
ARTIFICIAL INTELLIGENCE 61

EtmlSI O: A Program That Learns New
Heuristics and Domain Concepts
The Nature of Heuristics III: Program
Design and Results

Douglas B. Lena!
Compttter Science Departtnent, Stanford University, Stanford,
CA 94305, U.S.A.

ABSTRACT
The AM program, an early attempt to mechanize learning by discorery, has recently been expanded
and extended to set'eral otl, er task. domains. AM's tdtimate failure apparently was due to its inability to
discot'er new, powerftd, domain-sl~'cific heuristics for the rarious new fiehts it .ncot'ered. A t that
time, it seemed straight-fonvard to simply add "lleuristics" as one more field in which to let A.~I
explore, obsert'e, define, and det'elop. That task--learning new het~ristics by discorery--turned out to
be much more diffitcult than was realized initially, and we hat'e just now achiered some szwcesses at
it. Along the w a y it became clearer why A.~I had succeeded in the first place, and why it was so
diffuzult to ase the same paradigm to discot'er new heuristics. In essence, a~l was an atttomatic
programming system, whose primitire actiotts were modificatiotts to pieces of LISP code, code which
represented the characteristic functions of variotes math concepts. It was only beeattse of the deep
relationship between LISP and Alathematics that these operatiotts (loop unwinding, recursion elimina-
tion, composition, argument elimination, function substitution, etc.) which were basic LISP nlutators
also turned out to yieM a high 'hit rate" of t'iable, useful new math concepts when applied to
preciously-known, useful math concepts. Hut no such deep relatiottship existed between LISP and
Heuristics, and when the basic automatic programming operators were applied to t'iable, useful
heuristics, they ahnost always produced ttseless (often worse than ttseless) new rides. Ot,r work on the
nature of heuristics has enabled the cottstruction of a new language in which the statement of hettristics
is more natural and compact. Briefly, the ~,ocabulary inchtdes many types of conditiotts, actions, and
descriptire properties that a heuristic tnight possess; instead of writing a large lump of LIsP code to
represent the he.ristic, one spreads the same information out across dozetts of 'slots'. By employing
this new language, the old property that AM satisfied fortuitously is once again satisfied: the primitive
syntactic operators usually now produce meaningful semantic t'ariants of what they operate on. The
ties to the foundations of lleuretics hare been engineered into the syntax at:d t, ocabulary of the new
language, partly by design and partly by et, olution, much as John McCarthy engineered ties to the
foulutations of Mathematics into LISP. The EURISKO program embodies this language, and it is
described in this paper, along with its results in eight task domains: design of natal fleets, elementary
set theory and number theory, LISP programming, biological evolution, games in general, the design of

Artit-u:ial Intelligence 21 (1983) 61-98

0 0 0 4 - 3 7 0 2 / 8 3 / 0 0 0 0 - 0 0 0 0 / $ 0 3 . 0 0 �9 1983 N o r t h - H o l l a n d

62 D.B. LENAT

three-dimensimtal VLSI devices, the discovery of heuristics which help the system discot'er heuristics,
and the discovery of appropriate new t)7~es of "slots" itl each domain. Along the way, some very
powerful new concepts, designs, and heuristics were indeed discovered mechanically. Characteristics
that make a domain ripe for AM-like exploration for new concepts and conjectures are explicated, plus
features that make a domain eslx'cially suitable for EURISKO-Ieeel exploration for new heuristics.

1. Design Decisions in Constructing the EEmSKO Program

Our earlier papers in this 'Nature of Heuristics' series [9, 12] have motivated
the task of the EOalSKO program: learning by discovery, in particular learning
new heuristics as well as new domain-specific definitions of concepts. They
have given little attention to the architecture of that program, to its results, or
to w h a t ~ i n hindsight-- they reflect on our earlier experiences with A.',t [3]. The
EU~ISKO project was lirst conceived in 1976. During the past six years, there has
been an accumulation of 'design ideas' which have heen tested. Some of these
have been built into the representation language underlying EURISKO (i.e., RLL
[8]). Other ideas have found their way into the EURISKO knowledge base itself,
as explicitly represented (and malleable) concepts. This section presents these
ideas and design decisions, and in Sections 2 and 3 we discuss the performance
of the VZtJRISKO program. The design ideas fall naturally into three categories:
those dealing with representation, with control, and with the user interface.

