C turns out to be equivalent
to C, there is theorem lurking around, of the form "All G's also satisfy this property...",
where the property is the "extra" constraint present in C's definition but absent from O's.
This rule also was used when AM had just found some examples of Sets. AM almost
believed that all Unordered-Structures were also Sets, but the last main clause of the rule
had AM notice that Bags is a specialization of Unordered-structures, and that the latter
concept had never had any of its examples filled in. As a result, AM printed out this
message: "Almost concluded that Unordered-structures are also always Sets. But will wait
until examples of Bags are found. Perhaps some Bags will not be Sets." In fact, examples
of Bags are soon found, and they aren't sets.

109. When checking a specialization S of concept C,
Specifically test to ensure that S is not equivalent to C.

If they are the came, then replace one by a conjecture.
If they are different, make sure !hat some boundary example of C (which is not an

example of S) is explicitly stored for C.
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This rule is similar to the preceding one. If adding a new constraint P to the definition
doesn't change the concept C, then there is probably a theorem there of the form "All C's
also satisfy constraint P".

110. When checking a specialization S of a specialization X of a concept Cg
if there exist other specs. of specs. of C,
then ensure that none of them are the same as S. This is especially worthwhile if the

specializing operators in each case were the same but reversed in order.

Thus we can add a constraint to C and collapse the first two arguments, or we can collapse
the arguments and add the constraint; either way, we get to the same very specialized new
concept. The above rule helps detect those accidental duplicates. E.g., Coalesced-Dom-Ran-
Compositions are really the same as Dom-Ran-Coalesced-Compositions, and this rule would
suspect that they might be.

S11. When checking the Genl or Spec facet entries for concept C,
ensure that C.Genl and C.Spec have no common member Z. If they do, then conjecture that C

and Z are actually equivalent.

In fact, this rule actually ensures that Generalizations(C) does not intersect
Specializations(C). If it does, a whole 'cycle' of concepts exists which can be collapsed into
one single concept. Se also rule 114, below.

Any-concept. Genl/Spec . Interest

112. A generalization of X is interesting if all the proviously-known boundary non-examples ar*
now boundary examples of the concept.

A check is included here to ensure that the new concept was not simply defined as the*X. closure of the old one.

113. A specialization of X is interesting if all the previously-known boundary examples are now
boundary non-examples of the new specialized concept.

A check is included here to ensure that the new concept was not simply defined as the
interior of the old one.

114. If Cl is a generalization of C2, which is a generalization of C3,..., which is a generalization of
Cj, and it has just been learned that Cj Is a generalization of Cl,

Then all the concepts CI,...,Cj are equivalent, and can be merged, and the combined concept
will be much more interesting than any single one, and the intereutingness of the now
composite concept increases rapidly with j.

The Lisp code has the new interest value be computed as the maximum value of the old
concepts, plus a bonus which increases like the square of j. This is similar to rule number
28. A rule just like the precedinf one exists, with 'Specialization' substituted everywhere for
'Generalization'. Thus a closed ',,,op of Spec links constitutes a demonstration that all the
concepts In that loop are equivalent. Thncc rules were used more frequently than expected.
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Appendix 3.2.6. Heuristics for the View facet of Any-concept

Any-concept . View . Fillin

115. To fill in View facet entries for X,
Find an interesting operation F whose range is X,
and indicate that any member of Domain(F) can be viewed as an X just by running F on it.

While trying to fill in the View facet of Even-nos, AM used this rule. It located the
operation Doubling, whose domain is Numbers and whose range is Even-nos. Then the rule
created a new entry: "to view any number as if it were ad even number, double it". This is a
twisted affirmation of the standard correspondence between natural numbers and even
natural numbers.

Appendix 3.2.7, Heuristics for the In-doin/ran-of facets of Any.concept

Any-concept . In-dom-of/In-ran-of . Fillin

116. To fill in entries for the In-dom-of facet of concept X,
Ripple down the tree of concepts, starting at Active, to empirically determine which active

concepts can be run on X's.

This can usually be decided by inspecting the Domain/range facets of the Active concepts.
Occasionally, AM must actually try to run an active on sample X's, to see whether it fails or
returns a value.13

117. To fill in the In-ran-of facet of concept X,
Ripple down the tree of concepts, starting at Active, to empirically determine which active

concepts can be run to yield X's.

This can usually be decided by inspecting the Domain/range facets of the Active concepts.
Occasionally, AM inspects known examples of some Active concept, to see if any of the
results are X's.

118. While filling in entries for the In-dom-of facet of X,
Look especially carefully for Operations which transform examples and non-examples into

each other;
This is even better if the operation pushes boundary exs/non-exs 'across the boundary'.

This was used to note that Insert and Delete had a lot to do with the concept of Singleton.

13 One key feature of Lisp which permits this to be done is the Errorst feature.

-~~~ ~ -~' -~- -'t - -- -- -
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Appendix 3.2.8. Heuristics for the Definition facet of Any-concept

Any-concept . Defn . Suggest

o 19. If there are no known definitions for concept X,
Then it is crucial that AM spend some time looking for such definitions.

This situation might occur if only an Algorithm is present for some concept. In that case,
the above rule would suggest a new, high.priority task, and AM would then twist the
algorithm into a (probably very inefficient) definition. A much more serious situation would
occur if a concept were specified only by its Intuition entries (created, e.g., by modifying
another concept's intuitions). In that case, rapidly formulating a precise definition would be
a necessity. Of course, this need never arose, since all the intuitions were deleted.

Any-concept Defn Check

120. When checking the Definition facet of concept C,
Ensure that each member of C.Exs satisfies all definitions present, and each non-example fails

all definitions. If there Is one dissenting definition, modify it, and move the offending
example to the boundary.

There is little real "checking" that can be done to a definition, aside from internal
consistency: If there exist several suposedly.equivalent definitions, then AM can at least
ensure they agree on the known examples and non.examples of the concept. If the Intuitions
facets were permitted, then each definition could be checked for Intuitive appeal.

121. When checking the Definition facet of concept C,
Try to find and eliminate any redundant constraints, try to find and eliminate any circularity,

check that any recursion will terminate.

Here are the other few tricks that AM knows for "checking" a definition. For each clause in
the rule above, AM has a very limited ability to detect and patch up "bugs" of that sort.
Checking that recursion will terminate, for example, is done by examining the argument to
the recursive call, and verifying that it contains (at some level before the original argument)
an application of a LISP function on Destructive.LISP.functions.list. There is no intelligent
inference that Is going on here, and for that reason the process is not even mentioned
within the body of this document.

-. .. . - , -,,- j / , -r . /- .. . - . .. r. • .- .. . . , . . . .- , ,. , -'. ,.,,- ,-. , ,a ,k ,-
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Appendix s.3. Heuristics for dealing with-any Active concept

All the rules below are applicable to tasks which involve operations, predicates, relations,
functions, etc. In short, they apply to all the concepts AM knows about which involve doing
something, which involve action.

Active . Fillin

122. If the current task is to fill in examples of the activity F,
One way to get them is to run F on randomly chosen examples of the domain of F.

Thus, to find examples of Equality, AM repeatedly executed Equality.Alg on randomly
chosen pairs of objects. AM found examples of Compositions by actually picking a pair of
operations at random and trying to compose them. Of course, most such "unmotivated"
compositions turned out to be uninteresting.

123. While filling in examples of the activity F, by running F.Algs on random arguments from
F.Domain,

It is worth the effort to specifically include extreme or boundary examples of the domain of
F, among the arguments on which F.AIgs is run.

124. To fill in a Domain entry for active concept F,
Run F on various entities, rippling down the tree of concepts, to determine empirically where

F seems to be defined.

This may shock the reader, as it sounds dumb and explosive, but the concepts are arranged
in a tree (using Genl links), so the search is really quite fast. Although this rule is rarely
used, it always seems to give surprisingly good results.

125. To fill in generalizations of active F,
Consider just extending F, by enlarging its domain. Revise F.Defn as little as po:,ible.

Although Equality is initially only for structures, AM extends it (using the same definition,
actually) to a predicate over all pairs of entities.

126. To fill in specializations of active F,
Consider just restricting F, by shrinking its domain. Check F.Defn to see II some optimization

is possible.

127. After an algorithm is known for F, if AM wants a better one,
AM is permitted to ask the user to provide a fast but opaque algorithm for F.

This was used a few times, especially for inverse functions. A nontrivial open-ended
research problem (,)'4 is to collect a body of rules which transform an inefficient algorithm

14 Following Knuth, we shall reserve a star (') for those problems which are quite difficult, which should take the reader
roughly 3 full lifet;mes to master. Readers not believing in reincarnation should therefore skip such
problems.

A1
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into a computatlonally acceptable one.

128. If the current task is to fill in boundary (non-)examples of the activity F,
One way to get them Is to run F on randomly chosen boundary examples and (with proper

safeguards) boundary non-examples of the domain of F.

Proper safeguards are required to ensure that FAIgs doesn't loop or cause an error when
fed a slightly.wrong (slightly-illegal) argument. In LISP, a timer and an ERRORSET
suffice as crude safeguards.

129. If the current task is to fill In (boundary) non-examples of the activity F,
One low-interest way to get them is to run F on randomly chosen examples of its domain,

and then replace the value obtained by some other (very similar) value. Also, be sure
to check that the resultant I/o pair doesn't accidentally satisfy F.Defn.

The parentheses in the above rule mean that it is really two rules: for boundary non-
examples, just change the final value slightly. For typical non-examples, change the result
significantly. If you read the words inside In the parentheses in the IF part, then read the

" words inside the parentheses in the THEN part as well, or omit them in both cases.

Active . Check

130. When checking an algorithm for active F,
run that algorithm and ensure that the input/output satisfy F.Defn.

131. When checking a definition d for active concept F,
Run one of its algorithms and ensure that the input/output satisfy d.

* ." This is the converse of the preceding rule. They simply say that the definition and

- .algorithm facets must be mutually consistent.

132. While checking examples or boundary examples of the active concept F,
Ensure that each input/output pair Is consistent with F.Dom/range.

If the domaintrange entry is <DI D2... Dk 4 R>, and the i/o pair is <dI d2 ... dk, r>, then
each component di of the input must be an example of the corresponding DI, and the

output r must be an example of R.

133. When checking examples of the active concept F,
If any argument(s) to F were concepts, tag their In-domain-of facets with 'F'.
If any values produced by F are concepts, tag their In-range-of facets with 'F'.

For example, Restrict(Union) produced Add, at one time in AM's history. Then the above
rule caused 'Restrict' to be inserted as a new entry on Union.In-dom-of and also on Add.In-
ran-of.

"=4-4
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Active. Suggest

134. If there are no known algorithms for active concept F,
Then AM should spend some time looking for such algorithms.

This situation might occur if only a Definition is present for some operation. In that case,
the above rule would suggest a new, high-priority task, and AM would then twist the
definition into a (probably very inefficient) algorithm. The rule below is similar, for the
Domain/range facet:

135. If the Domain/range facet of active concept F is blank,
Then AM should spend some time looking for specifications of F's domain and range.

136. If a Domain of active concept F is encountered frequently, either within conjectures or as the
domain or range of other operations and predicates,

Then define that Domain as a separate concept, and raise the Worth of F slightly.

'he 'Domain' here refers to the sequence of components, whose cartesian product is what is
normally referred to in mathematics as the domain of the operation. This led to the
definition of "Anything x Structures", which is the domain of several Insertion and Deletion
operations, Membership testing predicates, etc.

137. It is worthwhile to explicitly calcu'ate the value of F for all distinguished (extreme, boundary,
interesting) members of and subsets of its domain.

139. If some domain component of F has a very interesting specialization,
Then consider restricting F (along that component) to that smaller domain.

Note that these last couple rules deal with the image of interesting domain items. The rext
rule deals with the !nverse image (pre-imag,.) of unusual range Jtcms. We saw earlier in this
document (Chapter 2) how this rule led to the definition of Prime numbers.

139. If the range of F contains interesting items, or an interesting specialization,
Then it is worthwhile to consider their inverse image under F.

140. When trying to fill in new Algorithms for Active concept F,
Try to transform any conjectures about F into (pieces of) new algorithms.

This is one place where a sophisticated body of transformation rules might be inserted.
Others are working on this problem [Burstall & Darlington 75), and AM only contains a
few simple tricks for turning conjectures into procedures. For example, "All primes are odd,
except '2'", is transformed into a more eficient search for primes: a separate test for x-2,
followed by a search through inly Odd-numbers.

141. After trying in vain to fill in examples of active concept F,Locate the domain of F. and suggest 'hat AM try to fill in examples for each component of
that domain.

2 '7: L = :- , ,, ., ,, . ,, , ,. ,.. ,,. . .. . * m .
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Thus after failing to find examples for Set-union, AM was told to find examples of Sets,
because that could have let the previous task succeed. There is no recursion here: after the
sets are found, AM will not automatically go back to finding examples of Set-union. In
practice, that task was eventually proposed and chosen again, and succeeded this time.

142. After working on an Active concept F,
Give a slight, ephemeral boost to tasks involving Domain(F): give a moderate size boost to

each task which asks to fill In examples of that domain/range component, and give a
very tiny boost to each other task mentioning such a concept.

This is both a supplement to the more general "focus of attention" rule, and a nontrivial
heuristic for finding valuable new tasks. It is the partial converse of rule 14.

Active . Interest

143. An active concept F is interesting if there are other operations with the same domain as F,
and if they arm, (on the average) fairly Interesting. If the other operations' domain is
only similar, then they must be very Interesting and have some valuable conjectures
tied to them, if they are to be allowed to push up Frs interestingness rating.

The value of having the same domainlrange is the ability to compose with them. If the
domain/range is only similar, then AM can hope for analogies or for partial compositions.

144. An active concept is interesting if it was recently created.

This is a slight extra boost given to each new operation, predicate, etc. This bonus decays
rapidly with time, and thus so will the overall worth of the concept, unless some interesting
property is encountered quickly.

145. An active concept is interesting if its domain is very interesting.

An important common cue of this rule is when the domain is interesting because all its
members are equal to each other. The corresponding statement about rang$$ does exist, but
only operations can be said to 'ave a specific range (not, e.g. Predicates). Therefore, the
'range' rule is listed under Operation.Interest, as rule number 165.

t-
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Appendix 3.4. Heuristics for dealing with any Predicate

Each of these heuristics can be assumed to be prefaced by a clause of the form "If the
current task is to deal with concept X, wherc X isa Predicate ...". This will be repeated
below, for each rule.

Predicate . Fillin

146. If the current task was (Fill-in examples of X),
and X is a predicate,
and more than 100 items are known in the domain of :,
and at least 10 cpu seconds were spent trying to randomly instantiate X,
and the ratio of successes/failures is both >0 and less than .05

Then add the following task to the agenda: (Fill-in generalizations of X), for the following reason:
"X is rarely satisfied; a slightly less restrictive concept might be more interesting".
This reason's rating is computed as three times the ratio of nonexamples/examples found.

This rule says to generalize a predicate If it rarely succeeds (returns T). One use for this
was when Equality was found to be quite rare; the resultant generalizations did indeed turn
out to be more valuable (numbers). A similar use was found for predicates which tested for
identical equality of two angles, of two triangles, and of two lines. Their generalizations
were also valuable (congruence, similarity, parallel, equal-measure). Most rules in this
appendix are not presented with the same level of detail as the preceding one, as the reader
has no doubt observed.

147. To fill in Domain/range entries for predicate P,
P can operate on the domain of sny specialization of P,
P can operate on any specialization of the domain of P,
P can operate on some restriction of the domain of any generalization of P,
P may be able to operate on some enlargement of its current domain,
The range of P will necessarily be the doubleton set {T,F},
P is guaranteed return T if any of its specializations do, and F if any of its generalizations do.

This contains a compiled version of what we mean when we say that one predicate is a
generalization or specialization of another. Viewed as relations, as subsets of a Cartesian-
product of spaces, this notion of general/special is just that of superset/subset. The last line
of the rule is meant to indicate that adding new constraints onto P can only make it return
True less frequently, while relaxing P's definition can only make It return True mort often.

Predicate . Suggest

148. If all the values of Active concept F happen to be Truth-values, and F is not known to be a
predicate,

Then conjecture that F is in fact a predicate.

This rule is placed on the Suggest facet because, if placed anywhere else on this concept, it
could only be seen as relevant by AM if AM already knew that F were a predeicate. On
the other hand, the rule can't be placed, e.g., on Active.Fillin, since just forgetting (deleting)
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this "Predicate" concept should be enough to delete all references to predicates anywhere in
the system.

Predicate. Interest

149. A predicate P is interesting if its domain is Any-concept (the space of all known concepts).
This is especially true If there is a significant positive correlation (theoretical or
empirical) between concepts' worths and their P-values.

This very high level heuristic wasn't really used by AM during its runs.

W.

-'
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Appendix 3.5. Heuristics for dealing with any Operation

Operation . Fillin

150. To fill in examples of operation F (with dorrain A and range 8),
when many examples oe of A are already known,
and F maps some of those examples oe into distinguished members (esp: extrema) b of B,
Then (for each such distinguished member "b"(B) study F'i(b) as a new concept. That is,

isolate those members of A whose F-value is the unusual item b(B.

This rule says to investigate the inverse image of an unusual item b, under the interesting
operation f. When b-2 and fnumber-of.dlvisors.of, this rule leads to the definition of
prime numbers. When b-Phi 5 and f-Intersection, the rule led to the discovery of the
concept of disjointness of sets.

151. To fill in Domain/range entries for operation F,
F can operate on the domain of any specialization of F,
F can operate on the specialization of the domain of any specialization of F (including F

itself),
F can operate on some restriction of the domain of any generalization of F, at least on its

current domain and perhaps even on a bigger space,
F may be able to operate on some generalization of (some component(s) of) its current

domain,
F can only (and will always) produce values lying in the range of each generalization of F,
F can -- with the proper arguments -- produce values lying in the range of any particular

specialization of F.

There are only a few changes between this rule and the corresponding one for Predicates.
Recall that Operations can be multi-valued, and those values are not limited to the set
{T,F}.

152. To fill in Domain/range entries for operation F, when some exist already,
Take an entry of the form <DI D2... On -- R> and see if DixR is meaningful for some ,i

(especially: ion).
If so, then remove Di from the left side of the entry, Pnd replace R by DixR, and modify the

definition of F.

In LISP, "meaningful" is coded as: either DixR Is equivalent to an already-known concept,
or else it is found in at least two interesting conjectures. This is probably an instance of
what McDermott calls natural stupidity' 6. This rule is tagged as being explosive, and is not
used very often by AM.

1-K3. To fill in a Range entry for operation F,
Run F on various domain examples, especially boundary examples, to collect examples of the

range. Then ripple down the tree of concepts to determine empirically where F seems
to e ssnding its values.

15 the empty set, NIL, {}
16 See [McDermott 76] for natural stupidity. He criticizes the use of very intelligent-sounding names for otherwise-simple

program modules. But consider *Homo sapiens", which means "wise man'. Now Ihere a misleading label..



Appendix 3 AM Discovery in Mathematics *a Heuristic Search -259-

This may shock the reader, as it sounds dumb and explosive, but the concepts are arranged
in a tree (using Genl links), so the search is really quite fast. Although thls rule is rarely
used, it always seems !o give surprisingly good results.

154. If operation F has Jut ben applied, and has yielded a new concept C 1; its result,
Then carefully examine F.Oom/range to try to find out what C.iss should be. C.laa will be all

legal entries listed as values of the range of F.

When F-Compose, say AM has just created C-Emptyolnsert. | 7 What is C? It is a concept,
of course, but what else? By examining the Domain/rangc facet of Compose, AM finds the
entry <Active Active -+ Active>. Aha! So C must be an Active. But AM also finds the entry

%% <Predicate Active -+ Predicate>. Since "Empty" is a predicate, the final composition C must
also be a predicate. So C.Isa would be filled in with "Predicate". AM thus used the above
rule to determine that EmptyoInsetl was a predicate. Even If this rule were excised, AM
could-still determine that fact, painfull), by noticing that all the values were truth-values.

155. If operation F has just been applio, to Ai,A2,..., and has yielded a now concept C as its
result,

Then add F to C.In-ran-of; add F to the In-dom-of facet of all the Al's which are concepts;
add (A I...-# C> to F.Exa.

There is some overlap here with earlier rules, but there is no theoretical or practical
difficulty with such redundancy.

156. When filling in examples of operation F, if F takes some existing concepts Ai, A2,... and
(may) produce a new concept,

Then only consider, as potential Ails, those concepts which al.ready have some examples.
Prefer the All* to be interesting, to have a high worth rating, to have some interesting
conjectures about them, to have several examples and several non-examples, etc.

The danger here is of, e.g., Composing two operations which turn out to be vacuous, or of
Conjoining an empty concept onto another, or of proliferating variants of a boring concept,
etc.

Operation. Check

Below are rules used to check existing entries on various facets of operations.

17 L., insert x into a structure S and then see if S is empty. This leads AM to realize thqt inserting can never result in an
empty structure.

; *.< ,-- -
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157. To check the domain/rings entries on the operation F,
IF a domain/range entry has the form (0 D D... -* R),
and all the D's are equal, and R Is a generalization of 0 (or, with less enthusiasm: If R and D

have a significant overlap),
THEN it's worth seeing whether (0 D D... -+ D) Is consistent with all known examples of the

operation:
If there are no known examples, add a task to the agenda requesting they be filled

In.
If there are examples, and (0D D ... - D) is consistent, add it to the Domain/range

facet of this operation.
If there are some contradicting examples, create a new concept which is defined

as this operation restricted to (D D D -... D).

When AM restricts Bag-union to numbers (bags of T's), the new operation has a
Domain/range entry of the form (Numbers Numbers -4 Bag). The above rule has AM
investigate whether the range specification mightn't also be narrowed down to Number. In
this case it is a great help. The rule often fails, of course: the sum of two primes is rarely a
prime, the cross-product of two lists-of-atoms is not a list-of-atoms, etc. Since this rule is
almost instantaneous to execute, it's cost-effective overall.

158. When checking the domain/range entries on the operation F,
IF a domain/range entry has the form (0 D D....-4 R),
and all the D's are equal, and R is a specialization of D,
THEN it's worth inserting (D D D... -4 D) as a new entry on F.Dom/ran, even though that is

redundant.

This shows that symmetry and aesthetics are sometimes preferable to absolute optimization.
That's why we program in Lisp, Instead of machine language. On the other hand, this rule
wasn't really that useful to AM. Now, by analogy,...?

159. When checking the Domain/range entries for operation F,
Ensure that the boundary items in the range can actually be reached by F. If not, see

whether the range is really just some known specialization of F.

This rule is a typical checking rule. Note that it is active, not passive: it might alter the
Domain/range facet of F, it it finds an error there.

160. When checking examples of the operation F, for each such example,
If the value returned by F is a concept C, add 'F' to C.In-ringe-of.

Operation . Suggest

161. Whenever the domain of operation F has changed,
check whether the range has also changed. Often the range will change analogously to the

domain, where the operation itself is the Analogy.

162. After working on Operation F,
Give a slight, ephemeral boost to tasks involving Range(F).
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This wil be a moderate size boost for each task which asks to fill in examples of that range
concept, and a very tiny boost for each other task mentioning such a concept. This is both
a supplement to the more general *focus of attention" rule, and a nontrivial heuristic for
finding valuable new tasks. It is an extension of rule number 142, and a partial converse to
rule 14.

Operation . Interest

163. An operation F Is Interesting If there are other operations with the same domain and range,
and if they are (on the average) fairly interesting.

164. An operation F Is interesting if it is the first operation connecting its domain concept to its
range concept, and If those domain/range components are themselves valuable
concepts, and there is no enalogy between them, and there are some interesting
conjectures involving the domain of F.

The above two rules say that F can be valuable becuase it's similar to other, already-liked
1) operations, or because it is totally different from any known operation. Although these two

criteria are nonintersecting, their union represents only a small fraction of the operations
that get created: typically, nsithsr rule will trigger.

165. An operation F is interesting if its range Is very interesting.

Range here refers to the concept in which all results of F must lie. It is the R in the
domain/range facet entry <D .-+ R> for concept F. The corresponding rule for 'domains' is
applicable to any Active, not just to Operations, hence is listed under Active.Interest, as rule
number 145.

166. An operation F Is interesting If the values of F satisfy some unusual property which is not (in
general) satisfied by the arguments to F.

Thus doubling Is interesting because it always returns an even number. This is one case
where the interesting property can be deduced trivially Just by looking at the domain and

range of the operation: Numbers4 ven-nos.

167. An operation is Interesting if its values are interesting.

This can mean that each value is interesting (e.g., Compose is well-received because it
produc~.s many new, valuable concepts as its values). Or, it can mean that the operations'
values, gathered together into one big set, are interesting as a set. Unlike the preceding rule,
this one has no mention whatsoever of the domain items, the arguments to the operation.
This rule was used to good advantage frequently by AM. For example, Factorings of

. numbers are interesting because (using rule 232) for all x, Factorings(x) is interesting in
exactly the same way. Namely, Factorings(x), viewed as a set, always contains precisely one
item which has a certain interesting property (see rule 233). Namely, all its members are
primes (see rule 2S2 again). This explains one way in which AM noticed that all numbers
seem to factor uniquely into primes.
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168. An operation is interesting if its values are interesting, ignoring the images of boundary

items from the domain.

That is, if the image of the domain - minus its boundary - is interesting.

169. An operation is interesting if its values on the boundary items from the domain are very
interesting. Ignore the non-boundary parts of the domain.

That is, if the image of the boundary of the domain is interesting.

170. An operation is interesting if it leaves intact any interesting properties of its argument(s).
This is even better if it eliminates some undesirable properties, or adds some new,
desirable ones.

Thus a new, specialized kind of Insertion operation is interesting if, even though it stuffs
more items into a structure, the nice properties of the structure remain. The operation
"Merge" is interesting for this very reason: it inserts items into an alphabetized list, yet it
doesn't destroy that interesting property of the list.

171. An operation is interesting if its domain and range ore equal. If there is more than one
domain component, then at least one of them should equal the range. The more
components which are equal to the range, the better.

Thus "Insertion" qualifies here, since its domain/range entry is <Anything Structures
Structures>. But "Union" is even better, since both domain components equal the range,
namely Structures.
172. An operation is mildly interesting if its range is related somehow (e.g. specialization of) to

one or more components of its range. The more the better.

A weakened form of the preceding rule.

173. If the result of applying operation F. is a new concept C,
Then the interestingness of F is weakly tied to that of C.

If the new concept C becomes very valuable, then F will rise slightly in interest. If C is so
bad it gets forgotten, F will not be regarded quite as highly. When Canonize scores big its
first time used, it rises in interest. This caused AM to form poorly-motivated canonizations,
which led to dismal results, which gradually lowered the rating of Canonize to where it was
originally.

-N4
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Appendix 3.6. Heuristics for dealing with any Composition

Composition. Fillin

174. To fill in algorithms for operation F, where F is a composition GoH,
One algorithm is: apply H and then apply G to the result.

Of course this rule is not much more than the definition of what it means to compose two
operations.

175. To fill in Domain/range entries for operation F, where F is a composition GoH,
Tentatively assume that the domain is Domain(H), and rangie is Range(G). More precisely, the

domain will be the result of substituting Domain(H) for Range(H) wherever Range(H)
appears (or: just once) in Domain(G).

Thus for F-DividesoCount, where Divides:<Number,Number -# {T,F}>, and Count:<Bag
Number>, the above rule would say that the domain/range entries for F are gotten by
substituting 'Bag' for 'Number' once or twice in Domain(Divides). The possible entries for
F.Dom/range are thus: <Bag,Bag - {T,F)>, <Number,Bag - {T,F}>, and <Bag,Number -
{T,F)>.

-7..

176. To fill in Domain/range entries for operation F, where F is a composition GoH, But Range(H)
does not occur as a component of Domain(G),

The range of F is still Range(G), but the domain of F is computed as follows: Ascertain the
component X of Domain(G) having the biggest (fractional) overlap with Range(H). Then
substitute Domain(H) for X in Domain(G). The result is the value to be used for
Domain(F).

This rule is a second-order correction to the previous one. If there is no absolute equality,
then a large intersection will suffice. Notice that F may no longer be defined on all of its
domain, even if G and H are. If identical equality is taken as the maximum possible
overlap betwen two concepts, then this rule can be used to replace the preceding one
completely.

177. When trying to fill In the Isa entries for a composition FaGoH,
Examine G.Isa and H.Isa, and especially their intersection. Some of those concepts may also

claim F as an example. Run their definition facet to see.

To see how this is encoded Into LISP, turn to page 219.

178. When trying to fill in the Genl or Spec entries for a composition FoGoH,
Examine the corresponding facet on G and on H.

This rule is similar to the preceding one, but wasn't as useful or as reliable.

179. A satisfactory initial guess at the Worth value of composition FaGoH is the root-sum-of-
squares of G.Worth and H.Worth.

4. - A -- - -. -- - -- A- - - - - - 'J
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180. To fill in examples of F, where FzGoH, and both G and H are time-consuming, but where
many examples of both G and H exist,

Seek an example x-+y of H, and an example y--z of G, and then return x--z as a probable
example of F.

Above, 'seek' is done in a tight, efficent manner. The examples are H are hashed into an
array, based on the values y of each one. Then the arguments of the examples of G are
hashed to see if they occur in this array. Those that do will generate an example of the new
composition.

181. To fill in examples of F, where FzGoH, and G is timeconsuming, but many examples of G exist,
and it is not known whether H Is time-consuming or not,

Spend a moment trying to access or trivially fill in examples of H.
If this succeeds, apply the preceding rule.
Hf this fails, then formally propose that AM fill in examples of H, with priority equal to that of

the current task, for these two reasons: (I) if examples of H existed, then AM could
have used the heuristic preceding this one, to fill in examples of F, and (ii) it is
dangerous to spend a long time dealing with GoH before any examples at all of H are
known.

This rule is of course tightly coupled to the preceding one. The same rule exists for the
case where just H is time-consuming, instead of G.

182. When trying to fill in Conjecs about a composition FsGoH,
Consider that F may be the same as G (or the same as H).

It was somewhat depressing that this 'stupid' heuristic turned out to be valuable, perhaps
even necessary for AM's top performance.

Composition. Check

183. Check that FoG is really not the same as F, or the same as G. Spend some time checking
whether FoG is equivalent to any already-known active concept.

This happens often enough to make it worth stating explicitly. Often, for example, F will
not even bother looking at the result of G! For example,
ProJ2oSquare(x,y) - Proj2(Square(x),y) - y - Proj2(x,y).

184. When checking the Algorithms entries for a composition FzGoH,
If rang e(H) is not wholly contained in the domain of G,
then the algorithm must contain a "legality" chsck, ensuring that H(x) is a valid member of

the domain of G.



Appendix 3 AM Discovery in Mathewtics as Heuristic Saorch -265-

Composition. Suggest

185. Given an interesting operation F:An..A,
consider composing F with itself.

This may result in more than one new operation. From F-division, for example, we get the
two operations (x/y)/z and x/(y/z). AM quickly realizes that such variants are really
equivalent, and (if prodded) eventually realizes that F(F(x,y),z)-F(x,F(y,z)) is a common
situation (which we call associativity of F).

186. If the newly-formed domain of the composition FuGoH contains more than one occurrence of
the concept D, and this isn't true of G or H,

Then consider creating a new operation, a specialization of F, by Coalescing the
domain/range of F, by eliminating one of th6 D components.

Thus when InsertoDelete is formed, the old Domain/range entries were both of the form
<Anything Structure . Structure>. The newly.created entry for InsertoDelete was <Anything
Anything Structure - Structure>; i.e., take x, delete it from S, then insert y into S. The
above rule had AM turn this into a new operation, with domain/range <Anything Structure

Structure>, which deleted x from S and the inserted the very same x back into S.

Composition. Interest

187. A composition FGoH is interesting if G and H are very interesting.

188. A composition FGoH is interesting if F has an interesting property not possessed by either
GorH.

189. A composition FuGoH is interesting if F '#as most of the interesting properties which are
possessed by either G or H. This is slightly reduced if both G and H possess the
property.

190. A composition FsGoH is interesting if F lacks any undesirable properties true of G or H. This
is greatly increased if both G and H possess the bad property, unless G and H are very
closely related to each other (e.g., HaG,or HG').

The numeric impact of each of these rules was guessed at initially, and has never needed
tuning. Here is an area where experimentation might prove interesting.

191. A composition FGoH is interesting if F maps interesting subsets of domain(H) into interesting
*j subsets of range(G).

F is to be judged even more interesting if the image was not thought to be interesting until
after It was explicitly isolated and studied because of part 1 of this very rule.

Here, an "interesting" subset of domain(H) is one so judged by Interests(domain(H)). A
completely different set of criteria will bc used to judge the interestingness of the resultant

,
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image under F. Namely, for that purpose, AM will- ask for range(G).Interest, and ripple
outwards to look for related interest features.

192. A composition F-GoH is interesting if F-1 maps interesting subsets of range(G) into
interesting subsets of domain(F).

This is even better if the preimage wasn't hitherto realized as interesting.

This is the converse of the preceding rule. Again, "interesting" is Judged by two different
sets of criteria.

193. A composition FGoH is interesting if F maps interesting elements of domain(H) Into
interesting sitbets of range(G).

194. A composition FsGoH is interesting if F" maps interesting elements of rangeo(G) into
Interesting subsets of domain(F).

This is even better if the subset is only now seen to be interesting.

This is the analogue of an earlier rule, but for Individual items rather than for whole
subsets of the domain and range of F.

195. A composition FsGoH is Interesting if range(H) Is equal to, not just intersects, one component
of domain(G).

196. A composition FsGoH is mildly interesting if range(H) is a speci:lize.tlon of one component of
domain(G).

This is a weakened version of the preceding feature. Such a composition is interesting
because it is guaranteed to always be applicable. If Range(H) merely intersects a domain
component of G, then there must be an extra check, after computing H(x), to ensure it lies
within the legal domain of G, before trying to run G on that new entity W(x).

197. A composition FuGoH is more interesting if range(G) is equal to a domain component of H.

This is over and above the slight boost given to the composition because it is an operation
whose domain and range coincide (see rule 171).

Appendix 3.7. Heuristics for dealing with any Insertions

Insertion . Check

198. When checking an example of any kind of insertion of x into S,
Ensure that x is a member of S.

The only types of insertions known to AM are unconditional insertions, so this rule is valid.
It is useful for ensuring that a particular new operation really is an insertion.operation after
all!

I. £ = - % -, .- o.-. . • ° % % .. . . __ - . - . - ,% - . % % - , ° . % - .° -
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Appendix 3.8. Heuristics for dealing with the operation Coalesce

Coalesce . Fillin

199. When coalescing F(a,b,c,...), whose domain/range Is (A B C... -R>,
A good choice of two domain components to coalesce is a pair of identically equal ones.

Barring that, choose a pair related by specialization (eliminate the more general one).
Barring that, choose a pair with a common specialization S, ad replace both by S.

Thus to coalesce the operation "InsertoDelete" [which takes two items and a structure, deletes
the first argument from the structure and then inserts the second argument), AM examines
its Domain/range entry: <Anything Anything Structure -. Structure>. Although it would be
legal to collapse the second and third arguments, the above rule says it makes more sense in
general to cLiapse the first and second. In fact, in that case, AM gets an operation which
tells it something about multiple elements structures.

200. When filling in Algorithms for a coalesced version G of active concept F,
One natural algorithm is simply to call on FAIgs, with two arguments the same.

Of course the two Identical arguments are those which have been decided to be merged.
This will be decided before the definition and algorithm facets are filled in. Thus a natural
algorithm for Square is to call on TIMES.Alg(x,x). The following rule is similar:

201. When filling in Definitions for a coalesced version G of active concept F,

One natural Definition is simply to call on F.Oefn, with two arguments the same.

202. When filling in the Worth of a new coalesced version of F,
A suitable value is 0.9x(Worth of F) # 0.1 x(Worth of Coalesce).

This is a compromise between (I) the knowledge that the new operation will probably be
less interesting than F, and (ii) the knowledge that it may lead to even more valuable new
concepts (e.g., its inverse may be more interesting than F's). The formula also incorporates
a small factor which is based on the overall value of coalescings which AM has done so far
in the run.

Coalesce. Check

203. If G end H are each two coalascings away from F, for any F,
Then check that G and H aren't really (he same, by writing their definitions out in terms of

F.Defn.

Thus if R(a,b,c) is really F(a,b,a,c), and S(a,b,c) is really F(a,b,c,c), and R and S get coalesced
again, into G(a,b) whch Is R(a,b,a) and into H(a,b) which Is S(a,b,a), then both G and H are
really F(a,b,a,a). The order of coalescing is u 'mportant. This is a boost to the more
general impetus for checking this sort of thing, rule 110. This rule is faster, containing a
special-purpose program for untangling argument.calls rapidly. If the concept of Coalesce Is
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excised from the system, one can easily imagine it being re-derived by a more general
'coincidence' strategy, but how will these specific, high-powered, tightly-coded heuristics ever
get discovered and tacked onto the Coalo.'ce concept? This is an instance of the main meta-
level research problem proposed earlier in the thesis (Chapter 7).

Coalesce. Suggest

204. If a newly-interesting active concept F(x,y) takes a pair of N's as arguments,
Then create a new concept, a specialization of F, called F-Itself, taking just one N as

argument, defined as F(x,x), with initial worth Worth(F).
If AM has never coalesced F before, this gets a slight bonus value.
If AM has cowlesced F before, say into S, then modify this suggestion's value according to the

current worth of S.
The ;ower the system's interest-threshhold is, the more allctive this suggestion becomes.

AM used this rule to coalesce many active concepts. Times(x,x) is what we know as
squaring; Equalty(x,x) turned out to be the constant predicate True; Iptersect(x,x) turned
out to be the identity operator; Compose(ff) was an interesting "iteration" operatorig; etc.
This i le is really a bundle of little meta-rules modifying one suggestion: the suggestion that
AM coalesce F. The very last part of the above rule indicates that if the system is
desparate, this is the least distasteful way to "take a chance" on a high-payoff high-risk
course of action. It is more sa.c than, e.g,, randomly composing two operations until a nice
new one Is crm.ated.

205. If concept F takes only one argument,
Then it is not worthwhile to try to coalesce It.

1.:, Th!s rule was of little help cpu.timewlse. since even if AM tried to coalesce such an active
concept,it would fall almost instantaneously. The rule did help make AM appear smarter,
however.

Appendixs.9. Heuristics for dealing with the operation Canonize

bCanonize . Fillin
206. If the task is to Canonize predicates PI and P2 (over AxA)' 9, and the difference between a

definition of P1 and definition of P2 is uol that P2 perform& some extra check that PI

doesn't,
e, Then F should convert any s(A into : member of A which automatically satisfias that extra

constraint.

Thus when P ISame-length, P2-Equality, A-Lists, the extra constraint that P2 satisfies is
just that it recurs i the CAR direction: the CARs of the two arguments must also satisfy

s.1, Compo e(Compoeo,Composo) is an operator which takes 3 operations ftg,h and forms f o g o h"; Lt., their joint

compoeition.
1.19 That is, find a function F such that PI(xy) iff P2(F(x),F(y))

I

- .
* . .. =
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P2. P1 doesn't have such a requirement. The above rule then has AM seek out a way to
guarantee that the CARs will always satisfy Equality. A special hand-crafted piece of
knowledge tells AM that since "T-T" is an example of Equality, one solution is for all the

. . . CARs to be the atom T. Then the operation F must contain a procedure for converting
each ember of a structure to the atom "T". Thus (A C {Z A BI Q Q would be converted
to (T T' T T). This rule is a specialized, "compiled" version of the idea expressed in rule

% number 13.

207. If the task is to Cmnonize PI am 1- over AxA, trying to synthesize F, where AStructure,
.,.'.a The n perhaps there Is t JifinL:' .wed type of struritre B which the Argument to F should

always be converted ink ,, that case, consider P1 and P2 as two predicates over BxB.

T h 1 special-purpose rulE is u, .  . guide a series of experiments, to determine whether P 1
is afterted by adding multiple copies of ey'-sing elements into its arguments, and whether its
value is Affected by rearranging some of r .rguments' elements. In the case of PI-Same-

-size, the an-wers are: multiple elements de "' a difference, but rearrangement doesn't. So
the cannnical .,pe of structure for F-Size mu. be one which is Mult-eles-allowed and also
one which is Unordered. Namey, a Bag. Thus F is modified so that it first converts its
argument to a Bag. Thetn Equality and Same-size are viewed as taking a pair of Bags, and
Size is viewed as taking one Bag and giving back a canonical bag.

208. After F i. created from P1 and P2, as Canonlze(P1,P2):
an acceptable value for the worth of F is the maximum of the worths of PI and P2.

In the actual Lisp code, an extra smalt term is added which takes into account the overall
value of all the Canonizations which AM has recently produced.

209. IF the current task has just created a canonical specialization B of concept A, with respect to
predicates P1 and P2, [i.e., two members of B satisfy PI iff they satisfy P2],

THEN add the fiilowing entry to the Analogies facet of B:
<A PI Operations-on-and-into(A)>
<B P2 Those operations restricted to B's>

This rather incoherent rule says that it's worth taking the trouble to study the behavior of
"\)IN each operation when it is restricted to working on standard or "canonical" items. Moreover,

some of the old relationships may carry over - or at least have analogues - in this
restricted world. When numbers are discovered as canonical bags, all the bag operations
are restricted to work on only canonical bags, and they magically turn into what we know
and iove as numeric operations. Many of the old bag-theoretic relationships have numeric
analogues. Thus we knew that the bag-difference of x and x was the empty bag-, this is still
true for x a canonical bag, but we would word it as "x rnr.us x is zero". This is because the
restriction of Bag-difference to canonical bags (bags of T's) is precisely the operation we call

-.- subtraction.

210. When Canonize works on PI, P2 (two predicates), and produces an operation, F,
Both predicates must ahare a common Domain, of the form AxA for some concept A, and the
if new operation F can have (A -- A> a one of its Domain/range entries.
If a canonical specialization (say 'B') of A is defined, then the domain/range of F can actually

be tightened to <A -# B>, and it is also worth explicitly storing the redundacrt entry (B
- B>.

* .,

- . . . . . . . . . . . . . . . . . .
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211. In the same situation as the last rule,
One conjecture is that PI and P2 are equal, when restricted to working on pairs of B's [i.e.,

pairs of Canonical A's, A's which are in F(A), range items for F, items x which are the
image F(a) of some a(A].

After canonizing Equal and Same-size into thp new operation Length, AM conjectures that
two canonical bags are equal iff they have the same size.

Canonize . Suggest

212. When Canonize works on P1, P2, both predicates over AxA, and produces an operation
F:A-+A,

It is worth defining and studying the image F(A); i.e., the totality of A's which are canonical,
already in standard form. When this new concept Canonical-A is defined, suggest the
task "Fillin Dom/range entries for Canonical-A".

Thus AM studied Canonical-Bags, which turned out to be isomorphic to the natural
numbers. What we've called 'Canonical-A' in this rule, we've referred to simply as 'B' if
earlier Canonizing rules.

213. If PI is a very interesting predicate over AxA, for some interesting concept A,

Then look over PI.Spec for some other predicate P2 which is also over AxA, and which has
some interesting properties P1 lacks. For each such predicate P2, consider applying
Canonize(PI ,P2).

214. After producing F as Canonize(PI,P2) [both predicates over AxA], and after defining
Canonical-A,

It is worth restricting operations in In-dom-of(A) to Canonical-A. Some new properties may
emerge.

Thus after defining Canonical-Bags, AM looked at Bags.In-dom-of. In that list was the
operation "Bag-union". So AM considered the restriction of Bag-union to Canonical-bags.
Instead of Bag-union mapping two bags into a new bag, this new operation took two
canonical-bags and mapped them into a new bag. AM later noticed that this new bag was
itself always canonical. Thus was born the operation we call "Addition".

215. After Canonical-A is produced,
It is marginally worth trying to restrict operations in In-range-of(A) to map into Canonical-A.

This gives an added boost to picking Union to restrict, since it is in both Bags.In-dom-of
and Bags.in-ran-of. This rule is much harder to implement, since it demands that the range
be restricted. There are just a few special-purpose tricks AM knows to do this. Restricting
the domain is, by comparison, much cleaner. AM simply creates a new concept with the
same definition, but with a more restricted domain/range facet. For restricting the range,
AM must insert into the definition a check to eiisure that the final iesult is inside Canonical-
A, not just in A. This leads to a very inefficent definition.

216. After Canonicr N is produced,
It is worthwhil- to consider filling in examples (especially boundary) of that new concept.

A
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This is above and beyond the slight push which rule 12 gives that task.

Appendix 3.10. Heuristics for dealing with the operation Substitute

Note that substitution operations are produced via the initial concepts called Parallel-replace
and Parallel-replace2. The following rules are tacked on there.

Parallel-replace . Suggest

217. If two different variables are used to represent the same entity, 20 then substitute one for
the other.

This is very important if the two occurrences are within th. same entry on some facet of a
single concept, and less so otherwise.

The dominant variable should be the one typed out previously to the user; barring that, the
older usage; barring that, the one closest to the letter "a" in the alphabet.

This heuristic was used less often - and proved less impressive - than was originally
anticipated by the author. Since most concepts were begotten from older ones, they always
assumed the same variable namings, hence there were very few mismatches. A special test
was needed to explicitly check for "xuy" occurring as a conjunct somewhere, in which case
we removed it and y substituted for x throughout the conjunction.

218. If two expressions (especially: two conjectures) are structurally similar, and appear to differ
by a certain substitution,

Then if the substitution is permissable we have just arrived at the same expression in
various ways, and tag it as such,

But if the substitution is not seen to be tautologous, then a new snalogy is born. Associate
the constituent parts of both expressions. This is made interesting if there are several
concepts involved which are assigned ncw analogues.

The similar statements of the associativity of Add and Times led to this rule's identifying
them as analogous. If AM had been more sophisticated, it might have eventually
formulated some abstract algebra concepts like "semigroup" from such analogies.

Appendix 3.11. Heuristics for dealing with the operation Restrict

Restrict. Fillin

219. When filling in definitions (algorithms) for a restriction R of the active concept F,
One entry can simply be a call on F.Defn (F.Algs).

Thus one definition of Addition will always be as a call on the old, general operation 'Bag-
union.' Of course one major reason for restricting the domain/range of an activity is that it
can be performed using a faster algorithm! So the above rule was used frequently if not
dramatically.

20 When we say that x and y represent the some entity, what we really me n is that they have the same domain of identity
(e g., Vx(Bag) cr.d they ore equally free (there is a precise logical definition of all this, but there is little
point to presenting it here.)
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220. When creating a restriction R of the active concept F,
Note that R.Genl should contain F, and that F.Spec should contain R.