1.1. hleas about representing concepts

(I) R t d e s need not dis t inguish "slots" f r o m "f tmct ions ' . As in AM, I-UttlSKO'S
basic representation employs frames (units) with slots. Each slot can be viewed
as a unary function which is handed a unit-name and returns a value. E.g.,
Worth and IsA are slotnames; they are the names of properties a unit might
possess. But they can also be considered unary functions: Wor th (Se tUnion)=
65(]; l sA(Se tUnion)= {SetOp, BinaryOp, Dora = RanOp}. Other unary func-
tions exist, of course, and can be defined in terms of these more primitive slots.
For instance, suppose we define AllIsAs as a function which returns the IsA
value for a concept, plus all their Generalizations, plus all their Generaliza-
tions, etc. So AIlIsAs(SetUnion) first accesses the IsA slot of SetUnion, and
finds {SetOp, BinaryOp, Dora = RanOp}. It next looks on the Generalizations
slot of those three units, and finds (coincidentally) that they all say {Operation},
so it adds that value to the growing list. Continuing, it finds that the General-
izations slot of Operat ion contains {Active}, and tiredly the Generalizations of
Active is {Anything}. The final value returned is therefore the set {SetOp,
BinaryOp, Dora = RanOp, Operat ion, Active, Anything}. The point here is
that the system's heuristic rules can refer to Isa(SetUnion), and they can refer
to AlllsAs(SetUnion), and they need never know nor care whether one or both
of them are primitive sl6ts, or in fact whether they are both computed via some
more complex algorithm. The decision about which functions are implemented

NATURE OF HEURISTICS lit 63

as primitivcs (slots), and which are computed dynamically from others, is
invisible to the rules, and may change from time to time (e.g., after a great
amount of experience is accumulated in some domain, it may be apparent that
All lsAs is rcqucstcd so often that it should be stored primitively). The rules
represent guidance knowlcdge which is, af ter all, independent of the specific
representation being employed; this ' s l o t s= func t ions ' scheme adequately
decouples the two. From the point of view of the rules, all a 'concept ' is is a legal
argument for a list of functions (mostly unary ones).

(2) "GET' knows why it's being called, "PUT" knows how the value is
justified. As in most f rame-based systems, the most fundamental access func-
tions are G E T and PUT, rather than, e.g., A S S E R T and MATCH. The above
paragraph shows that instead of writing (G E T Cf), which would mean "get the
value stored in slot f of concept C"), we shall write simply f (C). It became
painfully obvious during the building of AM that G E T was being called for
several different reasons in different places. Sometimes, all that was wanted
was to know if any values at all were known yet for f (C) ; sometimes an AM
rule wanted to know the length of the set of values; sometimes it wanted to
know some values, but it didn't mat ter how up-to-date the answer was; often
the major constraint was a limitation on the amount of resotrrc'es to expend
(time or space or number of queries to the human user); and occasionally ' the
complete answer' was required, regardless of how difficult it was to obtain. In
EURISKO we have begun to accomodate these differcnt reasons and constraints
on each call on G E T , by providing extra arguments which specify which reason
is behind this call (Existence, Length, Some, Up-to-date) anti how much
resources can be spent (Time, Cells, Queries). Calls on PUT arc more stan-
dard; they may trigger some flurry of re-writing, but the only extra argument
one wishes to supply is an indication of the justification of the value being
changed. For example, was this value computed by using values obtained by
G E T ? The answer is ahnost always affirmative, so one then asks just how
precise those values were; e.g., if they were all obtained under severe time
limits, the value we're about to PUT will be of dubious accuracy.

(3) 'The size of ships' can mean different things, and there should be a place
for each. Consider what it means to say that the Size(Ships)-- Large. We can
find many separate interpretations; here are half a dozen:

(i) Each ship is large (this is guaranteed).
(ii) The default answer, when asked how big a ship is, is 'Large" (but no

guarantee).
(iii) The EUmSKO units representing ships take up a lot of memory.
(iv) There arc many elements in the set of all ships.
(v) Looking over the unit representing the set of all ships, we see it is very

big.

64 D.tL LENAT

(vi) Viewing Ships as the name of a kind of slot (e.g., a unit representing a
fleet might have a slot called Ships, which was filled with a list of ship-names),
we note a very large number of entries on such slots (for those units which can
have a Ships slot).

Our aim here is not to argue for a preferred meaning, but rather to point out
that each meaning should be unambiguously representable. Having ambiguity,
in English adds flair to the language, and makes conversation exciting; but it
makes computat ion much more costly. We opt to eliminate ambiguity at the
time knowledge is entered into the system, so that, e.g., the way that
Size(Ships) = Large gets entered is guaranteed to disambiguate among the six
meanings listed above. In brief, we (a) replace a unit for X with separate units
for AIIXs, TypicalX, and XquaSlot, and (b) have meta-knowledge recorded in
slots that are prefaced 'My' . Eliminating redundancy internally reduces process-
ing time required, at a small increase in space required. Preserving meta-
knowledge uses quite a bit of extra space, but enables heuristics to later
perform inductions that would otherwise be impossible (e.g., noticing regulari-
ties in all units entered by a certain person, or all a t tempts to synthesize
examples by a certain new heuristic).

(4) Each kind of slot has a zozit describing it. In building a knowledge base,
the need arises to be able to say things abota each kind of slot. We give thrce
examples.

(a) What does it mean when a value is stored in slot s of unit U? Is that
value guaranteed to be a legal entry, or is it just probable that it belongs there?
Is it going to always be valid, or is it merely currently a valid entry? These and
other questions about the epistemological status of entries on a slot will change
from one task domain to another, from one program to another, f rom one slot to
another. Each kind of slot should 'know' what it means to have a value stored on
itself.

(b) Another qucstion whose answer will vary is: Should we redundantly
cache (store) this value, or just assume we'll recompute it whenever we need it?
Some languages, such as the MOLGEN units package, force the answer to always
be ' redundantly store ' ; most languages force the answer to be ' redundantly
compute ' . But the optimal answer will depend on how the knowledge base
grows, changes, and is used (e.g., how often are the values accessed, compared
to how often they ' re changed? How much space do they take up?)

(c) When an entry is added or removcd from an lsA slot, we expect the
' inverse link' to be likewise added or removed. This could be built in for each
type of slot, but that makes defining new slots hard for the user.

These examples illustrate the utility of representing each kind of slot as a
unit. "I'bus there are units called CompiledCode, Generalizations, IsA, etc. For
instance:

NATURE OF HEURISTICS Ill 65

NAME: IsA, Isa, Is-a, ISA, IS-A
Informally: is, element-of, is-in

DOMAIN/RANGE: (Units--* SetOfUnits)
IS-A: Sot
FilledWithA: Set
EachEntryMustBeA: Unit representing a set
Inverse: Examples
UsedBylnheritanceModes: InheritAlonglsAs
MakesSenseFor: Anything
MylsA: Eurisko unit
MySize: 500 words
MyCreator: D. Lenat
MyTimeOfCreation: 4/4/79 12:01
Generalizations: AKindOf
Specializations: MemberOf, ExtremumOf
Worth: 600
Cache: Always
English: The slot which tells which classes a unit belongs to.
ALGORITHMS:

Nonrecursive Slow PossiblyLooping: A (u) {c ~E Concepts] c.Defn(u)}
DEFINITIONS:

Nonrecursive Fast PossiblyLooping: A (u,c) c.Defn(u)

Most of the slots present for lsA were also meaningful for, e.g., SetUnion [3],
but a few are new and worth commenting upon. The Inverse slot is filled with
Examples; whenever x is added to (removed from) the lsA slot of y, y will be
addcd to (rcmovcd from) the Examples slot of x. "l-he MakcsSenscFor slot is
filled with Anything. This slot describes the class of concepts that can legally
have an IsA s l o t I i n this case any concept at all.
MakesSenseFor (Domain /Range)= Active, since only active concepts (those
with algorithms) can have domains and ranges. Na tu ra l ly
MakcsSenseFor(MakesSenseFor) = Slot, since no other type of unit can legally
have a MakesSenseFor slot. The Cache slot of lsA says Always; it might have
said Ncver (which would save some space and squander much time) or some
more dynamic predicate instead.

1.2. Ideas about control (agendae, reasons, and heuristic rules)

(1) Tile control structure of the system is represented as part of the knowledge
base. While an t~t-like agenda mechanism has been retained, the precise control
algorithm is represented within EURtSKO as a set of concepts, so the system can
modify it itself. Basically, there is Select-Execute-PostMortem loop represented
as a unit. Specializations of this unit form the three nested loops that charac-
terize the EUmSKO program: select and work on a topic; given a topic, select and
work on a promising task; given a task, select and obey a relevant individual
heuristic rule. Each topic is a major category of investigation for the program

66 D.B. LENAT

(e.g., Number Theory, Device Physics, Games, Evolution, Oil Spills); each task
is an order of magnitude more specific and minuscule (e.g., "Find some
examples of prime pal indromes", "identify the functionality of a newly-desig-
ned VLSI device"), and the execution of individual heuristics are yet another
order of magnitude smaller ("if trying to find extreme examples of C, then
extract the base step from a recursive definition of C as one such example ' ; ;
and see the dozens of heuristics R I - R 2 6 discussed in [12]).