221. When creating in a restriction R of the active concept F, by restricting the domain or range
to some specialization S of its previous value C,

A viable initial guess for R.Worth is F.Worth, augmented by the difference in worth between
S and C. Hopefully, S.Worth is bigger than C.Worthl

Appendix 3.12. Heuristics for dealing with the operation Invert

Invert . Fillin

222. When filling in definitions for an Inverse F-1 of the active concept F,
One "Sufficent Defn" entry can simply be a blind search through the examples of F.

If we already knew that 4-16 is an example of Square, th,n AM can use the above rule to
quickly notice that Square-Inverse.Defn(16,4) is true. This is almost the "essence" of
inverting an operation, of course.

Invert. Suggest

223. After creating an inverted form F-1 of some operation F,
If the only definition and algorithm entries are the "obvious" inefficient ones,
Then consider the task: "Fill in algorithms for F-l", because the old blind search is just too

awful to tolerate.

Appendix 3.13. Heuristics for dealing with Logical combinations

Eventually, there may be separate concepts for each kind of logical connective. For the
moment, all Boolean operators are lumped together here. Their definition is too trivial for
a Fillin' heuristic to be useful, and even 'Check' heuristics are almost pointless.

Logical-combine. Check

224. The user may sometimes indicate 'Conjunction' when he really means 'Repeating'.
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Logical-combine. Suggest

225. If there is something interesting to a'iy about entities satisfying the disjunction (conjunction)
of two concepts' definitions,

Then consider creating a new concept defined as that logical combination of the two concepts'
definitions.

226. Given an implication,
Try to weaken the left side as much as possible without destroying the validity of the whole

implication. Similarly, try to strengthen the right side of the implication.

Logical-combine . Interest

227. A disjunction (conjunction) is interesting if there is a conjecture which is very interesting yet
%+' which cannot be made about any one disjunct (conjunct).

In other words, their logical combination implies more than any consituent.

228. An implication is interesting if the right side is more interesting than the left side.

229. An implication is interesting if the right side is interesting yet unexpected based only on
assuming the left side.

Appendix 3.14. Heuriatics for dealing with Structures

Structure . Fillin

230. To fill in examples of a kind of structure S,
Start with an empty S, pluck any other member of Examples(Structure), and transfer

members one at a time from the random structure into the embryonic S. Finally, check
that the resultant S really satisfies S.Defn.

This is useful, e.g., to convert examples of lists into examples of sets.

231. To fill in specializations of a kind of structure,
add a new constraint that each member must satisfy, or a constraint on all pairs of members,

or a coahs.raint on all pairs of distinct members, or a constraint which the structure as a
whole must satisfy. Such a constraint is often merely a stipulation of being in example

% "of an X, for some interesting concept X.

Thus AM might specialize Bags into Bags-of-primes, or into Bags-of-distinct-primes, or into
Bags-containing-a-prime.

K4i
- - U
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Structure. Interest

232. Structure S is mildly interesting if all members of S satisfy the interesting predicate P, or
(equivalently) if they are all accidentally examples of the interesting concept C, or
(similarly) if all pairs of members of S satisfy the interesting binary predicate P, etc.

Also: e KIND of structure is interesting if it appears that each instance of such a structure
satisfies the above condition (for a fixed P or C).

Thus a singleton is interesting because all pairs of members satisfy Equal. The concept
"Singletons" Is interesting because each singleton Is mildly interesting In just that same way.

Similarly, AM defines the concept of a bag containing only primes, because the above rule
says it might be Interesting.

233. A structure is mildly interesting if one member is very interesting. Even better: exactly one
member.

Also: a KIND of structure is interesting if each instance satisfies the above condition in the
same way.

Thus the values of ADD-' are interesting because they always contain precisely one bag
which Is a Singleton.

Appendix 3.15. Heuristics for dealing with Ordered-structures

Ordered-struc. Fillin

234. To fill in some new examples of the ordered structure S, when some already exist,
Pick an existing example and randomly permute its members.

235. To fill in specializations of a kind of ordered structure,
add a new constraint that each pair of adjacent members must satisfy, or a constraint on all

ordered pairs of members in the order they appear In the structure. Such a constraint
Is often merely a stipulation of being in example of on X, for some interesting concept
X.

Thus Lists-of-numbers might be specialized into Sorted-lists-of-numbers, assuming AM has
discovered "s" and assuming it is chosen as the 'constraint' relationship between adjacent
members of the list.

Ordered-struc. Check

236. If the structure is to be accessed sequentially until some condition is met, and if the precise
oresring Is superfluous,

Then keep the structure ordered by frequency of use, the most useful element first.

This is a simple data-structure management trick. If you have several rules to use in a
certain situation, and rule R is one which usualy succeeds, then put R first in the list of
rules to try. Similarly, in a pattern-matcher, try first the test most likely to detect non-
matching arguments.
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237. If structure S is always to be maintein.d in alphanumeric order,
Then AM can 2 l . .ualiy maintain it as an unordered structure, if desired.

Luckily this heavily implementation-dependent rule was never needed by AM.

Ordered-struc . Interest

238. An ordered structure S is interesting if each adjacent pair of members of S satisfies
predicate P (for some rare, interesting P).

When AM discovers the relation "Y, it immediately thinks that any sorted list of numbers is
more interesting, due to the above rule.

Appendix 3.16. Heuristics for dealing with Unordered-structures

Unord-struc. Check

239. To check an example of an unordered structure,
Ensure that it is in alphanumerically-sorted order. If -t, then SORT it.

All unordered objects are maintained in lexicographic order, so that two of them can be
tested for equality using the LISP function EQUAL. Because of this convention, any two
structures can therefore be tested for equality using this fast list-structure comparator.

Appendix 3.17. Heuristics for dealing with Multiple-eles-structures

Mult-ele-struc . Fillin

240. To fill in some new examples of the structure S, where S is a structure admitting multiple
occurrences of the same element, when some examples already exist,

Pick an existing example and randomly change the multiplicity with which varlour members
occur within the structure.

Appendix 3.18. Heuristics for dealing with Sets

Sets. Suggest

241. If P is a very interesting predicate over X,
Then study these two sets: the membet d of X for which P holds, and the Ones for which P

faile.

due to the €errent LOP Wmplementation of data-structures
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While we humans know that this partitions X into two pieces, AM is never explicitly told
this. It would occasionally be surprised to discover that the union of two such complements
Naccidentally" coincided with X. Incidentally, this rule is really the key linkage between
predicates and sets; it is close to the entry on SeLView which tells how to view any predicate
as a set.

Sets. Interest

242. A set S is interesting if, for some interesting predicate P, whose domain is X,
S accidentally appears to be related strongly to {x4X I P(x)}, i.e., to thosa members of X

satisfying P.

To the surprise of the author, this rule never found application in any of AM's runs.

L

L ** ::-::::___
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Appendix 4. Maximally-Divisible Numbers

The honor of your machine is preserved.

Erdos
i

This appendix discusses a discovery motivated by AM: a new little bit of mathematics that
was discovered. It is presented as if it were a math journal article, in a fairly formal way,
almost unmotivated.

After the concept was discovered, the author learned that Ramanujan, a self.taught Indian
mathematician, had worked on similar issues early in this century. The final subsection
contains a relaxed summary of what AM did, what the author did, and what Ramanujandid.

Appendix 4.1. A Meaningful Question

We begin by asking the queKion, "What is the converse concept to prime numbers?" If we
define primeness to mean that a natural number has as few divisors as possible (niamely,
just two of them: I and itself), then the converse kind of number would be one which had
an abnormally large number of divisors.

One could consider the following set M of maximally-divisible numbers:

M {x(N I (Vy<x) (d(y) < d(x))}

where d(n) is the number of divisors of n,2 N' is the set of positive integers, and the vertical
bar, '1' is read 'such that'.

In words, this says that M is the set of all positive integers satisfying the property that every
smaller number has fewer divisors. That is, we throw into the set M a number x if (and
only if) it has more divisors than any smaller number. So I gets thrown in (the smallest
number with I divisnr), 2 (having 2 divisors), 4 (3 divisors, namely 1, 2, and 4), 6 (4
divisors), 12 (6 divisors), etc. Another way to specify M is as the set containing (for all n)
the smallest number having at least n divisors. Notice that we are not going to include "the
smallest number with precisely 5 divisors", since this number (which happens to be 24 or 16)
is bigger than 12 (which has 6 divisors). So no number in M has precisely five divisors.

L Remarked by Paul Erdos, after exming *ome of this appndix'$ materiaL
2 E.g, d(12) I 1,2,3,4,6,12)1J. 6.

1..
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One of the questions at the heart of our study is "Given d, what is the smallest number
with at least d divisor?"

How can we even start on this question? The most powerful tool we have is the following
combinatorially-proved theorem:

(T1) if we write n as 2a13a2.pkak, then d(n) - (al+iXa2Il)...(ak+i).

Our central question could be answered if we could somehow invert this formula into one
which expressed n as a function of d, and then found the minima of that function n(d).
Coupled with the knowledge that each number can be factored uniquely into prime factors,
TI provides a closed-form way of manipulating d(n). That is, n is really a function of the
sequence of exponents when written as 2ala2., so we can consider n -n(aI, &2,..). Then
T I is really a way of expressing d(n) - d(ai, a2 ..).

2::1

..-- - .-

-V'12
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Appendix 4,2. Special Case: n - 2a3b

Let's consider a special case. We'll restrict our attention to numbers n which are of the form

2a3b. So TI says that d(n)-(alXb+l). Consider fixing d, and asking how n varies with a
and b. Notice that we are now saying that (a~lXb.l).d-constant. So we can say that
(b.l)-d/(a~l), so b-(d/(a*I))-l. So our number n is really 253((d/ (e.t))-IJ . Aha! This is an
expression for n simply as a function of a. We can use calculus to find the minima of this
function. That will correspond to the optimal exponent a, from which we can compute the
optimal b.

dnlda a 28(3b(-d/(a.#) 2 )10g(3)) 0 3(d/('1 l ))- (28log(2))

u [( *1)1og(2) - (b1i)log(3)](n/(s.l)).

This is zero when (a.i)log(2) -(b.l)log ').

So we have two equations now:

(#) a (b#l)1og(3)/log(2)

(a+) a d/(b.!)

Together they say that (b+l)og(3)log(2) - dl(b~l), from which we derive (b+l) 2 =

log(2)d/log(3). Substituting this back in, we also get that (a+1)2 . log(S)d/log(2).

If real-valued exponents were allowed, our optimal n(d) would be.

2SQRTIR1f(3)/ Io(2)J . 3SQRT[-Ios(2) / O(3)).

Three observations we can make from intuition - and justify from reality - are (i) this
optimal real value is better than (i.e., S) any integral n (divisible only by 2 and 3) with at
least d divisors, (ii) the ideal n is very close to the best such integral n, (it) the best such
integral n will have exponents a and b which are close to our theoretical real-valued "ideal"
a and b.

For example, if we choose to ask for a number with at least 8 divisors, our theoretical
values for a and b are about 2.6 and 1.2; the ideal n is then about 23. In actuality, the first
number with 8 or more divisors is 24, and It is factored into 031 (i.e., the best integral
values for a and b are $ and i, respectively).

iI



Appendix 4 AM Discovery in Mathematics as Howistic Search -280

Appendix 415 Special Case; n - 2a3bSc

Let's consider a second special case. We'll restrict our attention to numbers n which are of
the form 2a3b5c. So T I says that d(n)u(a+ lXb+ iXc* 1). Consider fixing d, and asking how n
varies with a, b, and c. Notice that we are now saying that (&+I Xb I Xc+ 0-d -constant. So
we can say that (cl)-dI(a*lXb*I), so cu(d/(a~iXb.I))-i. So our number n is really
2ob 5 (dI(s. 1)b 1. 1).

Viewing c as a function of a and b, we can compute the differential

dc - d(dI(a+lXb.I))

*d,[d(iI(a41Xbsl))]

-do((l(a. l)X- I/(b. I)2)db + (II(b. l)X-II(a+I)2)dal

- (c. i)I(b. I))db + (.(c.1)I(a. l))da

We want to minimize this function nun(a,b). It will turn out to be easier to find the minima
of log(n), viewed as a function of a and b. The minima of n will occur precisely at the
minima of log(n). So to find the solutions to dn s. 0, we just find the solutions to dLOGn - 0.
Now log(n) - log(2)a + log(S)b * log5)c. So the differential dLOGn - log(2)da + log(S)db +
log(5)dc. Substituting int the value we obtained for dc, we get

dLOGn o log(2)ds * log(3)db + log(5)(-(cI)I(b~l))db # (-(c*I)(.I))daj

1 log(2)-(c~l )log(5)/(a# )ds s jlog(3)-(c.I )loX(5)/(b*I ))db

One nice way to make this Identically zero is if the coefficients of da and db become zero.
That is, n will have minima when both log(2) u (c~l)log(5)I(a.1) and log(S)

**(c* l)log(5)I(b+ 1) are true. That is, when (a+llog(2) - (b+l)og(S) - (c+l)og(5).

This is a generalization of the earlier result that minima occur when (a~i)log(2)
(b~i)log(3). We can easily see that the general pattern of the constraints are: (a,+I(aj +) -

log(PJ)Iog(Pi).

What are the explicit formulae for the exponents in the k-3 case? We can solve for them

in terms of d by using T I. Namely,

* (s.I)(b#1)(c*1) a d

(@*I) a (c# I Nog(5)/og(2)

(b~l) ,(c*I)log(5)/og(3)

Substituting the last two equations into the first, we get (c+1)3 (log(5))2 -d log(2)iog(3).
Hence c+ I - CUBEROOT~d log(2) log(S) 109g2(5)1.

-77.. ~
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For reasons of symmetry, we will transform this slightly into

C.1 a CUBEROOT[ d log(2) log(3) log(5) 3 / Iog(5)

The nicely symmetric equations for a+l and b+1 turn out to be

s#1 a CUBEROOT[ d log(2) Iog(3) Iog(5)] I log(2)
bol a CUBEROOT[ d log(2) log(3) Iog(5) ]f Iog(3)

Viewed in this way, we can rewrite our equation from the k-2 case into the same kind of
expression, namely:

@#I a SQUAREROOT[ d log(2) log(3) ] / Iog(2)

b.1 a SQUAREROOT[ d Iog(2) log(3) ] /log(3)

Again the general pattern seems to be evident:
rt

airl * KthROOT( d Iog(2) log( 3 )...IoZ(pk) 3, Io)(pi)

As in the k-2 case, the equations for a,b,c have real correspondence to the optimal integral
values of the exponents.

Appendix 4.4. The General Case

We are now ready to consider the most general case, namely when n - 2a13a2""pkak. By TI,
we know that d(n) - (al iXa2")...(ak~l). One generalization of our earlier work would

indicate that minima of n (for a given value of d) occur whenever

(T2) [for all i and j between I and kJ (ai+l)/(aj+i) - log(pj)Ilog(pi).

This is really a set of k-I equations in the k different variables al,...,ak. Using the formula
for d which TI provides, we can solve this system of equations for each ai in terms only of
d. The resulting formulae are:

(T3) [Vikl aii I KthROOT[ d log(2) log(3)...log(pk) ]log(pi)

The deriviation of T3 from T2 is straightforward. Below is the proof of T2, due to Knuth.

He uses Lagrange multipliers.

The task is to minimize n, for a given d. It suffices to find the minima of log(n). Thus
we wish to minimize allog(pl)... aklog(pk), for a given value of d-(alIl)....o(ak+l).

-. ..-...... *.....,.........................................
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But this latter constraint means that otaI).(ak~l) - dJ) is identically zero for any
value of X~ Thus we may view our problem as the minimization of
allog(pl)....aklgPk) + ;ke((all)..(ak~l) - dl For any 1, the partial derivative of this
with respect to aiis log(pj) + '(ll..a~Wa.) At an extremum, all such partial
derivatives vanish. That Is, for any 1, log(pi) + %-[(all) .. (ak.l)J/(ajil) - 0. This says
that (ai.l)log(pi) m4(al).ak)1So, for any I, (ajl)log(pi) - -4k.d. Since X~ and d
are independent of I, this proves T2.

Now that we know T2 and T3 tvi be true, we can actually compute the optimal 3 values for
n. It will simplify matters again to consider only logn) for the moment. [note: SIGMA i(...)
means "the sum, from I-.1 to i-k, of ...J Now

- SIGMA,(log(pj) all

- SIGMA i~log(piX(KthROOT( d log(2) log(S) ...log9(Pk) 3/log(Pi)). 01

*SIGMA 1(KthROOT( d log(2) kog(3)-.log(Pk) ) lg(PI)J

*kEKthROOT( d kog(2) 10g0) ... og(Pk))] -SIGMAi(log(pi)J

This then gives the nice result-

(* n~ {,Ck K"hROOT(d) lKthR0OT(og(2)log(3)..jog9(Pk))3}I flog(2) Iog(3) ... log(pk))

If we let Fk represent the product of the first It primes, then this says

n [,[ek KthROOT(d) KthROOT(FQ} Fk

If we let Gk be e(k KthROOT(log(2)... g~p))J, then this becomes

Kaa Reel iniegraL The exporents ai are satued to be alhowed to have real values.
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(T4) n. {Gk[ KthROOT(d) ]} / Fk.

So by tabulating Gk and Fk, we can efficiently compute the ideal value for n (and for each
ai) given a desired d and allowable k.

Notice that if we are allowed more and more distinct prime factors, that is, as k grows, the
real-valued exponents ai get smaller and smaller, until finally they become negative, and we
have broken all ties to reality. Empirically, the Ideal value seems to be-obtained when no
exponent is allowed to be below 0.5; in those cases, the ideal real value for n is both close to,
and slightly lower than, any Intergral solution.

Of course this is not satisfactory; what we now need is a formula which tells us, for a given
d, how many distinct prime factors any n must have, in order to have d divisors. That is,
we would like to know k as a function of d, or k as a function of n. Luckily, k(n) is a very
slowly changing function.

For the numbers of form n-2o3,s5 ... opk, we can see from TI that d-2k. For maximally-

divisibles, it seems likely that d will In general be larger; say it is of the form d-Ak (where a
is trivially seen to be 12). : Then we can plug this into (0)

e{[log(d)/log(A1 Ah KthROOT[l0g2 logS...Iog PkJ) / 2.3.5...Pk
But the geometric mean is roughly log(pk), which is about log(log(d)). Also, the product of

the first k primes is roughly kk, which is about [log(d)/Iog(0)J[Ioglog(d)-loglog(a)]. Putting
these into the last equation, we get:

n >2 e{[l~g(d)ll~g ( A)XO-1' )l0g( l0g(d)) }

n ? d{loglog(d) (P-1) / log(A))

If the best we can do is the trivial result that 3}2, then we obtain the already-known
relation4 that

n > d{loglog(d) / log2}

If we can show that k is at least 3, then these n's jump to the square$ of their former values.

4 This is in fact the sherpest bound hitherto know for n(d). kt was previous derived much more tortuosly, using methods
not related to the clckvk.
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This would be a much better bound, of course. In general, the sharpest bound will be
found by determining A sharply.

Appendix 4.5. An even stronger claim

A very constructive answer to this whole development could be provided if the following
were true:

(TS) The set M of maximally divisible numbers coincides precisely with the set of integers
obtained in the following manner:

() For each natural number d, use T3 to compute the optimal exponents for
n(d,k), with k as large as possible such that no ai Is below 0.5

(2) Round each exponent to the nearest integer, and compute the corresponding n.
Add this n to the set.

There is probably a nice closed-form formula for such numbers, a sort of "compiled"
version of T3 and T5. This is then the desired characterization of M, Exhaustive search
has in fact confirmed T5 for all d below 1500.5 T5 has the advantage of being intuitively
clear. Perhaps its proof will turn out to be nontrivial or nonexistent. I leave it as "AM's
conjecture*. This is so far the only piece of interesting mathematics, previously unknown,
that was directly motivated by AM.

For example: consider d-1344. The largest that k can be without 1'3 calling for ak < 0.5 is

kW7. For this d and k, T3 predicts exponents 5.9, 3.3, 2.0, 1.4, 1.0, 0.9, and 0.7. Rounding

this off, we get 6, 3, 2, 1, 1, 1, I. Next we compute 26335271111131171. This is 735,134,400.
TI tells us that this has in fact precisely 1344 divisors (coincidence). Exhaustive search tells
us that no smaller n has that many divisors (this is a verification of T5). Incidentally, the
ideal real value for n (for this k and d value, using (*)) is 603,696,064. Notice that it is close
to, and less than, the best possible integral n with 1344 divisors.

Another such "rounded.exponent" number is
n,,213 55372111 i 17119'23'29'3137'4 1'4347'531. The progression of its exponents+l (96
4 3 3 2 2 2 4 2 2 2 2 2 2 2) Is about as close as one can get to satisfying the "logarithm"
constraint. By that I mean that 9/6 is close to Iog(3)/Iog(2) that 2/2 is close to
log(47)/Iog(43), etc. Changing any exponent by plus or minus I would make those ratios
worse than they are. This number n is about 25 billion, and has about 4 million divisors.
The AM conjecture is that there is no smaller number with that many divisors.

Incidentally, the average number in the neighborhood of n has about 210gi09 n divisors
(about 9 divisors, for numbers near this n).

F

5 The only fault is that the number 4 is in , yet isn't found by this procedure. This may be due to errors occurring near
'. * " emN iegers, or it may portend the occasional (perhaps infinitely often) failure of this procedure T5.

V^%
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Appendix 4.6. AM and Ramanujan

I then adopt a different point of view /from Dirichlet, Wigert, and other
V mathematicians who have studied d(n)]. I define a highly composite number as a

number whose number of divisors exceeds that of all its predecessors.

"" Ramanujan

What AM did: A M defined the set M, of maximally.divisible numbers. It thought the set
might prove interesting. AM found several members of M. It had recently learned about
unique factorizatlon, so it factored each member: each number n-2ai...pv was replaced by
the sequence <al,...,ak>. While factored in this form, a rough kind of regularity was
noticed. AM didn't have the concepts of logarithms, exponentiation, e, analyticity, reals,
continuity, etc., so it couldn't possibly carry this work much further.

What the author did (aided and abetted by Randall Davis): Noticing the general pattern in
these sequences', the author developed the results which were described in the past few
subsections. The major results are as follows:

1. The smallest possible number n with d or more divisors (where n is of the form

n,2al...pV) is ekKthROOTdlog2,log3,...,io(pk))/2, 3 ...,Pk. This is a real

number, which is a good lower bound on n(d) (the smallest n with d or more
divisors). If k Is approximable as log(d)/Iog(a), for some 0 (we know A is bigger
than 2), then the preceding formula can be simplified into:

n 2: d~oglog d) (1Sl )/ Io g( ) .

The higher one can prove 0 (>2) is, the better this result.

2. For such "Idealized" real values of n(d), the exponents ai of the prime factors of n

can be computed by the formulae: a-i* a KthROOT~d. log(2) log1(3)e... *lOg(pk)}/Iog(Pi).

These exponents satisfy the well-known relationship that the product of the (a1,l)'s
is equal to d. They also satisfy the lesser-known 7 relation that (ai+I),log(pi) is a

constant (the same for all values of the Index i).

Namely, they seemed to be desribable as: <big no., medium no, msdkm-smll-no,., 2, 2, 1, 1,., 1>
77I thouht this wee "unknown", but later found that Ramanujen hed found a very similar relationship.

IV
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3. The elements of M appear to be those same numbers, but with the above real-
valued exponents (the ai's) rounded to the nearest integer.