Representing the control structure explicitly has had three benefits so far.
First, it facilitates explanation; EURISKO can more coherently explain what it is
doing at any given moment , when asked by the user. Given that it's running in
a particular function, the user can ask what the purpose of the function is, how
long it usually takes to run, why it was called, etc. Second, it allows enforced
semantics [8]. Given that individual rules are supposed to take about a minute
to run, that an IfPotentiallyRelewmt test is supposed to i~e much faster than an
IfTrulyRclevant test for each rule, and other assumptions upon which the
system has been built and optimized, it now has a way to enforce those
constraints. If, for instance, a rule is created whose IfPotcntiallyRclevant is
taking longer than its IFl 'rulyRelevant, explicit representation and record-
keeping of the control structure will let this be noticed and corrected. This
situation has happened many times, for rules synthesized by other heuristics; it
might well happen in the future when new human users begin adding rules to
the system with only a partial view of what the various slot names are supposed
to mean. Third, and finally, since the average time and space for each function
(and the variances of time and space) are built up over a reliable sample of
cases, it is possible for EURISKO to notice when it's in danger of being in an
infinite loop, even a subtle one in which there is no obvious infinite recursion or
circular list structure involved. The original motivation for explicitly representing
control was to enable the program to meaningfully modify its own control code,
but this has always resulted in bugs (due to an inadequate mastery of program-
ming, of models of learning, and so on).

(2) Multiple agendae. The human researcher sticks with a topic for an
extended period of time. Partly this is due to the ditficulty of 'swapping in' a
whole new set of concepts, heuristics, etc. Yet part of the reason for this
behav io r is more rational, and worth duplicating in our mechanical researchers:
a developing field will often bog down and appear to stagnate, and this gradual
winding down of interestingness is punctuated by occasional bursts of (often
serendipitous) discovery, which lead to many promising things to do, which
gradually wind down, etc. If the hunmn---or the m a c h i n e i a b a n d o n s a topic as
soon as it begins to level out, he/she/it will forever be limited to making very
superficial discoveries in many fields. How, then, does EURISKO stay focused on
a single topic for a noritrivial period of time?

Some (initially eight) of EURISKO'S concepts (e.g., Games, DevicePhysics,

NATURE OF IIEURISTICS Ill 67

NumberTheory) represent ' topics' . Each topic has a slot called Agenda, which
contains its own agenda of tasks dealing with that topic (concept) and/or with
one or more of its specializations. There no longer is one central agenda;
rather, there is a 'current topic', and its agenda is the one being used for a
whilc.

When a task is proposed which deals with a conccpt C, EUmSKO ripples up
from C along the Generalizations links looking for topics, halting as soon as it
finds one. Since a concept may have several immediate Generalizations, there
may be several upward ripplings going on at once; each one terminates as soon
as it finds a topic. For instance, suppose some rule proposes a new task
involving Palindromes. Thcir immediate generalizations are Numbers and
SymmetricConstructs. These eventually lead to the topics of NumberTheory
and Aesthetics. A pointer to the task is put on the agenda of each topic
encountered. There can be several pointers to the same task simultaneously
existing on different agendae.

Below we examine the mid-level loop (choosing tasks and working on them)
and low-level loop (choosing heuristics and obcying them). Here we are
considering the top-level loop, which involves choosing a topic, working on it
for a while (minutes to-- rare ly---days of CPU time), and then performing a
pos t -mor tem (after which the loop repeats). Once a topic is chosen, the next lower
level of loop is entered: choose a task, work on it, and analyze what happened.
Note that a user 's interests (as defined by the concepts that model individuals and
groups of individuals) may affect which topics EURtSKO expects the user to be
interested in, which tasks he would most like to see worked on, etc.

(3) Dynamic creation and elimination of agendae (topics). On rare occasions,
a heuristic rule will advise that an agenda be split into pieces. E.g., here are
two rules which make such recommendat ions:

If agenda A contains more than four times as many tasks as the average agenda,
then (try to) split A into about three pieces.

If the number of units called on per task, when working on tasks of agenda A, is more than ten
times the rate at which other agendao inspect units,

then (try to) split A into two pieces.

Once the recommendat ion is made, o ther rules have some ability to mean-
ingfully effect such schisms. One easy way to do this is by creating a new
agenda for each specialization of the concept (=topic) of the original big
agenda A. If there are no known specializations of that concept, other rules
may still apply. One rule looks for groups of concepts mentioned in some
fraction (ideally ~) of the tasks on A, but on vcry few (ideally less than ~) of
tasks on other agendae, and then uses these groupings to delineate the few new
topics. Each new topic is explicitly defined and marked as being a new
specialization of A, and the t~fsks from A are parcelled out onto the new,
specialized, smaller agendac.

68 D.B. LENAT

When an agenda shrinks too small, rules cause it to be merged into all
appropriate immediate generalizations" agendae. In such cases, the general
agendae should adopt (a little of) the small agenda's aesthetics, values, heuris-
tics, reasons, goals, open problems, p/oints of view.. . In practice, so far, the
only things inherited are the tasks themselves. This raises a possible research
question, but i snot currently an area we are investigating.

In one run, EURISKO split the Games agenda into two pieces: one dealing with
the Traveller fleet design game, and one dealing with all other games. As it ran
out of things to try in the Traveller domain, that agenda grew shorter and finally
(days later) was automatically reincorporated into the Games agenda.