What Rananujan did: Very recently, the author was directed to the work of Srinivasa
Ramanujan Aiyangai This Indian mathematician was essentially self-taught. Receiving
little formal education, he had almost no contact with Western number theory. Yet he
became interested in number theoretic issues, and re-derived much of that field all by
himself. In that way, he is perhaps the closest human analogue to AM: he had ability,
techniques, background knowledge, and he was left to explore and redevelop much
elementary mathematics on his own. Let me quote from G. H. Hardy's final' sketch of this
genius:

"The limitations of his knowledge were as startling as its profundity... Here
was a man whoh...ad found the dominant terms of many of the most famous
problems in the analytic theory of numbers, and yet...his ideas of mathematical
proof were of the most shadowy description. All his results, new or old, right or
wrong, had been arrived at by...intuition and induction from numerical

* examples."

- It was exciting to learn that Ramanujan had also defined the very same set M, which he
called highly-composilte numbers. His great interest in them has been almost unique' within
mathematics circles - until AM was led to consider them. In an article publisheJ in 1915,
Ramanujan derives the relationship: ai.lof(pi)-const, which he says holds approximately,

for values of i which are much smaller than k. He establishes this using inequalities (and
using the distribution of prime numbers n(x)). Thus it has a different flavor from the
similar relationship derived using calculus (2 abve, and also found as statement T2 a
couple pages Lgo). Also, Ramanujan at this point went off on a different path, and missed
the other two results listed above (*1 and #3). Instead, he defined a specialization of th.s
concept, which he called 'superior highly-composite numbers', and investigated them in
detail. Neither AM nor the author had the sophistication to make that definition and to
find the results which Ramanujan subsequently uncovered about superior highly-composite
numbers.

Taken from Ramnujen'e obituary notice, 1921. Found in the preface to [Rairanujan 271

"11- 1 , 9 recently, Pl4 Erdos he been studyint these h ihly-composite numbers.

'4',
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U Appendix 5. Traces of AM in Action

There are three types of traces which are represented in this appendix. First comes a high-
level prose desription, a commentary on AM as it goes through a long, successful run. This
is an expanded version of the historian's descr',:,ion of AM as a mathematician, found in
Section 1.3, on page 10.

Next comes a detailed description of what AM did, on a numbered task.by-task basis. This
is an expanded version of the task-by-task trace given in Section 6.1, on page I 15. For each
task, a paragraph is provided explainin - v. hat AM did, why, and what happened. These
task summaries start on page 294. The task numbers listed there correspond to thenumbering in Section 6.1.

Finally, several pages of traces are presented In totally undoctored form, so the reader can
see that (i) it is harder to follow than the slightly rephrased ones, and yet (ii) those earlier,
"doctored" traces didn't enhance (or alter the the spirit of) what AM printed out.

Appendix 5.1. Prose Traces

In this section are sketched many of the paths which AM explored during its runs. Besides
describing what AM did, this section will explain why, and indicate where each path led.
Along the way, some concepts were created which were interesting to us (in the smug
wisdom of millenia of hindsight) but which AM never bothered to develop. These will be
noted, and a stab will be made to apologize for AM1 . A few exciting moments occurred
when AM became Interested In a concept which had been ignored by humans - at least,
unknown to the author. Very often the "new discovery" was never shown to be anything
other than cute (e.g., the concept of Timberline; see page 133 for a definition and diagram
of it).

AM began by exploring structures and structural operations. After it was started, with the
base of knowledge outlined in the previous chapter, the main activity AM did for the first
several minutes was to fill in examples of various kinds of structures (e.g., Sets), structural
operations (e.g., Insert), and create new concepts of this tlipe (e.g., Singleton). In tiore detail,
here is what was done:

Trying to fill in examples of set-operations, AM kept failing because there were no known
examples of Sets io "run" those operations on. So it turned to filling in examples of Sets.
Some of these came from the recursive definition of a set: "S is a sft if S-fl or if bot- (I) we
can pull an element y out of S using Some-member, and (ii) Set.delete(y,S) is a stt". A
heuristic rule knew to extract the base case from such a definition, yielding {) as one
example of a set. Another heuristic said to run operations whose range is 'Sets'. One of
these Is Set-insert. So a procedure for getting a new set is to take the given set S, and
anything y, and run Set-insert(y,S). When this was done, using S-{}, a bunch of singletons

The typical excuse is that AM wa. distracted at thot moment by some even more interesting took.
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werr created. AM literally collected Examples(Anything) and randomly chose members y
fror1 , that big and varied assortment. Other se" )perations were run just to provide some
additional examples of Sets. Not every attempt w:- ,ucessful, of course: one heuristic said
to fitid some examples of Listi, and then use the Vin,, facet of Sets to transform them lnto
sets. Unfortunately, there were no examples of any other kinds of structures at the moment,
so thi s rule fail-ad. After about 20 cpu seconds, t.he time and space quanta were both just
about exhausted. Roughly 30 examples of sets were found.

In similar ways, examples were found for Bags, Lists, Osets, and Ordered-pairs. Examples
of structural operations were found "incidentally" as above - to aid in producing examples
of a certain kind of structure. Occasionally, the primary task (the one selected from the
agenda) was to find examples of a given operation. In that case, AM spent a great dea! of
time just on that one operation. For example, consider Set.union. When AM go' around to
filling in some examples for it, many examples already existed under the concepts of Sets,
Bags, and Bag-union. One way to get examples of Set-union was by analogy to Bag-union.
This caused some slightly erroneous entries to be found (e.g., {a,b,c~u{a,c,e).{a,a,b,c,c,e)).
Such errors were soon caught and corrected when the task "Check examples of Sot-union" was
chosen from the agenda. Slmilar errors and corrections occurred when AM viewed lists as
if they were osets, in order to find examples of osets.

The simple development described above was broken frequently by %ome new concept being
created and found to be very interesting. In fact, if left to its own judgment, AM would
never finish the above process, because of these interruptions. The user must interrupt and
tell it to ignore new concepts, if he really wants AM to finish finding examples of all those
structures and operations.

What kinds of concepts were created, and why? What did AM do to investigate them? In
general, what happened was this: As AM collected examples of a concept C, tile
characteristics of its efforts (how easy/hard to find examples, how varied they were, etc.)
caused certain heuristic rules to trigger. Those rules then caused some new concepts to be
created, for a particular reason. AM would find examples of them, then compare the results
with already-known concepts.

The first instance of this process was when AM found many exam,.s of sets so easily. A
rule said that in such cases, it was worthwhile specializing the concept Sets. That is, make a
new concept which would have fewer examples. One way AM did this was to look over the
Interest features of all generalizations of Sets, pluck a couple of them, and conjoin them
onto the definition of Sets, thereby getting a definition for a brand new concept, called
interesting-sets or INT-Sets for short. The feature selected first was the following: each pair
of elements of the structure satisfy the same rare predicate P, for some P. This was
previously tacked onto the Interest facet of Structures. Initially, there were very few
predicates knE:w: Constantly-True, Constantly.False, Object-Equality. The following three
types of INT-Sets -.Yore therefore eventually found:

(I) Sets - the time concept but in a new disguise (for any pair of members from any
set, Corstantly-True wou!d return True),

(ii) Empty-sets - an aiready known concept, but now with a new definition (for any
pair of members from any set, Constantly-False would never return True), and

(iii) Singletons '(a)' (sets for which all pairs are Equal to each other).
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This immediately catapulted the empty set to stardom. Another heuristic rule had AM
restrict its attention to the predicates which were not trivial. I~t thi: case, both Constant-
True and Constant-False were no longer eligible. So the only remaining INT.Sets were
those for which all pairs of elements were Equal. AM decided to explicitly define a new
kind of set having just that definition. This became a specialization of INT-Sets, called
Equality-sets or 7sets for short. Since the empty set was Already distinguished, it was
decided not to include it as a vaho Eset. So Esets were precisely the sets we would call
Singletons.

Unfortunately, the set-operation Union, when applied to Singlet6ns, didn't always yield
singletons. By isolating the kind of sets they did yield, and not counting the few extreme
cases when they yielded singletons, AM discovered the concept of Doubleton: a set with
precisely two members. Typically, the union of Singletons was a doubleton, their
Intersection was the empty set, their Set-difference was a singleton, inserting anything into a
singleton was a doubleton, removing something left a singleton, etc. The exceptions were all
related to when the arguments were equal.

Several more structural concepts were created and explored in this way, besides Singleton:
Doubleton, Tripleton, Function (an operation, all of whose values were singleton sets: i.e., a
single-valued operation),... In general, these occurred because the intial primitive concepts
were too general, too easy to satisfy.

During its investigation of Set-Intersection, AM noticed that sometimes XnY-X, and
formalized that relationship between two sets. This is Just the relation we normally call
Superset. The notion of Subset also was discovered, but AM never had much interest in
either of these notions.

When AM looked for examples satisfying the predicate Object-Equality, abbreviated Equal,
the situation was just the opposite. A heuristic rule attached to 'Active' indicated that
examples could be found by randomly instantiating the two arguments of Equal with a pair
of objects. There were about 100 known e :amples of st-uctures. AM gathered them into one
set, and then repeatedly chose a pair of them to run Equal on. Thus only about 1% of the
time did It succeed (did Equal return the value 1). Another heuristic triggerred, and said
that in such cases, it was worthwhile trying to generalize the predicate Equal. A new task to
this effect was added to th agenda.

Soon, AM selected this task, and tried to create new concepts which were generalizations of
Equal. One definition of Equal was a transparent recursive one, which essentially said that
x and y were Equal 1ff their Cars and their Cclrs were, pius it had a base step that asked if
both arguments were empty (in which case Equal returned True), or if precisely one
argument was empty (in which case Equal returned False), or if both argumern s were
identical atoms 'True), or if they were nonldentical atoms or only one was an atorm (False).

X (x,y)
IF x and y are ;-entical atoms, THEN return True;
ELSE IF either x or y is not a list, THEN return False; -Ease

ELSE IF both x and y are Null lists, THEN return True; Cases
ELSE IF only one of x or y is Null, THEN return False;

ELSE both of these must be true:
Equal( CAR(x), CAR(y) )
Equal( CDR(x), CDR(y) )
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One heuristic rule that AM posessed suggested that this could be generalized in a small
way by weakening the base step. A couple new concepts' were created this way, but they all
turned out to be trivial: either constantly returning T, or no different than Equal was.

Another heuristic suggested weakening the recursive step. One way to do this, since the
recursive step is a conjunction, is to remove one of the conjuncts. The rule checks to ensure
that the definition is still recursive: oqe of the remaining conjuncts must call on the function
itself. In this case, both conjunct, call on Equal, so AM can remove either one. Two new
concepts were generated in this manner. For example, here Is one of them, which AM
named "EquB":

X (x,y)
IF x and y are identical atoms, THEN return True; L
ELSE IF either x or y is not a list, THEN return False; .- se

ELSE IF both x and y are Null list,; THEN return True; F ases
ELSE IF only one of x or y is Null, THEN return False;

ELSE EquO( CDR(x), CDR(y))

Note that the base cases were unchanged; the recursive step is a recursion in the CDR
direction, but no longer in. the CAR direction. A note to that effect is placed inside the
definition of EquO Itself, as a comment. Other parts of EquO can be filled in easily: it is a
generalization of Equal, it is an example of a Predicate, its domain/range is the same as
Equal, its worth is initially set a little higher than Equal's, etc.

This predicate maps down two lists, one element at a time, and returns True iff they both
become empty at the same moment. That Is, iff they have the same length. In fact, we can
assume that the user interrupts and orders AM to rename EquO as *Same-length".

The other new generalization, called "Equl", examines the CAR's (i.e., the first elements) of
a pair of lists, and returns True if they were identical atoms; if they were both lists, it
recurses on those two lists. -A human LISP programmer's interpretation is as follows: when
the two lists were written out in standard notation (:aing parentheses), all the initial left
parentheses match, and the first non-left-parenthesis entity of each list also matches.
Although this is Isomorphic to numbers again2, AM didn't pursue this concept very far.
Most of the examples of lists AM knew about were only I-level deep, although they varied
significantly in length. If it'had been otherwise, AM might have developed Equl into
Same-length, and lost interest in EquO. As it was, the Worth of this concept Equl slowly
declined, and very few tasks involving it bubbled up to the top of the agenda.

The concept of Same-length will form the springboard for the development of cai'dtnallty, a
tale which is related In a little while. Before moving on, let's mention a couple more set-
theoretic a-.tivities that AM did.

Several moderately interesting compositions and coalescings were done to set-operations.
(Actually, to structure.operations). First let's discuss the coalescings of operations f(x,y) into
new operations f(x,x) - where a pair of arguments is made to coincide. Coalescing Insert
inset S into itself) led to an operation which always seemed to give a bigger set than it

Two list , tucreo were treated as equivalent if they have the eame number of left parentheses; zero Is the list NIL;
addW4 I is conei with NILI subtracting I is CAR.I. N
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started with. This led AM to the finitely-true conjecture that a set is never a member of
itself. The conjecture was rediscovered when the coalescing of Delete seemed to produce the
identity operation (Deleting S from S never seemed to change the value of S).

Coalescing Intersect also gave the identity operation; this showed that SnS-S (apparently).
Similarly for Union. Coalescing "Compose" gave a new operation of' some value: the notion
of composing f with f. When this was applied to, e.g., Intersect, it created the new operation
Intersectolntersect, which took 3 arguments and formed their common intersection. By
forming this in two ways - (xny)nz and also xn(ynz) - AM noticed that they were the same,
that the order didn't matter. Since xnx had already been shown to be the identity operation,
multiple occurrences of an element in an intersection don't make any difference. Finally, AM
had constructed xny and ynx as two separate operations, and then found them to be
equivalent. Taking all these results together, it was possible to view n as taking a Set of sets
as its argument, and forming the intersection of all those sets. Thus n({ {a,b,c),{c,g,h},{a,c,e}

Some valuable compositons were formed. By forming xn(yuz) and (xny)u(xnz) as two
separate compositions, AM found their equivalence via experimental data. This was one
case where the Intuition functions had given AM an unfair advantage, since the Venn-
diagram abstract representation for sets suggested this relationship explicitly. When the
intuition was removed, the discovery was made much more valid. All of de Morgan's laws
were discovered in this manner, incidentally. Several special cases were singled out,
involving empty sets, singletons, and doubletons.3

The compositon DeleteoInsert is not quite so trivial as one might think: it takes a s,.ructre S,
inserts an element e, and then removes element e. This simple operation can be used to test
the type of structure that S is: it never alters a Bag or a List, but it does alter Sets and
Osets. Orthogonally, InsertoDelete always alters Lists and Osets, but ca, 1eave Bags and
Sets unchanged. The first composition tests for multiple elements, and the second
composition tests for order. AM defined both of these, and (at least par:'.ly) perceived their
abilities to distinguish structural types.

Operations formed by switching the two arguments of an old per.ion wer,, .;a -aginally
interesting. They helped pin down the true nature of what kind or argumept tOe operation
should be considered as taking. For example, Union(x,y),Union(y,x), so Union ca:n t;ke an
u'nordered collection of sets as its argument, and form their union. Similarly, %-e set! that
Jnsert(x,y) is in general quite different fror.) insert(y,x). When AM tries to ;ee what
ivariants exist for this operation, it can notice only A'. the trivial constraint ioy is

;:jfficient to cause the order of arguments not to matter. If il had the concept of tho LSI
fNiction "COUNT", which' counts up all the storage space used, or "FLATTEN", wi ch
ret,'wves all parentheses from a list structure, then AM would notice that the COUNT% of
bot, forms of Inserting were -, ual in number, and that their FLATT EN's were equal, sets
of el - -ients.

Lookine, for invariants is one favorite pastime of AM. In general, two operations f and r

Eg., if x s e singleton, then xfl(yUz) is equal to either xny or to xflz; if both those sets were the esmar, then of course
ti'yUz) is oqual to their common value; if the two sets differ, then one is empty and the other is x, end the
SItim e intersection is equal to x. Or: that intersection is always either x or the empty set.

%
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will not coincide. AM wants to find a unifying operation U, such that U(f(x))-U(g(x)); or,
AM tries to find a U such that f(U(x))-g(U(x)). This is of course the idea mathematicians
normally refer to as homomorphism. AM calls this process Canonizing. Canonizing the two
orders of Insert (x into y, and y Into x) would hopefully find the operation U-FLATTEN
or U-COUNT. Canonizing Same-length will cause -the operation of Length to be
synthesized. Canonizing the notion of angles-equal.in-measure were the operations we
normally call rigid motions in the plane.

Let's pick the main thread of development again, before we lose it entirely. Earlier, the
operation "Same.length" was synthesized, as a generalized form of the predicate which told
when two structures were equal. Same.length(x,y) is True iff x and y are two list structures
which have the same length (i.e., the same number of elements). This new predicate was
examined by AM, and sure enough it let many more pairs of random objects return True
than Equality did, yet it didn't let too high a percentage through: just about 10. This made
AM want to find an invariant, a canonizing function f, which put any given list structure x
into a standard form f(x), satisfying:

Same-length(x,y) iff Equal(f(x),f(y))

That is, x and y would have the same length precisely when the standard forms of x and y
were identically equal to each other.

AM had to synthesize this function f, step by step. First it performed some experiments, and
found that Same-length didn't care what the type of its arguments were. If a certain Set S
did/didn't satisfy Same.length(R,S), then the same result would obtain if S were replaced by
Viewing S as a list, or as a bag, or as an oset. Thus the standard form of' a structure could
be fixed as one specific type. But which should it be (bag, set, list, oset)? To find out, AM
ran two more experiments. The first experiment was to see whether Same-length(R,S) was
affected when the order of elements inside R were changed. This turned out to be negative.
So R might as well be an unordered structure: bag or set. The next experiment had AM
decide whether or not multple elements inside R would affect the value of Same.length(R,S).
This turned out positive, so multiple elements had to be taken into account. The canonical
type of argument was thus either bag or list. Together, the two experiments indicated that
the type had to be Bag. So the canonizing function f would first convert any argument R to
a bag. A note tacked onto the Same-length concept's definition said that this concept didn't
look at the Car's or value-cells of its arguments. That would mean that they should all be
replaced by some fixed value, like T. This checked out experimentally. So f should replace
each element In the structure R by the constant T. The final operation f synthesized was:

f(R) i Replace-oach-element-by-T ( Convort-to--bag (R)).

This operation would convert {a, (b,c,{d),e,e), q) into (TT,T). The set of standard forms for
bags was called Canonical-bags, and renamed by the user as Numbers. The canonizing
operation f was called Length, by the user, since It converts any structure into a "number"
which represents the length of that structure:

Sar,-Iinlth(R,S) Iff Equai(L*ngih(R),Lonh($))

AM now made explicit an Important analogy: bagsonumbers, equalosame-length, bag-
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operations[those same operations, restricted to canonical.bags]. Several minutes were spent
developing these restricted bag-operations. The old operation of inserting a bag $ into
itself provided a cute way to "add I" to any number. The Bag-union operation union
turned into what we call Addition:

Bag-union( (T T T) (T T) ) u (T T T T T) means "3+2-5", in unary.

TIMES was discovered in four ways, as discussed previously in the thesis.

The intersection of two "numbers" is the operation we call MINIMUM:

Intorsct((T T T) (T T T T)) m (T T T) just says "Minimum(,4)-S".

AM likes to find inverses, and the inverse of these operations turned out to be the ones we
call subtraction, factoring, division, less-than, etc.

AM likes coalescing, and some important operations were created that way, too: Add(x,x) is
Doubling; Times(x,x) is Squaring; the inverses of those were Halving and Square-rooting
(both restricted to natural numbers).

AM worried about which numbers could be halved or square-rooted, and this led to the
creation of the concepts Even-numbers and Perfect-squares. When asking' when a number z
can be the result of a multiplication involving x, AM derived the notion of Divides;
analogously, AM defined the relation which meant that Add of x and something else could
yield z. That relation is just "", and was called LEQ, by the user. AM noticed many simple
properties of Inequalities.

AM likes composing and reversing args, and thereby figured out that most arithmetic
operations like Add and Times take a bag of numbers to work on.

TIMES was, as we said, factoring: given n, find all possible bags of numbers (>1) whose
product yielded n. The identity of Times ("") was intentionally excluded, since its presence
in any quantity would not affect the result of Times. AM soon asked itself about numbers
with extreme or unusual factorings.

Primes were found in this way, as was Goldbach's conjecture. The example in chapter 2
went into this in great detail. A large number of spurious analogous concepts were created
and studied, to no avail. For example, AM asked itself about numbers which could uniquely
represented as the sum of two primes. As another example, AM defined the concept of
Square-roots-of-primes, which of course was not a winner.

The unique factorization of any number into primes was perceived quite naturally, but
many seemingly elementary concepts were left undiscovered. AM never defined gcd (the
greatest common divisors) onits own; it was, however, possible to guide it to discovering that
concept.

The task-by-task trace in the next section closes with the restriction of addition to primes;
i.e., p+q-r for primes p,q,r. This situation only occurs when p (say) is 2, and q,r form a

L prime pair. That trace will of course delve Into concepts not mentioned above, and

El'0
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conversely AM happended to miss, onthat run, some of those mentioned in this section.
Finally, both sections omit mention of several interesting acitivites AM performed:
maximally-divisibles and all the geometric concepts, for example. The line must be drawn
somewhere. The frustrated reader should try AM himself, and watch its progress.

Appendix 5. A 'Nice' Task-by-task Trace

Now that we've discussed this development at a fairly high level, let's list what AM did task
by task. The lines below give a highly compressed "trace" of AM's sequence of behavior.
The tasks in the "best run" 4 are listed in order, and numbered. For each, I have condensed
AM's printout, usually retaining some of the reasons AM had for atempting the task, the
methods AM used, the final outcome, and occasionally a bit of commentary (in italics). The
task numbers below correspond to the numbering used in Section 6.1, starting on page 115.

*s Tu..k I s$$Fill in examples of Compose, because Compose is highly-rated and no examples
of Compose are known yet. Several heuristics relevant, but none succeeded. One of them,
heuristic rule number 122, failed because no operations coud be found which had
examples. Also important at this moment was heuristic rule number 1b3: see Appendix S.

*Task 2 ** Fill In eximples of Set-union, because Set-union is highly-rated, and no
examples of Set-union are known yet, and if some examples had been knowq earlier then
AM would have been able to Fill in examples of Compose. Several heuristics relevant, but
again none succeeded.

** Tak3 ** Fill in examples of Sets, because Sets is highly-rated, and no examples of Sets
are known yet, and if some examples had been Known earlier then AM would have been
able to Fill In example of Set-union, and AM was recently working on Domain(Set.union),
and AM was recently working on Range(Set-union). Several heuristic rules are relevant.
After rule 31 succeeded, so could many other techniques (e.g., rule S8). In fact, it was so
easy for AM to crank out one example of a set after another, that rule 45 triggered.

: g Task 4 ** Fill in specializations of Sets, because it was very easy to find examples of Sets,
and no specializations of Sets exist yet, and Focus of Attention. Many ways of creating new
concepts, new specialized forms of Sets, were relevant. AM created INT-Sets, defined as "A

4,-c (S) S is a set, and all pairs of members of S satisfy the rare predicate P". AM also created
BI-Sets, defined as " x (S) S-1), or else both CAR(S) and CDR(S) are BI-Sets. The former
specialization will lead to Singletons, the laetor deals wtht nests of braces (sets with no atomic
elements).5

*" Task 5 ** Fill in examples of INT-Sets, because any such item will automatically be an
-".- interesting example of a Set, and INT-Sets was just created, and no examples of it are

known yet. Very slowly, 6 examples were found via inference, and then 7 more were
produced quickly via more brutish methods. After eliminating duplicates, only S remain: {},
(A), and (B). In each case, the predicate P was "Equal", and the worth of the concept

' N Equal was raised slightly.

p4
4 Actually, a couple 'very good* rune *,v been appended, but NOT spliced together to the benefit of AM.
ReRat that italics signify the author's comments, and contain information which AM -- and probably the user as well --

could not h" known at the time.
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** Task 6 ** Check all examples of INT-Sets, because many unchecked examples are present
there, and Focus of Attention. All three examples were confirmed. No surprises were
encountered. One of the three INT-Sets turned out to be an Empty-structure, but no
conjecture was actually formulated at this time.