(4) Selecthlg a task: the half-frame problem. Let's look in more detail at the
three phases for the middle level: selecting a task, finding rules which help
satisfy it, and doing a post-mortem on the aftermath on the task's execution.
Selecting a task is done as follows. The top task's reasons are evaluated
carefully, and its rating is updated. Reasons often become stale, but rarely
(during this phase) does a new reason suddenly spring to mind; therefore, a
task's rating will almost never increase, but may decline quite a bit by the time
we get around to it. We term this the 'half-frame problem' because it reminds
us of McCarthy and Hayes' [13] frame problem, but in a world where changes
go only in one direction. That constraint lets us efficiently 'solve' the problem:
If, after reevaluation, the top task's rating falls below that of task number 2, we
merge it back into the agenda, and repeat this step. Finally, some task will stay
at the top of the agenda (or we'll be down to re-re-evaluating some task which
was higher initially--hence we know it won't be lowered any further). One way
or another, then, this phase terminates by selecting a task from the agenda. Not
all the lower-rated tasks have been reevaluated at this time, but that doesn't
matter because reevaluating them would only have lowered their ratings
anyway, so they ahnost certainly aren't the top task to work on now.

(5) Executing a task: dynamically assembling a rtde interpreter. The second
phase then begins. The first activity is to locate a set of potentially relevant
heuristic rules, rules whose execution may (help to) satisfy the chosen task.
Space and time bounds are computed (and may be updated as the rules fire).
Executing a rule is not so straightfo/nvard as it was in At,! or most other
rule-based systems. There are several ways that the pieces of the relevant rules
can be run as executable code--i .e . , several possible rule interpreters. Various
parameters of the current situation determine which ru le interpreter is used.
Here are nine examples.

If resources are quite limited, the conditions If-Enough-Time,
If-Enough-Space, If-Enough-UserAccess, etc. will be checked
quite early on."

N A T U R E O F H E U R I S T I C S Il l 69

If the current task is vitally important, those slots may never even
be considered.

If very few rules are potentially relevant, then there's little need
to spend time ordering them.

If very many rules are potentially relevant, it may be better to
evaluate some If slot of all of them, and then place them in some
order for further, detailed consideration of relevance.

In some particularly tricky situations, the rule interpreter must
know that it is only a provisional choice, and that it must look for
features of the environment (as it runs) that cause it to suspend,
and initiate a quest for a better interpreter.

A more common, and less drastic, situation occurs when a rule
interpreter knows it must occasionally check for some new rules
which might have become relevant since the start of the rule-
executions.

All other consideration being equal, prefer a specific rule to any
of its generalizations, prefer a rule with shorter running time,
with (average) fewer number of user interactions initiated, with
higher Worth, with more ancient TimeOfCreation, etc.

If the user is impatient (according to the user model, which, e.g.,
might have noticed a flurry of 1" T's being typed), then execute
the ThenPrint actions of the relevant rules before actually work-
ing on the other Then slots of any of them.

If the user likes conjectures, then execute all the ThenConjecture
slots first.

These and other judgmental rules guide EURISKO in choosing and changing--
or on some occasions synthesizing a new--rule interpreter for the current task.
Once assembled, it is handed control and it runs the potentially relevant rules.
This is itself usually a select-execute-analyze loop, which proceeds until the
resource bounds have been exceeded, or the rules have all quit.

(6) Post-mortem of a task: non-blind 'suspend and resume'. After the second
phase ends, a careful analysis is performed upon that activity. What happened?
How many rules succeeded? How long did the task take? How much space? Is
the user (as represented by units modelling him and the groups he belongs t o)
still interested in this topic, or is it time to (possibly) switch to a new one? The
task is re-examined in light of its reasons: is it now worth putting back on the
agenda? With what reasons?

70 D.B. LENAT

If a task failed, it will usually be placed back on the agenda along with some
new tasks which (if they succeed) might enable this one to run successfully.
This task's failure serves as one reason for those new tasks, and when they
succeed their post -mortem should boost the priority of this task. In trivial cases
(where no heuristics know why the task failed, what could have helped it), the
task is simply put back on the agenda, and this mechanism resembles t h e
familiar blind suspension and resumption of processes. What Eurisko's control
structure allows here is a sort of best-first knowledge-guided generalization of that
mechanism.

(7) Each heuristic rule is itself a concept; we do not disthzguish metarules from
rules. Each heuristic rule examines some concepts, modifies them, creates
similarly typed ones, etc. It just may so happen that some of those concepts
examined and synthesized will be heuristic rules (will themselves be capable of
operat ing upon other concepts). For that matter , they might even be concepts
that are heuristics which work on heuristics; this was illustrated toward the end
of Section 4.12 of [12]. There is no need to distinguish metarules from rules, as we
can now simply apply a body of heuristics to itself as well as to concepts from
some technical task domain. After all, categories should be drawn when and
only when the distinctions lead to some advantage, some new ability or clarity
or power.

Unfortunately for my philosophy, EtJRISKO recently chose to define and
separate out the set of rules that can operate sometimes on other rules--i .e. ,
the metarules. It did this mainly for aesthetic reasons (co-identification), and
decided to keep the distinction around because it noticed a powerful regularity
involving metarules: running one on rules usually takes much longer than
running it on domain-level concepts. In hindsight it 's clear that testing a rule
will take an order of magnitude more ettort than testing an object-level
construct, because testing a rule might require synthesizing and testing a dozen
domain concepts along the way. Nevertheless, each metarule can and does still
run at both levels.

As part of what we get from representing each rule as a full-fledged unit, the
rules are automatically now organized into an enormous generalization/speci-
alization hierarchy. The so-called Weak Methods (generate and test, hill
climbing, etc.) lie at the top (most general), and there are many hundreds of
entries near the bot tom (specific judgmental rules which ment ioned particular
terms like 'n-doped ' , 'nuclear dampers ' , and 'perfect numbers ') . But what of
the structure in between? In particular, what are the next hundred or so nodes
below the five weak methods? What is the average depth of the tree, the
average branching factor, and so on? One aim of this research is to get a bet ter
grasp of what this 'space of heuristics' looks like, what its Structure is. Our
results to date were recently presented in [9]. Even though the weak methods
are encoded as rules in EURISKO, and can be run, few of them have ever

NATURE OF HEURISTICS III 71

succeeded in producing a useful result, and as a result their Worths are fairly
low. It is usually more efficient to devise for the program a specific heuristic for
some new situation, ra ther than spending the extra time following a very general
heuristic.

Once a task is chosen, say working on concept C, a rule interpreter is chosen
or synthesized. This is run on the set of potentially relevant rules, namely the
rules pointed to by C or by one of its generalizations. The organization of rules
into a tree enables this set to be small (on the order of the log of the total
number of rules in the system). The interpreter will evaluate If parts of rules
and execute Then parts in some fashion (perhaps dealing with rules one at a
time, perhaps running all their If 's and then picking a rule at a time to carry out
its Then's , perhaps running all the Then-Conjecture slots of all truly relevant
rules immediately, etc.) The pos t -mor tem of an individual rule is necessarily
simple: bookkeeping information about t ime and space used, new units created,
etc. are recorded.

1.3. Ideas about communication

(1) A s EURISKO matures, it interacts less as a pupil, more as a co-researcher.

As with all expert systems, much system-user interaction has been required
initially, at system-startup time. These dialogues have been primarily tutorial,
as we put in one concept after another by hand. Later interactions were less
frequent, less tutorial in character, more frequently involving outside experts
watching and interacting with the program as a performer. Besides models of
users and user-groups, EURiSKO should have models of dialogue-modes (tutor-
ing the system, solving problem, being taught by the system, etc.) We did, and
still do, believe this to be important, but little work has been done on it as yet.

(2) EURISKO must quickly notice when new concepts are related to existing ones.

EURmKO generates new concepts frequently. One result we 've noted is the high
frequency with which these 'new' concepts are in fact equivalent to an already-
existing one. So EURISKO should have a fast way of checking each new concept,
to see if it[genuinely new or not. We call this ' the recognition problem' . It
arises both when the user defines some new concept, and when EURISKO itself
does.

EURISKO currently employs the following strategy to deal with this
problem, leach unit knows which slots are criteriai, i.e., define it. Each such
criterial slot s knows the way in which it makes sense to do matching. The
existing concepts caught by this simple mechanism can then be examined in
detail at leisure. For instance, a concept may have Defn as a criterial slot, and
the Defn may be a conjunction of tests. Consulting AND, the matcher finds
that it is supposed to be insensitive to the order of the conjuncts, and that it
should recur on their structure "to determine if they match. Another concept
has a criterial s lofwhich is Alg (a procedure for computing some function). The

72 D.B. LENAT

Alg slot is filled with a LISP PROGN, and the matcher consults P R O G N and
finds that EVAL-ing the program on test arguments to see if gives the same
answers is one way of testing a match. This does not provide a theoretical
solution to the general problem of finding potentially-related concepts, but it is
working satisfactorily, empirically.

(3) EURISKO ahvays has dte initiative; the user can request but never demand.
When the user types in some message indicating that he wishes to define or
modify a concept, that request is placed as a very (but not infinitely-) high
priority task on the agenda. Note that EUmSKO does not relinquish control at
any time; it keeps the initiative. When the user types in ' interrupts' , EURISKO
does minimize the amount of time until his/her interrupts are handled, but that
is only due to courtesy (as defined by rules), not built in to the system in any
way.