** Task 7 ** Check all examples of Sets, because many w.re recently found and never
checked, and the previous task dealt with a specialization of the Sets concept. One small
modification had to be made to one of the sets (namely, {b,a,b)-.[a,b}). Based on empirical
evidence, AM hypothesizes that Sets may really be no more specialized than Unordered-
strucs. AM will reserve judgment until after it has tried to find examples of Bags. (See
heuristic rule 108, page 248.) Similarly, AM considers the possibility that all Non-multiple-
elements-strucs are really Sets as well. Before relying on this flimsy conjecture, AM must first
look for examples of Osets, and see if they are really also Sets.

* Task ** Fill in examples of Bags, because no examples of Bags exist yet, and to help
settle the question about all unordered structures being sets. 10 examples found. None are
sets.

STeak 9 ** Fill in specializations of Bags, because it was very easy to find examples of Bags,
and no specializations of Bags are known about yet, and Focus of Attention. Many ways of
creating new concepts, new specialized forms of Bags, were relevant. AM created INT-Bags,
defined as "A (S) S is a Bag, and all pairs of members of S satisfy the rare predicate P".
AM also created BI-Bags, defined as "N (S) S-0, or else both CAR(S) and CDR(S) are Bl-
Bags."

** Task 10 ** Fill in examples of Osets, because none exist yet, and to help settle the question
about all nonmult-strucs being sets. 13 distinct examples found. None are sets.

** TInkl. ** Check examples of Osets, because many unchecked examples of Osets exist on
Osets.Exs, and Focus o," Attention. All confirmed. The priolrty rating of this task is not
high enough to inspire the creation of any new concepts. One weak conjecture made: all
ordered structures are Osets. Will settle this by:

** Teak 12 ** Fill in examples of Lists, because none exist yet, and to help settle the question
about all ord-strucs being osets. 29 examples found. None are osets.

STask 13 2* Check examples of Lists, because many unchecked examples of Lists exist, and
Focus of Attention. All confirmed. Nothing special noted or motivated.

*2 Task 14 * Fill in examples of All-but-first, because no such examples exist yet, and AM
was Just working on Domain(All-but-first), and AM was recently working on Domain(All-
but-first). The similarity of the last two reasons escaped AM, and points up one of its flaws.
AM is swayed by the presence of a slightly-different reason just as much as by a very-different
supporting reason. There is no processing done on the reasons. Choosing this task represents

I:: a radical shift of attention for AM. 32 examples found, mostly by applying All-but-first to
the examples of Lists and Osets already known.
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** Task 15 ** Fill in examples of AIl-but-last, because none exist yet, and AM was recently
working on Domain(All-but.last). Another poorly-motivated task. Luckily for AM, the user
erroneously believes that this task is also chosen to be symmetric with the last task. 45
examples found.

** Task 16 ** Fill In specializations of All-but-lat, because it's so easy to find examples of it,
and no specializations exist yet, and Focus of Attention. The syntactic methods AM can
bring to bear are not enough to produce any meaningful new concepts, and this task Fails.
Failure of a task causes 'Focus of Attention' to go away fdr one cycle.

**Task 17 ** Fill in examples of List-union, because none exist yet. Another wild shift of
attention. 3 examples derived by symbolic manipulation of the definition facet of this
concept, then 22 more derived using less inferential techniques (some were garnered by
running Llst-union.AIg itself on the early examples!).

** Task 18 ** Fill in examples of Projil, because none exist yet. 26 found.

** Task 19 ** Check examples of All-but-first, because many were recently found but not yet
confirmed. All check out. This task has no repercussions (new concepts, tasks, etc.).

*s Task 20 ** Check examples of All-but-last, because many unchecked examples exist on the
Examples facet of All-but-last. All confirmed, with no repercussions. If the initial Worth
values of All-but-first and All.but.last are set high enough, AM defines a new concept at this
point, a new kind of ordered structure: X (3) All-but-first(S) - All-but-last(S). In fact, the only
kind of Osets included herein are those which are singletons or empty. Among lists, it also
includes those which contain just one kind of element.

**Task 21 ** Fill In examples of Proj2, because none exist yet. 26 found. AM will typically
quit looking for examples if (i) the time allocated runs out, or (ii) the space allocated is used
up, or (ii) 26 examples are found, or (iv) 151 attempts to find examples fall. The cosmic
significance of 11 has rarely been recognized in print. Perhaps 151 is more comic than cosmic.
Seriously, these numbers must be changed by almost an order of magnitude before any gross
change in AM's behavior is noticed.

** Task 22 ** Fill in examples of Empty-structures, because none exist yet, and the Worth of
this concept was increased recently (during task 6). Just by looking at the examples of
Structures (i.e., using heuristic rule number 29), AM is able to get four empty ones: 1}, [, <>,
0; i.e., the empty set, oset, list, and bag. Although some of these are rederived in other ways,
there are no other examples ever found. This paucity triggers a rule which suggests this
task:

..
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** Task 23 ** Fill in generalizations of Empty-structures, because it was very hard - but not
impossible - to find examples of that concept, and Focus of Attention. AM examines the
definitions of Empty-structure, but can't find any recognizable syntacti; pattern it knows
about. It does find (NOT (SOME-MEMBER S)), and tries to replacc SOME-MEMBER by a
specialization of same, but none is known to exist. If the user initially tells AM that First-

3 member and Last-member are specializations of Some-member, then AM can generalize Empty.
structures. in fact, it then comes up with what is equivalent to 'Empty.strue u Unord-truc'.
In the current setup, however, this task fails. If AM had a better understanding of
constructive/destructive operations, it might have defined Structures-with-empty-CARs, orF: perhaps Struaures-wth-empty.CDRs (i.e., Singletons again).

** Task 24 ** Check examples of List-union, because many were recently added but not yet
confirmed. This shows the mechanical patience that a 'stack' gives you. Since no higher-
priority task has been suggested, AM attends to a task which has been on there for a while.

** Tak 25 ** Check examples of Bags, because many examples and a couple specializations
exist. A few small modifications had to be made (e.g., (A C B A) -+ (A A B C)).

** Task 26 ** Fill In examples of Beg-union, because none exist yet, and AM was just
working on Domain(Bag-union), and AM was just working on Range(Bag-union). Note the

I% influence of heuristic rule numer 14. This task proceeded smoothly, with 26 examples being
generated.

** Task 27 ** Chock examples of Proj2, because several were recently found and not yet
checked. All confirmed, with no new suggestions generated.

** Task 28 ** Fill In examples of Set-union, because none exist yet. Again we see rule 14 in
action. 26 examples found.

** Task 29 ** Check examples of Set-union, because many examples have recently been
found, but not yet checked, and Focus of Attention (AM just worked on Set-union). A few
patches had to be made. Often, Set.union(xy) was equal to one of its arguments. AM
therefore defined a new predicate Eq.union(x,y) which is True iff Set-union(x,y)-x. The
user later renamed this "Superset-of", since this is the relationship of containment. In typical
math texts, containment is Introduced long before union, and then this is a theorem: "ADB iff
AuB-A". But AM used "u" to form the definition of ".'

** Task 30 ** Fill in examples of Bag-insert, because none exist yet, and AM was recently
working on Domain(Bag-insert), and AM was recently working on Range(Bag-insert). A
saddeningly stupid move for AM. It should have rated Superset higher, and continued
working on it. AM has no trouble finding many examples of insertions into bags.
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** Task 31 * Check examples of Bag-insert, because many examples have recently been
found, but not yet checked, and AM just worked on Bag-insert. All examples were
confirmed. This operation always seemed to result in Nonempty bags. The Domain/range
facet was so amended. The value is never either of its arguments, but there is no concrete
action AM must take in such a situation, no compact way of noting that anti-relationship
(short of creating a full-blown conjecture). Restricted to singletons, Bag-insert never
produces a singleton or an empty bag. AM defines the concept of a bag gotten by doing a
Bag-insert on a singleton; i.e., the notion of a dout-.eton bag.

**Task 32 ** Fill in examples of Bag-Intersect, because none exist yet, and AM was recentlyworking on Domain(Bagintersect), and AM was recently working on Range(Bag.intersect).

26 found without trouble.

STask 33 *8 Fill in examples of Set-insert, because hone exist yet. Just another data-
gathering task, building up AM's store of empirical results.

8* Task 34 * Check examples of Set-insert, because many examples have recently been
found, but not yet checked, and AM just worked on Set-insert. Applying this operation
always seems to result in Nonempty sets. Domain/range so amended. The value is
sometimes just one of its aiguments. AM defines what will eventually be called Set-
membership in this way: A (xS) Set-insert(xS)-S. This is not the only important result here.
PLM notices that Set-insert(xS) is always related to S by Superset-of. That is, Superset-
of(Set-insert(x,S), S) [for any x. So conjectured. This doesn't actually suggest anything
marvelous for AM to do next, however. Incidentally, during this task AM also defines the
concept of doubleton set.

s Task 35 8 Fill In examples of Bag-delete, because none exist yet. Note that 'working on
bags' is so long past that it is no longer given as a reason for this task. Able to generate two
examples by manipulating definitions supplied with Bag-delete, then a couple dozen more
were generated. Some were generated by accessing already-known examples of the domain
(i.e., the entries on the Examples facet of the Bags concept) and then running Bag.delete.Aig
on them.

*8 Task 36 88 Fill In examples of Bag-difference, because none exist yet. 26 found. This is a
good vantage point to look back and ahead, and notice that while the surrounding tasks are all
reasonable data-gathting forays, the order in which thoy're performed is unimportant. Later
on, AM will follow threads of discoeries, and the order of tasks then will appear very
Important.

* Tak 378 Check examples of Bag-intersect, because many examples have recently been

found, but not yet checked. So many examples were found that AM will entertain the idea
of creating a specialized new concept. Since the intersection of two randomly-chosen bags
was often empty, AM defined the concept of disjoint bags: X (x,y) Bag-intersect(xy)-0.

*8 Task 3888 Fill in examples of Set-intersect, because none exist yet. Many found very
easily.

47



Appendix 5 AM Discovery in Mathematics as Heuristic Search -299-

** Task 39 , Check examples of Sot-intersect, because many examples have recently been
found, but not yet checked, and Focus of Attention. 3 small modifications had to be made.
This time, AM noticed that the intersection of two sets was often empty, and defined the
Disjoint.sets concept. AM also noted that xny was often one of those very same arguments,
so it defined the relation which is eventually renamed Subset: X (x,y) Set-intersect(x,y).x. At
the moment, AM didn't realize that there was any connection between Subset and Superset.
This tie came much, much later (Task number 227 (qv.) in this run).

** Task 40 ** Fill in examples of List-intersect, because none exist yet, and the interest of
Intersect (the general concept of whirh this is a specialization) has recently been increased a
few times. 2 found without incident.

AM Is bcI.ed6Il Will look at Suggest-type heuristics for new things to do.

If "Equality" is excised at this moment, AM continues the preceding line of inquiry
for a while, and then defines Singleton-osets, as Osets all of whose members are
equal to each other. AM notices that All-but-first and All-but-last, restricted to
Singleton-osets, always yield the same result, namely the empty oset. AM then
"generalizes" this into the concept which is all the osets for which All-but-
first(x)-All-but-last(x). AM then turns to relationships involving Subset and
Superset, followed by a flurry of compositions and coalescings, and their
Investigation. But Equality Ls present, so AM goes off on' another course of
exploration.

** Task 41 ** Fill in examples of Equal, because Equal has rerently become more interesting,
and there are no examples known yet. Equal became more interesting gradually, as INT-
Sets were define and liked, Eq-union defined and liked, etc. Once chosen, this task does not
go smoothly. By inference methods, only a couple examples were derived. Later, when
heuristic rule number 122 was run, 151 failures were encountered and only 2 successes. This
is so small a success rate that a heuristic rule strenuously proposed this next task, with a
high enough rating to be chosen right away:

6 Of course "bored" is jkst what AM types out. It reflects the low value of the top task on the agenda, and tha meager
results obtained recently Please forgive the anthropomorphism; it is meant only to be "cute", not misleading.
AM has no internal model which could be called its "emotional state*, as, e., PARRY (Colby 73] claims.
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** Task 42 ** Fill In generalizations of Equal, because Equal is apparently quit*- rarely
satisfied, and there are no entries yet on Equal.Genl. Removing one of the two conjoined
recursive calls in the recursive definition given for Equal caused the creation of Equal-
except.CARs and Equal.except.CDRs. The first predicate tests whether x and y have the
same number of elements; the second tests whether x and y have the same number of leading
left parens and the same first atom after that final leading left parenthesis. As Knuth
pointed out, both of these concepts are valid ways of defining "numbers": one counts the number
of elements, the other counts the number of leading 14ft parentheses. But most structures
which AM knows about are just simple Illevel affairs. Therefore, Equal.except-CDRs was
alyhost always the same as "CAR(x),CAR(y)". So AM never realized this duality, if it had
pushed BI-Sets and BIl.Dags further, it might have. Another concept created here is far more
bizarre. Instead of eliminating one of the two conjoined recursive calls, AM replaced the
AND with an OR. The new concept Genl.EqS was defined: '(x,y) if x or y are non-lists,
then EQ x,y), else [GenI.Eq3(CAR(x),CAR(y)) Q2 GenI.EqS(CDR(x),CDR(y)J.' This is true
if x and y have the same length, or if the jth element of each is the same (for any j), or if
the Jth element of each has the same length (>0), or If the 11h element of the jth element of
each is the same or has the same length (fcr any l,j), or...

** Task 43 ** Fill in examples of Equal-except-CARs, because this is a new generalization of
Equal which must be examined, and because no examples exist yet. Only 10 examples were
found before the time quantum was exhausted, but this was still many more than were
found for Equal before. The user now renamed this concept "Same-size*. A whirlwind of
discovery is about to sweep the other two generalizations of Equal out of the top spot on AM's
agenda for quite a while. If AM accidentally picked another of these to work on before Same-
size, only a small amount of time would have bein spent before moving on. For example, AM
is unable to perform Canontze.Algs(Genl.Eq3,Equal), so that would be a dead-end right there.

** Task 44 ** Apply an Algorithm for Canonize to the arg Same-size and Equal, because a
heuristic rule7 explicitly suggested that, and there are no known examples of Canonize yet,
and AM was just working on Same-size, and AM was recently working on Equal, and
Same-size was recently created, and Same-size was just renamed by the user. AM performs
several experiments, and eventually synthesizes this canonizir.g furnction: f(S) takes a
structure S, converts It to a Bag, and replaces each element by "T". Th- function is later
renamed "Size" by the user. AM also defines the set of canonical sti uctures: bags of T's.
The user renames Bags.of-T's as "Numbers*.

* 45 ** Restrict the Domain/range facet of Bag-union, because Bags-of-T's (called
Numbers now) is a new, interesting specialization of Bags, and a neuristic rule explicitly
suggested this, and Focus of Attention, and many examples of Bpg-union exist. A new
operation is defined, Number-union, with domain/range entry <Number Number .- Bag>.
This task used less than one cpu second.

* Task 46 ** Fill in examples of Number-union, because it is recently-interesting, and it was
just created, and AM was recently working on Domain(Number-union). Several examples
are found. .t this point, the author turned on a tricky LISP printing function, which
converted each bag of T's to base-JO exponential notation before allowing it to be typed out.

7 The rule refef ed to ie number 213, on page 270.
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** Took 47 ** Check the domain/range of Number-union, because a heuristic rule explicitly
suggested that the range might really be "Number", and AM was just working on Number-
union, and AM was recently working on Domain(Number-union) [i.e., working on
'Numbers']. In fact, what the heuristic rule suggested purely from symmetry desires turned
out empirically to be true: the value of Number.union(x,y) did alway.s appear to be a
Number (a bag of all T's). The result of this was to amend the Domainlrange facet of
Number-union. Although AM regards this uniformity as very interesting, it has no direct
suggestion for what to do next. The user renames this operation "Add2", since It takes
precisely 2 arguments (unary numbers) and adds them.

** Task 48 ** Restrict the domain/range of Bag-intersect, to Numbers, for similar reasons as
above. After again noticing that the intersection of 2 numbers always seems to be a number,
this leads to the operation which the user renames "Minimum". Since the pattern of tasks is
Restrict 4 Fill in examples -+ Check examples, there is not much point in listing all three
tasks for all of these simple restrictions. Each one will only get a single number in this listing.
Also, since the reasons for these restrictings are pretty much the same, they won't be repeated
for each task below.

** Task 49 ** Restrict the domain/range of Bag-delete, to Numbers. The user renames this
operation "SUB I", although this is not quite accurate. If x is not 'T', then applying this
operation to x and N (for some number N represented as a bag of T's) will not alter N at
all. AM does not possess the reasoning abilities needed to anticipate this.

Task 50 ** Restrict the domain/range of Bag-insort, to Numbers. The domain/range entry
is changed to <Anything Number 4 Bag>. Renamed Number-Insert. Although this new
operation will in fact change a number N, it may not necessarily change it into a number.
The last operation, SUE 1, would always produce a number, though it might sometimes fail
to change N at all. Here is the sad discovery of that asymmetry about Number-insert:

*s Task 51 ** Check the domain/ronge of Number-insert, because a heuristic rule explicitly
suggested that the range might really be "Number. In fact, its quickly seen not to be. This
operation is lowered in worth, and never touched again. Due to AM's imperfect heuristics,
the worth of SUBI is slightly higher still than this concept's.

• Task 52 ** Restrict the domain/range of Bag-difference, to Numbers. After again noticing
that the difference of 2 numbers always seems to be a number, this leads to the operation
whiich the user renames "Subtract".

Task 53 ** Fill in examples of Subtract, because none exist yet, and Subtract was just
created. Many examples are found. If a larger number is "subtracted" from a smaller, the
result is zero, according to this operation. Thus about half of these examples have the
value zero (empty bag). AM.explicitly defines the set of ordered pairs of numbers having
zero difference. It turns out that (in modern terminology) <x,y> is in this new set iff x is less
than or equal to y. So the user renames this relation "LEQ'.

Task 54 ** Fill In examples of LEQ, because none exist yet, and LEO was just created. 26
examples found. When random numbers are chosen, the success rate is (as we wise
observors know) a little over 50%. This is very nice and AM's estimate of the worth of LEQ_,
rises.

p%
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** Task 55 ** Check examples i LEQ, because many examples have recently been found, but
not yet checked, and the worth of LEq has recently risen. All confirmed. Unfortunately,
AM has derived Subset but not Subbag, else it mlght have noticed that (for all numbers x and
y, represented as bags of T's) xy if" Subbag(xy). Then AM could simply cbserve that LEQ
was just Subbag restricted to Numbers. Looked at another way, AM has here discovered a
restricted version of the concept Subbag.

** Task 56 ** Apply algorithm of Coalesce to LEQ, because LEQ, is an interesting operation,
recently created, many examples already exist for it, AM just worked on LEQ, LEQ, takes
two of the same argument (Numbers), and no examples of Coalesce are known yet. The
new predicate is defined as Mx) xSx. But this is Always-True, so AM conjectures that each
number is LEQitself, and forgets the new coalesced version of LEQ

** Task 57 ** Fill In examples of Parallel-join2, recause none exist yet. Included is Parallel-
join2(Bags,BagsProj2) (initially called MJ2.BBI2), which turns ou, to be multiplication of
two numbers and is renamed "TIMES2" by the user. Also included is Parallel-
join2(StructuresStructuresProjl), which is a generalized kind of Union operation (renamed
"G-Union" by the user). Many losers are also created, however, like Parallel-
join2(Bags,SetsSet-.dfference)).

Took** T ** , 69. Fill in and check examples of the operations just createad. Nothing out
of the ordinary is done here, just the routine legwork of gathering empirical data for later
use. No startling conjectures made.

-Tsk 79 ** Fill in iamples of Coalesce, because none exist yet. One shining example is
Self.compose, which takes any operation F (whose range is also a domain component) and
forms FoF. Another example is Self-Insert, which takes a structure S and inserts S into S.
Also created were: Self-Delete, Self-Add, Self-Times, Self-Union, etc. A different kind of
coalescing was done for Parallel-replace2, Parallel-join2, and Repeat2; the two structural
arguments (the first and second arguments for each) were merged, creating three new
operations: Coa-repeat2, Coa-join2, Coa-replace2. Coa-replace2, for example, takes a single
structure S and an operation F, and replaces each member x of S by the value F(x,S).

** Tas' 71 ** Fill in examples of Self-Delete, because none exist yet, and Self-delete was just
created. Many examples are found quite easily, of course, except:

** Task 72 ** Check examples of Self-Delete, because many examples have recently been
found, but not yet checked. Since trying to delete S from S will never work, the value of
Delete(SS) is just S all the time. Self-delete is the same as the identity operation. AM is
able to discover this and state it as a conjecture, obviating the need for bothering with this

• concept ever again.

** Task 73 *s Fill in examples of Self-Member, because none exist yet, and Self-member was
recently created. Only negative instances are found.

J% .



Appendix 5 AM Di covery in thometic, as Heuristic $torch -303-

* Task 74 ** Check examples of Self-Member, because many examples have recently beer.
found, but not yet checked. This predicate is Always-False, empirically. Replace by a conjec:
Self-Member is the same as the predicate Always.False; Member(S,S)-False for any S. Also,
an extra algorithm entry is adeted to Member.Alg: Once Early Quick: X (x,y) if xuy then False.
Also, a new task is proposed, to generalize Self-Member. This never quite rises to the top
of theagenda, so it is never attempted.

** Tsk Z75 ** Fill In examples of Self-Acd, because none exist yet. Many found. User renames
this "Doubling", after he observes the many examples which are produced.

s2 Task 76 ** Check oxamplts of Coalesce, because many examples have recently been found,
but not yet checked. All were confirmed. Some were alrrady proving to be interesting, so
the value of Coalesce was raised.

STask 77 * Check examples of Add2, because many examples have recently been found,
but not yet checked. AlI were confirmed. Somewhat disappointingly, AM didn't notice
anything special about Add2 at the time.

2T2rsk 78 ** Fill in examples of Self-Times, because none exist yet, and AM recently worked
on Isa(Self-Times) [namely, worked on Coaiesce]. Renamed "Squaring" by the user. 20
examples found before quitting due to lack of alotted space.

2 Task 79*2 iPh in examples of Self-Coirpose, because none exist yet. Created Add2oAdd2
(two versions: Ad&'(I which is A. (x,y,z) (x.y)+z, and Add22 which is x+(y+z)). Similarly, two
versions of TIML'N2oTIMES2, called TIMES21 and TIMES22. Also, two versions of
ComposeoCompose. Some losers were defined as well, like Member(Member(x,y),z) and
Paralel-Join2(S,R,Paraliel-join2(P,.F)) - the latter of which accepts as arguments four
kinds of structures and a function name. Many minimally-acceptable concepts were created:
Coalesce*Coalesce, Squaringquaring, DoublingoDoubling, etc.

T2 T a 0 ** Fill in examples of Add2i, because none exist yet, and Add2i was just created.
This operation is defined as )k (x,yz) (x~y).z. It is easy to find examples.

* Tak 81 ** Fill in examples of Add22, because none exist yet, and Add22 was recently
created. This operation is defined as x (x,yz) x.(y+z). It is easy to find examples. Most of
these examples are gotten from the "cousin" concept Add2i.
22 Task I 2 Check examples of Squaring, because many examples have recently been found,

but not yet checked. All confirmea. 1: i! unfortunate that this task intruded into AM's line
of development.

* o 3 ** Chock examples of Add22, because many examples have recently been found,
but not yet checked. During this process, AM notices that Add21 and Add22 seem to be
equivalent. Before conjecturing this, though, AM will do this next task:

+I
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* Task 84 * Check examples of Add2l, because many examples have recently been found,
but not yet checked, and this task was specifcally suggested while AM was trying to check
examples of Add2l. After checking these examples, Add~l and Add22 still appear
equivalent. AM conjectures this and merges the two operations. One consequence is the
boosting of the worth of the new, combined operation. The most important aftereffect of
this is that AM now kno'-s that the "proper" argument for a gene'alized kind of addition
will be a Bag, not a List, of numbers. This new kind of addition is called Add, to
distinguish it from Add2. Add2 takes a pair of numbers and adds them, but Add accepts a
bag of numbers and forms their sum.

** Task 85 ** Apply algorithm for Invert to argument 'Add', because Add is interesting,
recently worked on, And has never been inverted, and there are no examples yet for Invert,
and the worth of Add has recently risen, and Add was just created. By looking at those
reasons, we see why some semantic processing should be available. There is tremendous overlap
there, and tht task is not really supporttd by as nnany reasons as AM thinks. AM defines Inv-
Rdd(x) (also called Add-') as the set of all bags of numbers (:0) whose sum is x.

Task 86 Fill in examples of TIMES21, because none exist yet. Defined as (x.y).z. Many
are found.

* Task 87 ** Fill in examples of TIMES22, because none exist yet. Defined as xo(y.z). Many
are found.

** Task88 Check examples of TIMES22, because many examples have recently been found,
but not yet checked. As with Add, earlier, TIMES2I and TIMES22 now appear
equivalent. Before saying this, AM must do this task:

* Task 89 * Check examples of TIMES2I, because many examples have recently been found,
but not yet checked, and this task was specifically suggested while AM was trying to check
examples of TIMES22. After checking these examples, TIMES21 and TIMES22 still
appear equivalent. AM conjectures this and merges the two operations. One consequence is
the boosting of the worth of the new, combined operation. The most important aftereffect
of this is that AM now knows that the "proper* argument for a generalized kind of product
will be a Bag, not a List, of numbers. This new kind of multiplication is called TIMES, to
distinguish it from TIMES2. Notice the ;ame property held true for Add2, earlier. AM
sets up an analogy between TIMES and ADD, because of this common fact. The analogy
itself is dlose to what mathematicians call the concept of Semigroups.

Task 90 2* Apply algorithm for Invert to argument 'TIMES', because TIMES contains a new,
promising analogy, and the analog of TIMES has been inverted, and TIMES has never
been inverted, and the worth of TIMES has recently risen, and TIMES was just created.
AM defines Inv.TIMES(x) (also called TIMES-') as the set of all bags of numbers (>1)
whose product is x. AM noted that TIMES"1 should probably be analogic to Add-1.

-S.---. . . -.. .,.v .. , .; ,. ,D..
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**Task 91 ** Fill In exampli'v 0i Parallel-replace2, because none exist yet. I could kick AM
for doing this now!! The priority rtng of this task happened to place it above all the others,
including those with extra bonuss.'. :.,cause of focus of attention. This task is merely diverting,
not harmful in any lasting sense, ut it does degrade the apparent level of purposefulenss of
the system. Several examples of Parallel-replace2 are found. Included are Parallel-
replace2(Bags,Bags,Proj2) (called MR2-BBP2), ard many losers. MR2-BBP2(S 1,S2)
replaces each element in SI by a full copy of the whole of S2. This is the way that Skemp
suggests developing the notion of multiplication - and in fact AM will (in task 109) derives
an operation which is equivalent to TIMES2 just by unioning the results of this operation. In
task 127 AM realizes that this is in fact just multiplication, and merges those two operations,
concurrently boosting the worth of that combined concept greatly.

** Task 92 **, 107. Fill In and check examples of the operations just created. Nc..hlng
really worth our time (or AM's). Sigh.

a tj 108 ** Fill in examples of Compose, because none exist yet. It is very easy to create
new compositions - most of them losers. Some of the concepts produced (e.g., SizeoAdd "1)
were valuable but were lost amid the mass of losers (e.g., InsertoEqual). Because of this
flood of poorly-motivated new concepts, a heuristic triggers which has AM create a new
specialization of Compose, called Int-Compose, by conjoining onto Compose.Defn a few of
the features from Compose.Interest. The Worths of the new compositions just created are
all lowered, so that the (future) examples of int-Compose will predominate. The task first
considered in TASK I has finally bubbled back up to the top of the agenda, and has proved to
be quite worthwhile.

** Task 109 ** Fill In examples of Int-Compow, because none exist yet, and Int-Compose was
just created, and any example of Int-Compose is automatically an interesting example of

Compose, and the worth of Int-Compose is very high. The two chosen operations G,H
must be such that ran(H)(dom(G), and ran(G)(dom(H); both G and H must be interesting
or at least newly-created. Well, two operations recently dealt with are G-Union and MR2-
BBP2. Since the range of MR2-BBP2 is 'Bags of Bags', it is precisely equal to the domain
of the newly-synthesized operation G-Union. So one composition considered is G-
UnionoMR2-BBP2. This is an alternate derivation of the operation of multiplication. Also
included are: TIMESoSquaring, CoalesceoCompose, InsertoDelete, Deleteelnsert,

.Add2oTimes2, etc. t'. Ithough most of these operations were never investigated very much,
they are much better than the random compositions produced during the previous task.
This seems clear even to AM, even before studying them very much.

sa Task 110 a*, 126. Fill in and check examples of the compositions Just createad.
Nothing of great interest until...:

**Task 127 ** Check examples of G-UnionoMR2-BBP2, because many examples have recently
been found, but not yet checked. AM discovers that this operation is equivalent to MJ2-
BBP2 (i.e., TIMES2). Since they arose in very different ways, the worth of the new, merged
concept module is greatly increased, as is that of the more general operation TIMES.
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** Task 128 *2 Fill In examples of Coa-repest2, because none exist yet. 26 operations
synthesized. Foremost among them was Coa.repeat2(Bags-of-NunibersAdd2), which turned
out to be yet another derivation of multiplication! Also produced was Coa-repeat2(Bags.of-
Numbers,Times) - a definition of exponentialon. Others included Coa-
repeat2(Structures,ProJi), which turns out to be the same as First.element-of, i.e., CAR, and
Coa-repeat2(Structures,Proj2), which turns out to be Last-element-of.

** Task 129 ** Check the examples of Co-repeat2, because many examples have recently
- been found, but not yet checked, and Focus of Attention. All confimed.

*, Task 130 ** Apply algorithms for Incrt to 'Doubling', Doubling is Interesting, and it has
never been inverted. The result is called "Halving" by the user. AM decided to isolate the
domain of Halving (the range of Doubling). Such numbers are renamed by the user as
"Evens". Although pleased witha tAe result of this task, it was somewhat jarring in the context
of the preceding development.

*2 Task 131 ** Fill in examples of Self-Insert, because none exist yet. AM has apparen.ly lost
the "thread" of a development and Lis wandering around, taking care of only moderatvly
promising tasks. Many examples of this operation are found.

22* 'I1kJ 12* Check examples of Self-Insert, because many examples have recently been
found, but not yet checked, and Focus of Attention. Nothing special found. The result is

never the same as the argument.

22Tnk 133 * Fill in examples of Cos-repeat2-Add2, because none exist yet. Many found
quickly, but at a large cost in terms of storage space.

V2* Task 134 ** Check examples of Coa-repeat2-Add2, because many examples have recently
been found, but not yet checked, and Focus of Attention. Confirmed. AM noticed it's the
same as TIMES. Boost the worth of TIMES even higher, far above that of any other
concept. AM will stay interested in TIMES for most of the future of this run.

.. ¢. *2 Task 135 ** Apply algorithm for Invert to argument 'Squaring', Squaring is interesting, has
never been inverted, is related to the very interesting concept TIMES, is related to the very
interesting concept Coalesce, is analogic to the already-inverted concept Doubling. AM
defines Inv.square(x) as the number1 whose square is x. Renamed by user as "Square-root".

-2 Task 136 ** Fill in examples of Square-root, because none exist yet, and Square-root was
just created, and Square-root is related to the very interesting concept TIMES. AM spent
quite a while on this task, and only abou. 10 examples were found (discounting duplicates).

A 
*'

8 Ackt-lly; the ste of lel numbers.
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** Task 137 ** Fill in now algorithms for Square-root, because Square.root.Algs are all too
slow, and have been called on a great deal recently. AM has some zeroth order rules for
improving algorithms, backed up by a marvelous tactic: ask the user. In this case, AM asks
the user for a better algorithm, and he supplies one. Of course, the new algorithm is
completely opaque to AM. The user never tells AM how to do something unless it had a (slow)
way to do that thing already. One fast new algorithm now exists.

** Task 138 ** Check examples of Square-root, because many examples have recently been
found, but not yet checked, and Focus of Attention. AM is plagued by the frequency of
numbers not having square-roots, so it isolates those that do. It defined the set of numbers
having a square-root, and this concept was renamed "Perfect-squares" by the user.

** Task 139 ** Fill in examples of Coa-repea2-Times, because none exist yet, and this
concept is related to the very interesting concept TIMES. A moderately rational thing to
investigate. Examples are easily found, but they take up a lot of space.
** Task 140 ** Check examples of Coa-repeat2-Times, because many examples have recently

been found, but not yet checked, and Focus of Attention. Nothing special noticed,
unfortunately (this is exponentiation, folks). If the user interrupts and tells AM that this is
really interesting, AM soon creates the specialization of It defined as Expon(x,2), and then

AM notices that this is just squaring. i.e., x2-x-x: the base tie between exponentiation and
multiplication. On its own, AM doesn't rate Coa-repeat2-Times high enough to start this chain
of discoveries.

** Task 141 ** Fill in examples of Inv-TIMES, because none exist yet, and Inv-TIMES is
related to the very interesting concept TIMES. Many found.

** Task 142 ** Fill in new algorithms for Inv-TIMES, because Inv-TIMES.Algs are all too slow,
and have been called on a great deal recently, and TIMES-' is related to the very
interesting concept TIMES, and Focus of Attention. AM asks the user, who supplies a
decent recursive algorithm for this function.

** Task 143 ** Check examples of Inv-TIMES, because many examples have recently been
found, but not yet checked, and Focus of Attention. This proceeds along, and all are
confirmed. A heuristic rule notices that the domain/range is <Number 4 Sets-of-Bags-of-
Numbers>; it searchs for an operation whose Domain/range facet contains an entry
(compatible with) <Sets-of-Bags-of-Numbers 4 Number>, and fails; next it looks for an
operation whose dom/range is <Sets-of-Bags - Set or Bag>, and finds that G-Union fills the
bill. Therefore, the rule suggests the following task (with a high rating):

** Task 144 ** Apply Compose algorithm to G-Union and Inv-TIMES, because the three concepts
involved are interesting, related to TIMES, and this task was specifically suggested by the
preceding one. The composition is created, as specified in the task. This new operation has
domain/range <Number -, Set-of-Numbers>, and Is thus given a higher rating than either
of its constituents. It is renamed "Divisors" by the user.

............ --
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** Task 145 * Fill In examples of Divisors, because none exist yet, and Divisors is related to
the very interesting concept TIMES, and divisors was just created. Many examples are

* found, but only after much inefficient searching amid the set of all (known examples of)
A. , numbers.

-* Task 146 ** Fill In new algorithms for Divisors, because Divisors.Algs are all too slow, and
- have been called on a great deal recently. AM asks the user, who supplies a decent iterative

algorithm for this function.

k** Tas 147 ** Fill in examples of Perfect-squares, because none exist yet, and Perfect-
squares is related to the very interesting concept TIMES, 15 found, after which the space
allocation was exhausted.

*- Task 148 ** Fill in specializations of TIMES, becauie TIMES is very interesting, has very
-' few known specializations, and it was very easy to find examples of TIMES. AM now

allocates a huge chunk of cpu time and space to this task. A few specializations of TIMES
are gotten by plugging in a distinguished value for one argument: Timesl(x)ulx,
Times0(x).0,x, etc. Other new operations are simply TIMES with its domain restricted to a
bag of special numbers: Times-sq has its domain a bag of perfect squares, Times-ev takes

2- ". only even arguments, etc. Others (inefficient to compute) are TIMES with its range
restricted: Times-to-evens requires that the result be even, Times-to-sq for square results, etc.

- Task 142 ** Check examples of Divisors, because many examples have recently been
found, but not yet checked, and Divisors is related to the very interesting concept TIMES.
Often, Divisors(x) is interesting (to AM) as a set; AM isolates the cases by defining 0-Div, 1-
Div, 2-Div, and S-Dlv, the sets of numbers whose Divisors value is the empty set, a
singleton, a doubleton, and a tripleton, respectively. AM will gradually partition the
examples of Divisors into these categories, as AM tries to fill in examples of each kind of
number.

;. ". . This is the point where the example in Chapter 2 begins, and is also roughly the
. point where the unadulterated LISP trace (Appendix 5.3) ends. Both this section

and the earlier condensed task-by-task trace, found in Chapter 6, go further.

-:/. ** Task 150 ** Fill in examples of 1-Div, because none exist yet, and I-Div was just created,
and is related to the very interesting concept TIMES. Only one example found: "I". This
causes the Worth of I-Div to be lowered.

-* Task 151 ** Fill in examples of 0-Div, because none exist yet, and 0-Div was recently
-. created, and is related to the very interesting concept TIMES. None found. Lower the

worth of this concept.

-' Task 152 *s Fill In examples of 2-Div, because none exist yet, and this concept is related to
the very interesting concept TIMES. About 19 are found (out of about 170 attempts). This

-is a nice ratio, a nice density within the natural numbers - not too many nor too few to be

interesting. As a result, 2-Dlv.Worth is slightly raised.

:.--:.
:-:::
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Too TkIi5 ** Check examples of 2-Oiv, because many examples have recently been found,
but not yet checked, and the worth of 2-div has just increased, and Focus of Attention.
The existing examples were confirmed, but no pattern, noticed. This was heart-stopping,
since 2-Div Is the notion of prime numbers; here AM is tossing It off as .-on-interest.catching!

** Task 154 ** Fill in examples of 3-Div, because none exist yet, and S-Div is related to the
very interesting concept TIMES. As with 2-Div, a nice number of examples were found
(albeit on the scarce side of nice).

** Task 155 ** Check examples of 3-Div, because many examples have recently been found,
but not yet checked, and 3-Div is related to the very interesting concept TIMES., and Focus
of Attention. All confirmed. All are perfect squares! Very unexpected (both by AM and
the user). AM greatly increased the worth of 3-Div. One suggestion, due to the fact that 3-
Div was now In-dom-of Square-root, was:

** Task 156 ** Restrict Square-root to numbers which are in 3-Div, Square-root is interesting,
3-Div Is very interesting, and the preceding task specifically requested this action. AM calls
the new concept Root3.

** Task 157 ** Fill in examples of Root3, because none exist yet, and Roots was just created,
and Root3 is related to the very interesting concept 3-Div. Many examples found. In fact, it
was easy to take the square-root of each known example of S-Div.

** Task 158 ** Check examples of Root3, because many examples have recently been found,
but not yet checked. All confirmed. Each result turned out to be a 2-Div type of number.
Very surprising. Conjecture: the square-root of a number with 3 divisors is a number with
2 divisors. AM rpsed the worths of all the concepts involved. At this point, the user
renamed 2-Dlvs as "Primes".

** Task 159 ** Restrict Squaring to Primes, Squaring is interesting, Primes is recently
interesting, and the preceding task specifically suggested this action. AM calls the result
Square2.

** Task 160 ** Fill in examples of Square2, because none exist yet, and Square2 was just
created. Many found.

** Task 161 * Check the domin/range facet of Squar*2, it has been specifically suggested
that the range of Square2 may be 3-Div, and S-Div is very interesting, and Square2 is
related to the interesting concept Primes, and Focus of Attention. As hoped for, all are 3-
Divs. Conjecture: x is a Primes iff its square is a S-Div iff it is the square-root of a 3-Div.

** Task 162 ** Restrict Squaring to 3-Divs, Squaring is interesting, 2-Div is interesting, and
an earlier task specifically suggested this action. The result is called Square3. AM's past
few successful tasks have now invrerented the Worths of certain activities above their true
value: AM will now be tied up with restricting Squaring and Square-rooting to all the
concepts involved. The net effect will be to lower those inflated worth ratings, and to lower the
us,:r's - and the reader's - opinion of AM.

%-
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** Task 163 ** Restrict Square-rooting to Primes, Square-root is interesting, Primes is
interesting, and an earlier task specifically requestd this action. Call the result Root2.

"* Task 164 ** Fill in examples of Square3, because none exist yet, and Square3 is related to
the interesting concept 3-Div, and Squares was recently created. Only 9 examples found

'. before running out of space. By analogy, since Divisors-ofosquare2 was interesting, AM
considers:

** Task 165 ** Compose Divisors-of and Square3, Analogic to tripletons, and Divisors-of is
interesting, and Squares is interesting, and the preceding task specifically suggested this
action. AM calls the result Div-Sq 3.

** Task 166 ** Fill in examples of Div-Sq3, because none exist yet, and Div.SqS was just
created. 9 examples found right away, by simply running Divisors.of.Algs on the 9 known
examples of Squares.

-. Task 167 ** Check examples of Div-Sq3, because many examples have recently been
found, but not yet checked. All such examples are Same-size. Although AM doesn't have
the notion of '5-ness' explicitly, they each have 5 members. A specialized hack heuristic
observes the general pattern: DivisorsoPrimes are all of the same size;
DivisorsoSquaringoPrimes are all of the same size; DivisorsoSquaringoSquaringoPrimes are
all of the same size; A new conjecture is formulated and typed to the user:
DivisorsoRepeat(Squaring)oPrimes will all be the same size.

This expresses the fact that, for a given n, p2n has the same number of divisors for
each prime p. AM was not able to figure out that number of divisors (it is 2n+]).
This would be a trivial sequence extrapolation problem, but AM of course had no
heuristics for dealing with numbers, hence no sequence extrapolation techniques.
Deriving the concept of sequence extrapolation itself would have been quite
astounding, but never occurred. Discovering the concept of Inductive inference and
studying it explicitly in isolation is quite a sophisticated achievement - that's what
Al researchers spend much of their time trying to accomplish. This is one time when
AM was much further from discovering a theorem than it appeared to the casual
observor.

** Task 168 **,- 175. More confirmations and explorations of the above conjecture.
Gradually, all its ramifications lead to dead-ends (as far as AM Is concerned).

** Task 176 ** Fill In examples of Root2, because none exist yet, and Root2 is related to the
interesting concept Primes. But no examples at all are found. This is not surprising, since
very few primes are also perfect squarf.s. AM conjectures that there are none. Worth of
Root2 is lowered.

s* Task 177 ** Check examples of Inv-TIMES, because many examples have recently been
found, but not yet checked. This is a break in the previous smooth line of development.
Inv-TIMES appears to always contain a singleton bag; in fact, inv-TIMES(x) always
contains the singleton bag (x). Another conjecture AM makes: Inv-TIMES(x) always
contains a bag of primes. This last hypothesis suggests the following two tasks:

-~ *44.~... * J..r rct~.-....s'.~.- 2
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** Task 178 ** Restrict the range of Inv-TIMES to bags of primes, because Inv-TIMES is
interesting, is related to the very interesting concept TIMES, primes are more interesting
than numbers at the moment, Focus of Attention, and the previous task specifically
suggested this action. AM calls the new result Prime-Times.

** Task 179 ** Restrict the range of Inv-TIMES to singletons, because Inv.TIMES is
interesting, is related to the very interesting concept TIMES, singletons are more interesting
than sets at the moment, a recent task specifically suggested this action, and Focus of
Attention. AM calls the new result Single-Times.

** Task 180 ** Fill in examples of Prime-times, because none exist yet, and Prime-times was
recently defined, and Prime-times is related to the interesting concept Primes, and Prime-
times is related to the interesting concept TIMES. Many examples are found.

** Task 181 ** Check examples of Prime-times, because many examples have recently been
found, but not yet checked, and Focus of Attention, and Prime-times is related to the very
interesting concept TIMES. The value of Prime-times(x) is always a singleton set.
Conjecture: Inv-TIMES(x) contains precisely one bag of primes. User renames this
conjecture "The unique factorization theorem". AM prints out that this will probably be
very natural and important. The reason for this is that Primes-was Itself derived from
TIMES, so any conjecture connecting them is quite natural. Any unexpected such natural
conjecture will probably be useful.

** Tosk 182 ** Fill in examples of Single-TIMES, because none exist yet, and this concept is
related to the very interesting concept TIMES. Many found.

** Task 183 ** Check examples of Single-TIMES, because many examples have recently been
found, but not yet checked, and it is related to the very interesting concept TIMES, and
Focus of Attention. The value of Single-times(x) is always a singleton set. Conjecture: Inv-
TIMES(x) contains precisely one singleton bag. Single-TIMES is actually the same as Bag-
insert, in the sense that both Single-TIMES(x) and Bag-Insert(x) give the value (x) - the
bag containing only x. In the latter case, this is because Bag-insert is "smart" enough to
supply an empty bag as the second argument S to Bag-insert(x,S), if S is missing.

ss Task 184 ** Fill in examples of Self-set-union, because none exist yet. AM has dropped the
momentum of its previous whirlwind of discovery, and is simply marking time, gathering
evidence. Many examples are found.

* Task 185 ** Check examples of Self-set-union, because many examples have recently been
found, but not yet checked, and Focus of Attention. Apparently, this concept is the same as
Identity (but with domain/range restricted to Sets). Replace by a conjecture.

* Task 186 ** Fill in examples of Self-bag-union, because none exist yet. On the same track,
but boring. Many fcund.

** Task 187 ** Check examples of Self-bag-union, because many examples have recently been
found, but not yet checked, and Focus of Attention. All are confirmed. Nothing interesting

L noticed.

r.~
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*i Task 188 * Fill in examples of Inv-ADD, because none exist yet. Slowly, examples were
found.

A3 Task 189 ** Check examples of Inv-ADD, because many examples have recently been
found, but not yet checked, and Focus of Attention. Inv-ADD(x) always contains a
singleton bag (x), a doubleton bag, a tripleton, a bag of l's,... So many conjectures that:

** Task 190 3* Restrict the domain of Inv-ADD, because Inv-Add is interesting, related to the
interesting concept Add, Focus of Attention, and the previous task specifically suggested this
action. When the domain is restricted to primes, AM defines 'Inv-Add-primes'. When it
restricts Inv-Add to work only on evens, AM thereby defines the operation it calls 'Inv-Add-
evens'.

** Task 191 33 Fill in examples of inv-add-primes, because none exist yet, and this concept
was just defined, and Focus of Attention. Many found.

** Task 192 * Check examples of Inv-sdd-primes, because many examples have recently been
found, but not yet checked, and Focus of Attention. All were confirmed, but nothing special

* noticed.