When the user selects a topic, that topic is given much greater weight than
any others; yet there may well still be some task on some agenda which has so
high a rating that its done anyway. The model of the user (based on him/her.as
an individual and also based on groups the user belongs to) determines how to
treat his/her requests and interrupts. Some categories (such as AI researchers)
enjoy seeing a program retaining full control; for other groups (such as
mathematicians), EUmSKO knows it must (and does) simulate being a quite
subservient program.

(4) Modelling the user enables the creation of a good first impression. Creating
a good 'first impression' is important. Psychologically, it will overshadow the
user's attitude toward using the system for a long time to come. Pragmatically,
EURISKO is dependent upon outside experts for testing, use, and knowledge base
building; it is important to keep them interested in interacting with the program.
Telling a user something he/she already knows about, or omitting an explanation
in an area he/she is unfamiliar with, are equally serious turn-offs.

EURISKO solves this problem by building up and using models of its users.
When a new user logs in, the program attempts to quickly guess as much as
possible his profession, his interests, his notations. Many of these features are
co-occuring (e.g., if he writes ' j ' to indicate the square-root of - 1 , then he's
probably an engineer, and he'd feel at ease being shown huge equations and
formulae). Thus, when a few things are observed, EURISKO can tentatively
assign (as defaults, as it were) all the other known co-occuring 'symptoms'. This
kind of expectation-filtering inference forms the common source of power
for many current AI methodologies (frames, scripts, beings, stereotypes, units,
schemata).

To support expectation-filtering by user models, a massive data base must
exist, dealing with people in general, broken into groups, and even some data
about specific known individual users. As one might expect f rom the EURISKO
philosophy, each person, each group, and the set AilPeople, get their own

NATURE OF HEURISTICS III 73

separate full-fledged concept frames. A genl/spec hierarchy exists, with the
most common knowledge at the top node ('AIIPeople' in general), and the
most specific knowledge at the bottom nodes ('Polya', 'Feigenbaum'). At
present there is not much in this knowledge base, but the results it affects are
often the most noticeable ones by outsiders. For instance, when a new t~ser
types]' T as EURISKO iS starting up, EURISKO concludes that he/she is familiar
with other computer systems, is impatient, is probably scientifically-oriented,
etc. EURISKO does learn simple models of each new user, but there are at
present very few psychological and societal heuristics for building up (and
testing!) such models. Based on our model of theory formation (presented in
[12]), we are not surprised that only minimal sorts of learning were achieved
without a deep model of the domain (in this case, the domain of ' the
psychology of using computer programs').

2. Results of EURISKO Applied to Naval Fleet Design

New concepts lie 'near the surface' of all fields, though of course some fields
have been picked cleaner than others (e.g., contrast number theory to AI).
Mathematics was a poor choice of domain for AM from this point of view, since
it has been so well explored throughout the millenia. It is rare that interesting
new results arise near the surface of old disciplines; one exception is Conway's
numbers [7]. In fact, in our first graph theory protocol, such a concept was
discovered (the category of graphs now known as uniquely geodesic: if a path
exists between two vertices, then a unique shortest path exists). In AM, there
was always the possibility that while each heuristic seemed intuitively obvious
and general, its true nature was merely an encoding of some of known
mathematics, and that that was in fact why it appealed to our intuition (that our
intuition has been shaped to reflect a rough image of mathematics that exists
already). We strongly believed this no t to be the case, however. EURISKO has
been a good test of the hypothesis that a large but general set of judgmental rules
for manipulating concepts (and for discovering new rules) can be found and
operationalized.

To demonstrate the eflicicacy of its methods to practitioners of the fields it
works in (e.g., mathematicians) and to practitioners of AI, any program
claiming to be a 'discovery program' should aspire to two goals: (i) use the
same methods to discover concepts, conjectures, and heuristics in several
domains, and (ii) make at least a few genuinely new (to mankind) useful
discoveries. AM did not meet these criteria well, but EURISKO does. Sections 2
and 3 of this paper discuss the various tasks EURISKO has worked on, and the results
it has achieved. Other articles focus on applications to VLSI design [11],
elementary mathematics [3], and biological evolution [10]; therefore we shall
concentrate upon a different task, that of designing a futuristic fleet to compete in
the Traveller Trillion Credit Squadron (TCS)wargame [14].