** Task 193 ** Fill in examples of Inv-add-evens, because none exist yet, and this concept was
recently defined. Many examples found.

** Task 194 ** Check examples of Inv-add-evens, because many examples have recently been
found, but not yet checked, and Focus of Attention. Confirmed. Inv-Add-evens(x) always
contains a bag of primes. This is mildly surprising, and prompts:

** Task 195 3* Restrict the range of irwv-Add-evens to bags of primes, because lnv-Add-evens
is recently interesting, and Primes is more interesting than Numbers, and the previous task
specifically requested this action (hence Focus of Attention). AM names the new operation
Prime-ADD.

T* ask 196 ** Restrict the range of Inv-ADD to singletons, because Inv-Add is interesting,
singletons are more interesting than sets, AM just worked on Inv-Add, AM recently worked

* on Inv-Add, and an earlier task specifically suggested this action. Thus Single-Add is born.

3* Task 197 ** Fill in examples of Prime-ADD, because none exist yet, and Prime-add was
recently defined. Many found.

*3 Task 198 s* Check examples of Prime-ADD, because many examples have recently been
found, but not yet checked, and Focus of Attention. The value of Prime-ADD(x) is always a
nonempty set (of bags of primes). So conjectured (domain/range changed). User renames
this conjecture Goldbach's ciJecture*.

*3 Task 199 *-_ Fill in examples of Single-ADD, because none exist yet, and this concept was
.- recently defined. Many found.

K.
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s Tk2 ** Check examples of Single-ADD, because many examples have recently been
found, but not yet checked, and Focus, of Attention. The value of SingleIADD(x) is always
a singleton set. Co..Jecture: Inv-ADD(x) contains precisely one singleton bag. Single-ADD is
actualy the same as Bag-insert (and SingleTIMEOV.

L: ** Task 201 ** Restrict the range of Prime-ADD to singletons, because analogic to Prime-

TIMES, and Prime-Add is interesting, and Singletons is more interesting than Sets. This
was initiated by analogy, not by an earlier task specifically suggesting that the restriction be
done. In this case, AM is asking which numbers are uniquely representable as the sum of

f two primes. The new operation is Prime-ADD-s.

• Task 202 ** Fill in examples of Prime-ADD-s, because none exist yet, and Prime-ADD-s
was just defined. Many examples are found, but after a hontrivial processing effort.

** Task 203 ** Check examples of Prime-ADD-u, because many examples have recently been
found, but not yet checked, and Focus of Attention. Nothing special noticed.

** Task 204 ** Fill in examples of Timos-sq, because none exist yet. Losing the thread of
discovery, moving back to data-gathering blindness. Recall that Times-sq is just TIMES
restricted to operate on perfect squares. Many examples found.

88 Task 205 8* Check domin/range of Times-sq, because the range of this operation may
actually be Perfect-squares, and examples of Times-sq were just filled in, and this concept is
related to the very interesting concept TIMES, and Focus of Attention. The range really
does seem to be as hoped for. Conjecture: the product of perfect squares is a perfect square.

88 Task 206 ** Fill In examples of Timesl, because none exist yet. Recall that
Timesl(x)"TIMES(l,x). Many found.

* Task 207 8* Check examples of Timesl, because many examples have recently been found,
but not yet checked, and Focus of Attention. Apparently Timesl Is just a restriction of
Identity. Timesl is therefore replaced by a lone conjecture: Times(x,l)-x.

8* Task 208 ** Check examples of Times-q because many examples have recently been
found, but not yet checked. Confirmed.

** Task 209 ** Fill in examples of Times0, because none exist yet, and TimesO is related to
the very interesting concept TIMES. Many found.

, Task 210 ** Fill in examples of Times2', because none exist yet, and this operation is
related to the very interesting concept TIMES. Many found. Recall that Times2(x) is
difined as 2,x.

as* . jk 211 * Check examples of Times2', because many examples have recently been
found, but not yet checked, and Focus of Attention. Apparently, Times2' is the same as
Doubling. That Is, x+x-2,x. A very powerful tie between Add and Times! This was
highly unexpected. It is not predicted by the existing analogy. By analog', AM now defines
Ad2(x) as x42, and will invesitigate that.

_z .. .
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** Task 212 ** Fill In examples of Ad2, because none exist yet, and Ad2 was jsst created.
Many examples found.

** Task 213 ** Check examples of Ad2, because many examples have recently been found,
but not yet checked, and Focus of Attention. Nothing interesting noticed. AM didn't have
the notion of AddloAddl at that moment, or It could have derived the analogic conjecture
between successorladdition that it found between additionlmultiplication. The same lack of
knowledge about exponentiation inhibited the perception the times/exponent analogic
relationship. Every little bit of knowledg about operations involving Add served to raise the
worth of Add slightly. Finally, the following task rises to the top:

** Task 214 ** Fill in specializations of Add, because there are very many examples of Add,
and Add has recently risen In interest. Among those created are: AddO (x+O), Add I, Add3,
Add-sq (addition restricted to perfect squares), Add-ev (sum of even numbers), Add-pr (sum
of primes), etc. The techniques used were the same ones used to specialize TIMES earlier.

** Task 215 ** Check examples of TimosO, because many examples have recently been found,
but not yet checked. The value always seems to be 0. So conjectured. TimesO goes away.

** Task 216 ** Fill in examples of Times-ov, because none exist yet. Recall that Times-ev is
just like TIMES restricted to operating on even numbers. Many examples found.

** Task 217 ** Check examples of Times-ev, because many examples have recently been
found, but not yet checked, and Focus of Attention. Apparently all the results are all Evens.
Conjecture: the product of even numbers is even. Note that no explicit task of the form
"Check DIR" had to be executed in order to notice and correct this. The net result here is the
same: a conjecture and an alteration of the Domainlrange facet of Times-v.

** Task 218 ** Fill in examples of Times-to-ev, because none exist yet. That is, consider bags
of numbers which multiply to give an even number. Many found.

** Task 219 ** Fill In examples of Times-to-sq, because none exist yet. Find bags of numbers
whose product is a perfect square. A few found right away, then great difficulty in locating,
more examples.

** Task 220 ** Check examples of Times-to-sq, because many examples have recently been
found, but not yet checked, and Focus of Attention. All arguments always seem to be
squares. Conjec: Times-to-sq is really the same as Times-sq. Merge the two. This is a false
conjecture, since, e.g., the product of the numbers in the bag (2 2 3 3) is a perfect square, but
.= l of those numbers is itself a square. This did AM no harm, and AM never detected its
mistake.

cur Task 221 ** Chock examples of Times-to-ev, because many examples have recently been
found, but not yet checked. The domain always seems to contain an even number. So
conjectured. I.e., if the product of some numbers is even, then so is one of those numbers. This
conjecture is true, at least.

** Task 222 ** Fill in examples of Self-Union, because none exist yet. Reaching way back in
time. Ugh. Many found.

z ..
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** Task 223 ** Check examples of Self-Union, because many examples have recently been
found, but not yet checked, and Focus of Attention. Nothing special noticed.

s, Task 224 ** Fill in examples of SubSet, because none exist yet. Many found.

** Task 225 00 Chock example of SubSet, because many examples have recently been found,
but not yet checked, and Focus of Attention. Nothing special noticed.

Task 226 ** Fill in examples of SuperSet, because none exist yet. Many found.

** Task 227 ** Check examples of SuperSet., because many examples have recently been
found, but not yet checked, and Focus of Attention. AM notices that if <x,y> are related by
SubSet, then Reverse-ord-palr(<x,y>) 4re related by SuperSet, and conversely. This is the
base connection between union and Intersection (see Tasks 29 and 39, where these two
concepts are defined). That is, xcy iff yx.

Ti 7 J2 ,, Fill in examples of ComposeoCompose-l, because none exist yet. AM creates

some poor combinations (e.g., SquareoCountoADD'), some explosive ones (e.g.,
(ComposeoCompose*(ComposeoComposeo(ComposeoCompose)), and even a few - very few
- winners (e.g., SUB loCountoSelf-Insert). This is too much like throwing "flying, hooked
atoms" up into the air, and hoping that three of them collide fortuitously. While a little
guidance may help you to find good collisions of 2 such fliers, the combinatorial explosion
swamps the poor researcher when he takes them on three at a time. As St. Augustine observed,
the Latin 'cogito' derives from 'shake together', but 'intelligo' derives from 'select among'.

To 2 ** Check examples of ComposeoCompose-1, because many examples have
recently been found, but not yet checked, and Focus of Attention. Nothing interesting to
find.

00 Task 230 ** Fill in examples of ComposeoCompose-2, because none exist yet, Recall that
the difference between this operation and the last one Is merely in the order of the
composing: Fo(GoH) versus (FoG)oH. AM recreates many of the previous tasks' operations.

o Task 231 ** Check examples of ComposeoCompose-2, because many examples have
recently been found, but not yet checked, and Focus of Attention. Nothing noticed yet.
Later on, AM finds that one after another of the operations created in the preceding task as,
say, Composeocompose.l(FGH), is really the same as the corresponding operation created as
Composeocompose.2(F,G,-l). Eventually, AM conjectures that those two ComposeoCompose
operations are really the same; that is, Compose is associative.

*T Tsk 232*0,- 252. Fill in and check examples of the losing compositions Just created.

* Task 253 *0 Fill in examples of Add-sq, because none exist yet, and Add-sq is related to
the interesting concept Add. Recall that Add-sq is just addition, restricted to perfect
squares. Many examples found.

-I
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*s Tsk 254 ** Check domain/rang, entries of Add-sq, because the range may also be Perfect-
squares, and examples of Add.sq were just filled in (hence Focus of Attention), and Add-sq
is related to the interesting concept Add. The range isn't Perfect-squares (e.g., 4.9 is not
square), but some values are, so AM defines the predicate Add-sq-sq(x,y), which is True 1ff
x and y are perfect squares and their sum Is a perfect square as well (e.g., Add.sq.sq(16,9)).
Add-sq-sq.Defn is a predicate which is true if Its 3 arguments are squares, say x2, y2 , z2,
and if the sum of the first two is equal to the third: x2+y2 -z2.

** Task 255 ** Fill in examples of Add-pr, because none exist yet, and Add.pr is related to
the interesting concept Add. That is, the sum of a pair of primes.

** Task 256 ** Check Dommin/range entries of Add-pr, because many examples have recently
been found, but not yet checked. AM defines the set of pairs of primes whose sum is also a
prime (e.g., Add-pr-pr(2,5)). In a rather bizarre way, AM has defined prime pairs. The sum
of two primes can be a prime if one of them is 2. So Add-pr-pr can really be considered a

'":4 predicate on one prime argument x, which returns True iff x+2 is a prime; I.e., 1ff x is the
lower member of a prime pair. There Is something at once awful and sublime about this
derivation of prime pairs. Perhaps this captures the spirit of AM s actions as a whole, so let's
stop this trace right here.

Appendix s. An 'Unadulterated' Trace

Here is the way that the AM program begins. The human user's typing will appear in
italicso. He first types (START) to start the system, after which AM asks him some
questions. Finally, the main Select&Execute-a-TASK loop of AM is entered.

The careful reader will notice several small changes in this transcript, compared to the

nicely doctored ones which preceded it. For one thing, the task numbering here is not
precisely the same as in the rest of this document. A task Is called a "Cand", and the agenda
is called "CANDS". Only some of the reasons are printed out, and they are not as "chatty"
as the reasons in. e.g., Chapter 2's example trace. The user has asked AM to type out the
top three tasks on the agenda at each "cycle". In a better hardware environment, the user
could dynamically watch the top hundred tasks bubbling around on one side of a CRT
screen. To Interrupt AM, the user types CONTROL-I. At that moment he has a very
limited syntax of questions he may ask. See (o) below (page 319).

An approximate level of familiarity of the user with the AM program is maintained by
AM, as a numeric variable. Initially, its value is determined by the number of times the
human user has used AM in the past.10 It gradually changes in value as a single session
proceeds. Many print statements use this variable to determine the necessary level of detail
to type. For example, contrast the line pointed to by an arrow labelled (4) below with the

,7 line labelled (). In between, the variable increased to the point where a detailed message

. ' gThis is not a doctoring: I have written an i/o routine for AM which prints 24 before everything the user types, and 2.
1.%% afterwards. The 'PUB' documentation program interprets this to mean "switch to font 4" and "switch back

10 * to font I". Thim document was PUBBed with font 4 defined as italics.
I0 1 hill resist the temptation to call this a simple "user model*, even in a footnote.

J6\
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E was thought to be superfluous. The level of detail needed for clarity should not be confused
with the level of verbosity of output that is desired, Should the user see every function call,
or the results of each task, or just monitor the overall character of what AM is doing? A
separate variable is maintained for this verbosity indication. Finally, another partially
independent dimension is the amount of control the user wishes to have on AM. Must he
approve each move AM makes, occasionally redirect AM, be able to ask questions? Another
variable indicates the level of user control in effect at the moment. The first several
questions deal with setting up these parameters.

V INTERLISP-10 4-JAN-75 ...

Good afternoon, Doug.

+-(START)

Please type in your lost name ( then carriage-return):FEIGENBAUM

Almost ready to enter AM's main loop, Ed.

Ed, you have used AM once before.
Do you feel like you need some refreshing about how to work with it? Y)s

AM has 113 concepts to start with, each with only
about 5 of its potential 30 facets ( parts) filled in.

Repeatedly, AM selects a part of a concept,
and tries to fill it in or check it. In this process, new
concepts may emerge and be granted full status; in those cases,
almost all their parts will be empty at the time of their creation.

CANDS is a list of suggested future activities for AM.
Repeatedly, AM picks a Candidate from CANDS and does what it says.
A typical Cand might be:

( Fill in examples of interesting compositions).
Each Cand also has a list of reasons explaining why it was

proposed, and a numeric rating of its overall value.
DO-THRESHhold is a numeric variable that indicates the lowest

rating a Cand may have and still be executed by AM.
If no Cand on CANDS measures up, then all the concepts try to suggest

new candidates, which are merged into CANDS.

DISCLAIMER: The user interface is still unfinished, and in fact
the only polished part is the following message describing it! Try it
at your own risk!

You, Ed, can affect this concept growing process.
At any time, you may hit ti, which will Interrupt me.
Once interrupted, I will answer one question or perform one task;
a typical question I can answer is WHY;
a typical task is ( Raise the Interest Level of the Frobnate Concept).

A second way to interact with me is to help me decide
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which Cand to do next each time. You can see my top choices, their
reasons, and overrule me if you want. The variable Seencands is
the number of Candidates you seo each time, and Ucontrol indicates
the amount of control you have over my choosing.

Th To keep yiu informed, I will periodically print out messages.

The level of verbosity can be changed by interrupting me.

More details can be obtained when you interrupt with ti.

Verbosity Level (1 - 10, or ?) .... ( Please terminate your response
with a carriage-return) ...?

Verbosity - the amount of data that AM spews out to Ed.
In this system, Verbosity is just a numeric-valued variable

which the Printing functions look at.
Verbosity level 0 suppresses all messages.
Verbosity level 5 lets most important messages get printed.
Verbosity level 10 dumps out enough to actually get some

feeling for the inner workings of AM.

The suggested value for Ed is 8.

Verbosity Level (1 - 10, or ?) .... ( Please terminate your response
with a carriage-return) ...10

User-control Level ( 0 - 10, or ? )...?

User-control - the degree to which you supervise AM's activities
In this system, User-control is just a numeric-valued variable

which the top-level control functions look at.
User-control level 0 lets you gain control only via tl.
User-control level 5 lets you see a few of AM's alternatives,

and waits 6 seconds for you to OK its choice.
User-control level 10 displays several alternative Candidates,

and waits indefinitely until you to select one.

User-control Level ( 0 - 10, or ? )...4

Before deciding which new Cand to work on, I'll print my top choices.

How many Candidates would you like to see each time?
I suggest 4): 3

Should I tell you my reasons for each Cand I am considering selecting
each time? No

Should I tell you my reasons for the Cand I actually select each time?
Yes

If you have not typed anything within 4 seconds after a prompt,
then AM will fill in a default answer for you.
A space will suffice to keep AM from defaulting on you,
while you think about what to reply to any question AM asks you.

1k,
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In general, your response should be terminated by a carriage return.

Would you like to reset this waiting time? No

Entering AM's main loop now.

No Cand on CANDS is good enuf.
Do-thresh reduced from 500 to 333
Must find new candidates and merge them into CANDS.

The top 3 Cands are:
1: Fill in some examples of Set-struc-intersect
2: Fill in some examples of Set-struc-join
3: Fill in some examples of Coalesce

I choose first Cand. OK? yes.

The reason for considering this Cand is: (We have no examples
for SET-STRUC-INTERSECT yet)

Beginning 1st cycle.

Failed. Tried to fill in new examples of SET-STRUC-INTERSECT.

<At this moment, the user hit control-I and interrupted AM.>
?: (W,, E, , N, ?, Q) ?

Here are more detailed explanations of your options:
W Why: AM gives Ed the explanation behind its last printed

message.
I Interest: Ed can modify the interest ratings of concepts and

Candidates.
E Evaluate: Ed types in an expression and AM runs EVAL on it.
M Message: What was the last message that AM did NOT type out

because the verbosity was too low?
N Name: Rename some concept to whatever you want to call it.
Q Quit: resume execution.

In general, AM will automatically resume execution after answering one
query. You must hit TI again to interrupt.

?: W
Why: (No examples of SET-STRUC-INTERSECT were found; there

is no reason to even consider specializing it further)

This Cand used 11.159 cpu seconds.

Ic

% '



Appendix 5 AM Discovery in Mathematics me Heuristic Search -320-

The top 3 Cands are:
1: Fill in some examples of Set-struc
2: Fill in some examples of Coalesce
3: Fill In some examples of Nonempty-struc

I choose first Cand. OK? yes.

The 2 reasons for considering this Cand are:
(Active-exs specifically asked for some examples of SET-STRUC

while trying to Fill in some Set-struc-intersect examples)
(We have no examples for SET-STRUC yet)

Beginning 2nd cycle.

Creating new Being, similar to SET-STRUC, named INT-SET-STRUC, but
restricted so as to make it more interesting.

An INT-SET-STRUC is any SET-STRUC for which (Each pair of
-' elements satisfies the same interesting predicate P (for some P)).

Filled in examples of SET-STRUC.
0 examples existed originally on SET-STRUC.
S11 potential new entries were just proposed.

Eliminating duplicates, the newly constructed examples are:
(CLASS)
(CLASS DOUG CORDELL BRUCE)
(CLASS RO-7 RI-7 R2-7 R3-7 R4-7 R5-7 R6-7 R7-7)
(CLASS A)
(CLASS B)
(CLASS A B)
(CLASS 0 D F I M)

After eliminating duplicate and already-known entries, AM finds that.
only 7 new, distinct examples of SET-STRUC had to be added.

Do-thresh raised from 332 to 346 because this last Cand succeeded, so
we raise our hopes-- and our st, ndards-- temporarily.

This Cand used 23.743 cpu seconds.

The top 3 Cands are;
1: Fill in some examples of Int-set-struc
2: Fill in some examples of Coalesce
3: Check all examples of Set-struc

I choose first Cand. OK? yes.

The reason for considering this Cand is: (Any example of
INT-SET-STRUC is automatically an interesting example of SET-STRUC)

I:::



Appendix 5 AM Discovery in Mathematics as Heur islc Search -321-

Eeginning 3rd cycle.

Won't try to create a restricted interesting version of INT-SET-STRUC.

Filled in examples of INT-SET-STRUC.
0 examples existed originally on INI..SET-STRUC.
13 potential new entries were jist proposed.

Eliminating duplicates, the newly constructed examples are:
(CLASS)
(CLASS A)
(CLASS B)

After eliminating duplicate and already-known entries, AM finds that.
only 3 new, distinct examples of INT-SET-STRUC had to be added,

Do-thresh raised from 346 to 358.

This Cand used 11.881 cpu seconds.

The top 3 Cands are:
1: Fill in some examples of Obj-equal
2: Check all examples of Int-set-struc
3: Check all examples of Set-struc

I choose first Cand. OK? yes.

The reason for considering this Cand is: (We have no examples
for OBJ-EQUAL yet)

Beginning 4th cycle.

Record of attempts to find examples: ----------------------------------
An ex ( sought) is: ((CLASS A),(CLASS A) -+ T) ----------------
------------------------------------------------------------------------

----- ------------ ----

Found 6 examples ( and 151 non-exs), in 11.644 sacs.
Ratio of exs to non-exs is too low ( 6 / 151); Exs are too sparse.

AM will sometime try to generalize OBJ-EQUAL.
Won't try to create a restricted interesting version of OBJ-EQUAL.

Filled in examples of OBJ-EQUAL.
0 examples existed originally on OBJ-EQUAL.
6 potential new entries were just proposed.

Eliminating duplicates, the newly constructed examples are:
((CLASS A) (CLASS A) 4 T)
((CLASS ODFIM) (CLASSODFIM) - T)
(FALSE FALSE - T)

I,-
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After eliminating duplicate and already-known entries, AM finds that.
only 3 new, distinct examples of OBJ-EQUAL had to be added.

Do-thresh raised from 358 to 359.

This Cand used 17.886 cpu seconds.

-No Cond on CANDS is good enuf.
Do-thresh reduced from 359 to 239
Must find new candidates and merge them into CANDS.

The top 3 Cands are:
1: Fill in some examples of Set-struc-intersect
2: Check all examples of Int-set-struc
3: Fill in some generalizations of Obj-equal

I choose first Cand. OK? yes.

The reason for considering this Cand is: (We have no examples
for SET-STRUC-INTERSECT yet)

AM recently tried this same Cand, so let's skip it now.

* The top 3 Cands are:
1: Check all examples of Int-set-struc
2: Fill in some generalizations of Obj-equal
3: Check all examples of Set-struc

I choose first Cand. GK? yes.

The reason for considering this Cand is: (Some new , unchecked
examples of INT-SET-STRUC have recently been added)

Beginning 5th cycle.

AM is forgetting the entire SUGG facet of the INT-SET-STRUC concept.
Because: (No sense using this suggestion more than once).

Checked examples of INT-SET-STRUC and all entries were confirmed

This Cand used 11.362 cpu seconds.

The top 3 Cands are:

S-.
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1: Check all examples of Set-struc
2: Fill in some generalizations of Obj-equal
3: Fill in some examples of Coalesce

I choose first Cand. OK? yes.

The reason for considering this Cand is: (Some new, unchecked
examples of SET-STRUC have recently been added)

Beginning 6th cycle.

Based on empirical experiments, AM believes that SET-STRUC may really
be no more specialized than UNORD-OBJ.

Closer inspection reveals that the evidence for this was quite flimsy.
AM will wait until some examples of any of these have been found: (

BAG-STRUC), and then see if they truly also are SET-STRUC's.

Based on empirical experiments, AM believes that SET-STRUC may really
be no more specialized than NONMULT-STRUC.

Closer inspection reveals that the evidence for this was quite flimsy.
AM widl wait until some examples of any of these have been found: (

OSET-STRUC), and then see if they truly also are SET-STRUC's.

Checked examples of SET-STRUC.
5 entries were there initially.
1 small modifications had to be made.
5 entries are present now.

This Cand used 8.008 cpu seconds.

The top 3 Cands are:

1: Fill in some examples of Bag-OAruc
2: Fill in some examples of Oset-struc
3: Fill in some generalizations of Obj-equal

I choose first Cand. OK? yes.

The reason for considering this Cand is: (We have no examples

for BAG-STRUC yet)

Beginning 7th cycle.

Filled in examples of BAG-STRLJC.
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0 examples existed originally on BAG-STRUC.
19 potential new entries were just proposed.

Eliminating duplicates, the newly constructed examples are:
(BAG)
(BAG A)
(BAG B)
(BAG A B)
(BAG A A)
(BAG A A B)
(BAG 0 D F I M)
(BAG A B (BAG B) (CLASS))
(BAG BRUCE CORDELL DOUG)
(BAG RO-7 RI-7 R2-7 R3-7 R4-7 R5-7 R-4 R7-7)

After eliminating duplicate and already-known entries, AM finds that.
only 10 new, distinct examples of BAG-STRUC had to be added.

XEQ-CAND
5AIA

Do-thresh raised fr A 239 to 264.

This Cand used 17.692 cpu seconds.

The top 3 Cands are:
1: Fill in some generalizations of Obj-equal
2: Fill in some examples of Oset-struc
3: Fill in some examples of Coalesce

I choose first Cand. OK? yes.

'I, : The reason is: (The ratio of examples to non-examples of
OBJ-EQUAL is too low ; OBJ-EQUAL is too specialized, too narrow)

Beginning 8th cycle.

Considering genlizing a recursive defn of OBJ-EQUAL
Will try to remove a conjunct.
2 possible conjuncts to choose from.
AM generalizes OBJ-EQUAL into the new concept GENL-OBJ-EQUAL, by

not recursing on the CAR of each arg.
i.e., GENL-OBJ-EQUAL will not have a recursive check
like this one, which is present in OBJ-EQUAL:

APPLYB
(QUOTE OBJ-EQUAL)

- (QUOTE DEFN)
(CAR BAI)
(CAR BA2)
AM generalizes OBJ-EQUAL into the new concept GENL-OBJ-EQUAL-1,

by not recursing on the CDR of each arg.
i.e., GENL-OBJ-EQUAL-1 will not have a recursive check

V . -:-
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like this one, which is present in OBJ-EQUAL:

APPLYB
(QUOTE OBJ-EQUAL)
(QUOTE DEFN)
(CDR BA I)
(CDR BA2)

If any of (GENL-OBJ-EQUAL GENL-OBJ-EQUAL-1) ever seems to be too
specialized, AM will consider disjoining it with other members of that
set.

Filled in generalizations of OBJ-EQUAL.
0 generalizations existed originally on OBJ-EQUAL.
2 potential new entries were just proposed.

Eliminating duplicates, the newly constructed generalizations are:
GENL-OBJ-EQUAL
GENL-OBJ-EQUAL-1

After eliminating duplicate and already-known entries, AM finds that.
all 2 new, distinct generalizations of OBJ-EQUAL had to be added.

Do-thresh raised from 264 to 335.

This Cand used 6.667 cpu seconds.

The top 3 Cands are:
1: Fill in some examples of Genl-obj-equal-1
2: Fill in some examples of Genl-obj-equal
3: Fill in some examplls of Oset-struc

I choose first Cand. OK? yes.

The reason is: (The generalization GENL-OBJ-EQUAL-1 of OBJ-EQUAL
is relatively new and has no exs of its own yet , excepting those
of OBJ-EQUAL)

Beginning 9th cycle.

?.: N

Rename which existing concept? GENL.OBJ.E(JA.,

What Is Its new name? SAME4iZE

Done.
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Record of attempts to find examples:

An ex ( sought) is: ((ECTOR BAG) (VECTOR B (BAG 8) (CLASS) A))..-...
----- -- ---- --- -----------------------------------

-------- ---------------------- ---- --------------------------

Found 26 examples ( and 10~i non-ex.), in &.037 secs.
A nice ratio of exs/non-exs was encountered for GENL-OBJ-EQUAL-1

V Won't try to create a restricted interesting version of
GENL-OBJ-EQUAL- 1.

Filled in examples of GENL-OBJ-EQUAL-1.
0 examples existed originally on GENL-OB.J-EQUAL-1.
26 potential new entries were just proposed.

Eliminating duplicates, the newly constructed examples are:
((VECTOR BAG) (VECTOR B (BAG B) (CLASS) A) -T)
((OSET 0 D F I M) (OSET 0 0 F I M) -aT)
((BAG) (BAG DON ED) -4 T)
((OSET DM I F 0) (OSET DM1I F0) -aT)
(PAIR DOUG BRUCE) (PAIR DOUG BRUCE) -aT)
((ECTOR BAG) (VECTOR D M I F 0) -4 T)
((ECTOR B) (VECTOR D M I F 0)- T )
((BAG B) (BAG B)- -T)
((ECTOR D M I F 0) (VECTOR A A B) -T)
((BAG A) (BAG A B) -. T)
((VECTOR) (VECTOR B (BAG B) (CLASS) A) 4T)

((OSET BRUCE DON) (OSET B A) -* T?
((PAIR COMPOSE-EXS COMPOSE-EY.S) (PAIR LIST-STRUC-INTERSECT

ANYB-SPEC) -# T)
((OSET R2-1 R2-2 R2-3 R2-4 R2-5 R2-6 R3-1 R3-2 R3-3 R3-4 173-5

R3-6 R4-1 R4-2 R4-3 R4-4 R4-5 R4-6 145-1 R5-2 R5-3 RS-4 Rl5-5 R5-6 R6-1
R6-2 R6-3 R6-4 R6-5 R6-6) (OSE7 0 D F I M) 4# T)

((OSET A B (BAG B) (CLASS)) (OSET 0 (BAG B) (CLASS) A) -aT)
((OSET 0 D F I M) (OSET B)4- T)
((ECTOR A A) (VECTOR A B) -) T)
((OSET DON ED) (OSET BAG) - T)
((BAG A A B) (BAG) -o T)
((OSET B) (OSET BRUCE DON) 4 1)
((LASS DON ED) (CLASS A) -) T)
(PAIR LIST-STRUC-INSFRT CANON!ZE) (PAIR LIST-STRUC-INTERSECT

ANYB-SPEC) --o T)
((VECTOR) (VECTOR BAG) -o T)
((OSET A) ('OSET D M If 0)4- T)
((VECTOR BAG) (VECTOR BAG) -# T)

After eliminating duplicate and already-known entries, AM finds that.
only 25 new, distinct examples of GENL-OBJ-EQUAL-1 had to be idded.

Do-thresh raised from 335 to 367,

This Canci used 29.095 cpu seconds.
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The top 3 Cands arn:
1: Fill in som~e ex~amples of Same-size
2: Check~ all exzimplas ot Geril-ob i-equal-i
3: Fill in some examples of Coajesce

I choose first Cand. OX? yes.

The 2 reasons are;
(Interestingness of SAME-SIZE has changed recently)
(The aeneralization SAME-SIZE of OBJ-EQUAL is relatively new

and has no exs of its own yet ,excepting those of OBJ-EQUAL)

Beginning 10th cycle.

Record of attempts to find examples:

An ex ( sought) is: ((VECTOR A) (OSET B))+-------------------------
--- +--- -+---- ------------------- +-------------+---+ ---- +-

------------------------------------------

Found 26 examples ( and 102 non-exs), in 8.032 secs.
A nice ratio of exs/non-exs was encountered for SAME-SIZE
Won't try to create a restricted interesting version of SAME-SIZE.

Filled in examples of SAME-SIZE.
0 examples existed originally on SAME-SIZE.
36 potential new entries were just proposed.

Eliminating duplicates, the newly constructed examples are:
((OSETO0D F IM) (OSETOD 0F IM)-T)
((OSET DM IF 0)(OSET DM IF0)-iT)
((PAIR DOUG BRUCE) (PAIR DOUG BRUCE) -. T)
((BAG B) (BAG B) -4 T)
((OSET BRUCE DON) (OSET B A) -+ T)
((PAIR COMPOSE-EXS COMPOSE-EXS) (PAIR LIST-STRUC-INTERSECT

ANYB-SPEC) 4* T)
((OSET A B (BAG B) (CLASS)) (OSET B (BAG B) (CLASS) A) -o T)
((ECTOR A A) (VECTOR A B) -+ T)
((PAIR LIST-STRUC-INSERT CANONIZE) (PAIR LIST-STRUC-INTERSECT

ANYB-SPEC) 4# T)
((VECTOR BAG) (VECTOR BAG) -4 T)
((ECTOR A) (OSET B) 4T)

((BAG AB) (OSET BA) T)
((LASS 0 0OF I M) (BAG0D F IM) 4 T)
((ECTOR B) (BAG A) -4 T)
((PAIR LIST-STRUC-INTERSECT ANYB-SPEC) (PAIR DOUG BRUCE) 4T)

((OSET DON ED) (PAIR LIST-STRUC-INTERSECT ANYB-SPEC) .4T)
((BAG 0 D F I M) (VECTOR D M I F 0) 4T)

7. ((ECTOR B) (BAG B) 4 T)7
((OSET BAG) (OSET A) 4 T)
((ECTOR A A) (BAG A A) -+ T)
((LASS A) (VECTOR BAG) -+ T)
((LASS A B) (OSET A B) -4 T)
(PAIR COMPOSE-EXS COMPOSE-EXS) (OSET DON ED) 4T)
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((VECTOR A) (OSET A) - T)
((OSET BAG) (CLASS A) -. T)
((OSET A) (CLASS A) -4 T)
((OSET B) (OSET A) 4 T)
((BAG 0 D F I M) (OSET 0 D F I M) -# T)
((OSET DON ED) (OSET ED CORDELL) + T)
((OSET ED CORDELL) (OSET B A) -# T)
((OSET A) (BAG B) -4 T)
((OSET B A) (OSET A B) - T)
((VECTOR B A) (OSET ED CORDELL) - T)
((OSET A) (VECTOR BAG) 4 T)
((OSET B A) (OSET DON ED) # T)

After eliminating duplicate and already-known entries, AM finds that.
only 35 new, distinct examples of SAME-SIZE had to be added.

Do-thresh raised from 367 to 406.

This Cand used 21.725 cpu seconds.

The top 3 Cands are:
1: Check all examples of Same-size
2: Check all examples of Genl-oj-equal-l
3: Check all things which just barely miss being examples of

Same-size

I choose first Cand. OK? yes.

The reason is: (Some new , unchecked examples of SAME-SIZE
have recently been added)

Beginning l1st cycle.

Checked examples of SAME-SIZE.
35 entries were there initially.
1 had to be completely discarded.
4 had to be transferred elsewhere.
30 entries are present now.

Do-thresh raised from 406 to 421.

This Cand used 6.917 cpu seconds.

The top 3 Cands are:
1: Check all examples of Genl-obj-equai-I
2: Check all things which just barely miss being examples of
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Same-sizeI3: Fill in some examples of Coalesce

I choose first Cand. OK? yes.

The reason is: (Some new, unchecked examples of
GENL-OBJ-EQUAL-1 have recently been added)

Beginning 12nd cycle.

Checked examples of GENL-OBJ-EQUAL-1.
25 entries were there initially.
1 had to be completely discarded.
4 had to be transferred elsewhere.
20 entries are present now.

This Cand used 4.711 cpu seconds.

No Cand on CANDS is good enuf.
Do-thresh reduced from 421 to 333
MUst find new candidates and merge them into CANDS.

The top 3 Cands are:
1: Canonize these 2 arguments: Genl-obj-equal-I and Obj-equal
2: Canonize these 2 arguments: Same-size and Obj-equal
3: Fill in some examples of Coalesce

I choose first Cand. OK? yes.

The reason is: (it would be nice to find a canonical ( with
respect to Geni-obj-equal-I and Obj-equal ) representation C for any
Object X ; that is,

( GENL-OBJ-EQUAL-1 x y ) iff
(OBJ-EQUAL (Cx) (Cy)).

)

Beginning 13rd cycle.
Experiments indicate that GENL-OBJ-EQUAL-1 is affected by the varying

the type of structure of its arguments.

GENL-OBJ-EQUAL-1 doesn't look at any elements of OBJECT except possiblythe car of the structure which denotes its type, so AM replaces the
tail of OBJECT by a canonical distinguished tail, say NIL.

Succeeded!

Some conjectures that AM considers believable:
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OBJ-EQUAL, restricted to canonical OBJECT's, is ihdistlnguishable
from GENL-OBJ-EQUAL- 1.

There is a powerful analogy between

GENL-OBJ-EQUAL-1 ................ OBJ-EQUAL
OBJECT ........................... CANONICAL-OBJECT
operators on and into those operators restricted to

OBJECT ........................... CANONICAL-OBJECT
statements involving these ....... statements involving these

Do-thresh raised from 333 to 341.

This Cand used 9.02 cpu seconds.

The top 3 Cands are:
1: Fill in some examples of Canonical-object
2: Restrict the following: Genl-obj-equal-1 Canonical-object Domain
3: Canonize these 2 arguments: Same-size and Obj-equal

I choose first Cand. OK? yes.

The reason is: (Any example of CANONICAL-OBJECT is a canonical
example of OBJECT)

Beginning 14th cycle.

AM will now try t0 produce examples of CANONICAL-OBJECT by running the
following operations:

(CANONIZE-GENL-OBJ-EQUAL-1&OBJ-EQUAL).

Won't try to create a restricted interesting version of
CANONICAL-OBJECT.

Filled in examples of CANONICAL-OBJECT.
0 examples existed originally on CANONICAL-OBJECT.
165 potential new entries were just proposed.

Eliminating duplicates, the newly constructed examples are:
(VECTOR)
(BAG)
(CLASS)

- (OSET)
FALSE
T

•,TRUE

(PAIR)
(T)

L'¢- ,
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(NIL)
(TRUE)
(FALSE)

After eliminating duplicate and already-known entries, AM finds that.
only 12 new, distinct examples of CANONICAL-OBJECT had to be added.

Do-thresh raised from 341 to 391.

This Cand used 23.827 cpu seconds.

The top 3 Cands are:
1: Restrict the following: Genl-obj-equal-t Canonical-object Domain
2: Canonize these 2 arguments: Same-size and Obj-equal
3: Fill in examples of Coalesce

I choose first Cand. OK? yes.

The reason is: (GENL-OBJ-EQUAL-1 was one of the predicates
which defined the new concept CANONICAL-OBJECT, so it Is worth
considering the restriction of GENL-OBJ-EQUAL-1 to that subset of
OBJECT 's)

Beginning 15th cycle.

Succeeded!

Do-thresh raised from 391 to 431.

This Cand used 3.562 cpu seconds.

The top 3 Cands are:
1: Canonize these 2 arguments: Same-size and Obj-equal
2: Fill in some examples of Coalesce
3: Restrict the following: Obj-equal Canonical-object Domain

I choose first Cand. OK? yes.

The reason Is: (It would be nice to find a canonical ( with
respect to Same-size and Obj-equal ) representation C for any Object
X ;that is,

,' (SAME-SIZE x y )if f

(OBJ-EQUAL (Cx) (Cy)).) '

I od .-,, P"" -, ', """"""""" ", *";' --% .-r ,* , j "\ .' ..,,j ' .,.., ..-/ % ..,.." .. ,, '/ :' ..: •.;;-
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Beginning 16th cycle.

Experiments indicate that SAME-SIZE is not affected by varying the type
of structure of its arguments.

Experiments indicate that SAME-SIZE is not affected by reordering
elements of its structural arguments.

So any canonical arguments can be Bags and Sets.

Experiments indicate that SAME-SIZE is affected by the presence of
multiple elements In its structural arguments.

So any canonical arguments can be Bags aid Lists.

SAME-SIZE doesn't look at the specific elements in OBJECT, like
OBJ-EQUAL does, so AM can replace them all by i single distinguished
element, say T.

Succeeded!

Some conjectures that AM considers believable:

OBJ-EQUAL, restricted to canonical BAG-STRUC's, is indistinguishable
..-. from SAME-SIZE.

There is a powerful analogy between

SAME-SIZE ....................... OBJ-EQUAL
BAG-STRUC ................... CANONICAL-BAG-STRUC
operators on and into ............ those operators restricted to

BAG-STRUC........... CANONICAL-BAG-STRUC
statements involving these.....statements involving these

Do-thresh raised from 431 to 457.

This Cand used 17.297 cpu seconds.

The top 3 Cands are:
1: Fill In some examples of Canonical-bag-struc
2: Restrict the following: Same-size Canonical-bag-struc Domain
3: Restrict the following: Bag-struc-join Canonical-bag-struc Domain

I choose first Cand. OK? yes.

The reason is: (Any example of CANONICAL-BAG-STRUC is a canonical
example of BAG-STRUC)

Beginning 17th cycle.

0',
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AM will now try to produce examples of CANONICAL-BAG-STRUC by running
the following operations:

(CANONIZE-SAME-SIZE&OBJ-EQUAL).

Filled in examples of CANONICAL-BAG-STRUC.
0 examples existed originally on CANONICAL-BAG-STRUC.
211 potential new entries were just proposed.

Eliminating duplicates, the newly constructed examples are:
(BAG)
(BAG T T)
(BAG T T T)
(BAG T)
(BAG T T T T T)
(BAG T T T T)
(BAGTTTTTTTTTTTTTTTTTTTTTTTTTTTT

T T)

After eliminating duplicate and already-known entries, AM finds that.
only 7 new, distinct examples of CANONICAL-BAG-STRUC had to be added.

Do-thresh raised from 457 to 478.

This Cand used 35.918 cpu seconds.

The top 3 Cands are:
1: Restrict the following: Same-,ize Canonical-bag-struc Domain
2: Restrict the following: Bag-struc-join Canonical-bag-struc Domain
3: Restrict the following: Obj-equal Canonical-object Domain

I choose first Cand. OK? yes.

The reason is: (SAME-SIZE was one of the predicates which defined
the new concept CANONICAL-BAG-STRUC, so It is worth considering
the restriction of SAME-SIZE to that subset of BAG-STRUC 's)

Beginning 18th cycle.

Succeeded!

Do-thresh raised from 478 to 495.

This Cand used 3.311 cpu seconds.

¥" ?: N

¢C
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Rename which existing concept? CANONICAL-BAG-STRUC

What is Its new name? NUMBER

Done.

?: (W, I. E, M, N, ?, Q) N

Rename which existing concept? CANONIZE.SAME.SIZE&iOBJ.EQUAL

What is its new name? SIZE

Done.

The top 3 Cands are:
1: Check all examples of Number
2- Restrict the following: Ob-qual Canonical-object Domain

3: Check all examples of Canonical-object

I choose first Cand. OK? yes.

The 2 reasons are:
(Interestingness of NUMBER has changed recently)
(Some new, unchecked examples of NUMBER have recently been

added)

Beginning 19th cycle.

Checked examples of NUMBER and all entries were confirmed

This Cand used 1.909 cpu seconds.

The top 3 Cands are:
1: Check all examples of Canonical-object
2: Check all things which just barely miss being examples of Number
3: Restrict the following: Bag-struc-join Number Domain

I choose first Cand. OK? yes.

The reason is: (Some new, unchecked examples of

CANONICAL-OBJECT have recently been added)

Beginning 20th cycle.

.-I
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CANONICAL-OBJECT has 7 examples which occupy 11 list cells, but is not
interesting enough to warrant taking up that much space; so about 2

will be selected at random and forgotten.
Checked examples of CANONICAL-OBJECT.

12 entries were there initially.
10 were never confirmed or rejected.
2 had to be completely discarded.
5 entries are present now.

This Cand used 16. 626 cpu seconds.

No Cand on CANDS is good enuf.
Do-thresh reduced from 495 to 340
Must find new candidates and merge them into CANDS.

The top 3 Cands are:
1: Fill in some examples of Size
2: Fill in some examples of Coalesce
3: Restrict the following: Bag-struc-join Number Domain

I choose first Cand. OK? yes.

The reason is: (We have no examples for SIZE yet)

Ber~inning 21st cycle.

Record of attempts to find examples:

An ex (sought) is: (BAG T T)+++++.+++.+++.+++++++.++

Found 26 examples ( and 0 non-exs), in .996 secs.
A nice ratio of exs/non-exs was encountered for SIZE
Won't try to create a restricted interesting version of SIZE.

Filled in examples of SIZE.
13 examples existed originally on SIZE.
26 potential new entries were just proposed.

Eliminating duplicates, the newly constructed examples are:
((BAG T T) -+ (BAG T T))
((BAG T T T T T) -+ (BAG T T T T T))
((BAG B) -# (BAG T))
((BAG A A) -4 (BAG T T))
((BAG T T T) 4 (BAG T T T))
((BAG T T T T) -- (BAG T T T T))
((BAG A B) - (BAG T T))
((BAG R2-1 R2-2 R2-3 R2-4 R2-5 R2-6 R3-1 R3-2 R3-3 R3-4 R3-5

R3-6 R4-1 R4-2 R4-3 R4-4 R4-5 R4-6 R5-1 R5-2 R5-3 R5-4 R5-5 R5-6 R6-1
R6-2 R6-3 R6-4 R6-5 R6-6) - (BAG T T T T T T T T T T T T T T T T T T

[
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TTTTTTTTTTTT))
((BAG A A R) -+ (BAG T T T))
((BAG 0 D F I M) -# (BAG T T T T T))
((BAG A) - (BAG T))
((BAG T T T T T T T T T T T T T T T T T T TT T T T T T T

T T T)-#(BAGT TTT TTTTTTTTTTTTTTTTTTTTT
T T T))

((BAG DON ED) -+ (BAG T T))
((BAG A B (BAG 8) - (CLASS)) (BAG T T T T))
(,BAG A B) -+ (BAG T T))

After eliminating duplicate and already-known entries, AM finds that.
only 14 now, distinct examples of SIZE had to be added.

Do-thresh raised from 340 to 414.

This Cand used 9.2 cpu seconds.

N



-337-

Appendix 6. Bibliography

Of all the articles, books, and memos which were read as background for AM, I have
selected those which had some impact on that work (or at least, on this document). While
numerous, they form a far from comprehensive list of publications dealing with automated
theory formation, with AI in general, and witi how mathematicians do research.

Preceding the listing of these references, Appendix 6.1 will provide some pointers to real-
world documentation, the AM program itself, etc.

Appendix 6.1. Documentation

Below are listed some references to earlier articles, to on-line documentation about AM, to
the AM program itself, etc.

The AM representation is a variant of the "Beings" ideas, a modular representation for
knowledge. In his summary of the state of Automatic Programming [Bierman 76), Bierman
compares Beings with Frames, Actors, etc., and gives a nice example of Beings in action.

History buffs may be interested in perusing the original thesis proposal for AM (about 50
pages long). It is kept as SYS4[tlk,dbl]eSU-AI.

The full body of knowledge provided to AM is found in English translation on file
GIVEN[tlkdblJ.SU-AI. This is a longer, fuller treatment than -'e one found in this
document, in Appendix 2.1 and Appendix 3. The knowledge as used is of course the AM
program itself. Needless to say, it is much longer than the excerpts shown in Appendix 2.3.

Said running AM program is stored at SUMEX, on directory <LENAT>. From Interlisp,
one need only load in the file <lenat>LT. This in turn will load in three files: TOP6,
CON6, and UTIL6. So if you want to steal AM, take all four files!

Once loaded, the program is self.explanatory. It will instruct the user to type (START) to
begin AM itself. Once he does this, AM will ask him some questions, and then enter the
select-and-execute.a-task loop.

A crude "user's manual" is stored as file MANUAL[am,dbl]*SU-AI. The reader may wish
-_. to glance over it before running AM, since much of the actual LISP code is more

complicated than this thesis made it seem (e.g., there are two dynamicaiiy.adjusted variables,
Verbosity-level and Expert-level. The former variable determines which events generate a
message, and the latter variable affects the terseness of each of those printed messages.)

4.
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