EURISKO designed a fleet of ships suitable for entry in the 1981 and 1982

74 D.B. LENAT

national Origins tournaments for TCS. These tournaments are held on July 4
weekends, and run by Game Designers Workshop, which is based in Normal,
Illinois. The 1981 tournament was held in San Matco, CA, and the 1982
tournament was held on the campus of the University of Maryland, in Baltimore.
Each tournament was single elimination, six rounds. EURISKO"S fleet won the first
tournament , thereby becoming the ranking player in the United States (and also,
an honorary Admiral in the Traveller navy). This win is made more significant by
the fact that no one connected with the program had ever played this game before
the tournament , nor seen it played, and there were no practice rounds.
Subsequent to that event, changes were made in the tournament rules, clmnges
which nullified most of the unusual features of the submitted fleet. A ditlerent
collection of rule synergies were opened up by the new rules, however, and
EURISKO'S new fleet won the 1982 tournament as well.

Each participant has a budget of a trillion 'credits ' (roughly equal to dollars)
to spend in designing and building a fleet of futuristic ships. There are over one
hundred pages of rules which detail various costs, constraints, and tradeoffs,
but basically there are two levels of variability in the design process:

(1) Design an individual ship: worry about tradcoffs between types of
weapons carried, amount of a rmor on the hull, agility of the vessel, groupings
of weapons into batteries, amount of fuel carried, which systems will have
backups, etc.

(2) After designing many distinct kinds of individual ships, group them
together into a fleet. The fleet must meet several design constraints (e.g., s o m e

ships in the fleet, having a total fuel tonnage of at least 10% of the total fleet
fuel tonnage, must be capable of refueling and processing fuel), and in addition
must function as a coherent unit.

To handle this task, 146 units were added, by hand, to EUmSKO. We list their
names below, illustrate a couple in detail, and then discuss what EURtSKO did.

Accel AccelAttacklnfo AccelUSP Agility Alg Armor Attacklnfo AltacklnfoOf
BeamDefense BcamL'aser BearnLaserAnacklnfo BigAcccl BigAccelDamage
BigAccelUSP Bridge DestroyedDarnage Computer ComputerDcstroycdDamage
ComputerFib ComputerlnternalDarnage ComputerRadiationDamage Config
Configuration ConfigurationDefense CrewDamage CriticalHitDamage
CriticalTypeOfDamage Damage Damagelnfo DamagelnfoOf DamageTableOf
DefendsAs DefendsUslng DcfensiveWealmmType EnergyGun
Energ}GunAttacklnfo EnergyGunOSP Fleet FleetBattle FrozenWatch
FrozenWatchflfoopsDeadDamage FuelDamage Game GameConcept GameObj
GamePlaying Games H6I H62 H63 HEMissile llandleComputerlntefnalDamage
! landlcComputerRadiationDamage HandleCrewDamage
I landlcCriticalHitDamage HandleDamage HandleFuelDamage
1 landleJumpDamage l landleManeuverDamage HandlePowerDamage
HandleScreenDamage tlandleWeaponDamage Hangar/BoatDcstro:,'edDamage
IfDeeidingTermination lfSimulating Juggernaut JumpDarnage
JumpDcstroyedDarrrdge LaserUSP ManeuverDamage
ManeuverDestroyedDamage Manu MesonGun MesonGunAttacklnfo

NATURE OF HEURISTICS lit 75

MesonGunDamage MesonGunUSP MesonScrcen MesonScreenDcfensc
MesonScrecnUSP Missile MissileAttacklnfo MissileUSP Missler NAccels
NBigAccels NEnergyGuns NLasers NMesonGuns NMcsonScrcens NMissiles
NNucMissiles NNuclearDampcrs NNumber NRepulsors NSandCaslers
NSmallAccels NucMissile NucMissileDamage NuclearDamper
NuclearDampcrDcfense NuclearDamperUSP OffensiveWeaponType
PhysGameObj PlayTravellerFleetBattle RangeDesired Repulsor RepulsorDefense
RcpulsorUSP SandCaster SandCasterUSP SandDefense Scooter Screen
ScrcenDamage ScreenDestroycdDamage Ship ShipVaporizedDamage Ships
SimulationHeurs SizeMod SizeUSP SmallAccel SmallAccelDamage
SmalIAccelUSP SmallWeaponDamage Spine/FireControlDcstroyedDamage
TerminationHeurs To} lit Tot litl-xmgRange Tol litShortRange ToPlay ToPlayOf
Tonnage TravellcrFleet TravellerFleetBattle TwoPcrsonGame TypeOfDamage
USPNucMissile UnFairGame UsedlnSimulating UsedlnTerminating UspPrescnt
WarGame Weapon WeaponAttacklnfo WeaponDamage WeaponType

Each concept is represented by a unit that takes about half a page of text to
describe. Here are two of these units, shown the way they exist in EURtSKO. The
first describes a type of weapon available to ships; its offensive power is
described in more detail by the second unit.

Name. EnergyGun see Note
Generalizations: (Anything Weapon)
AIIIsA: (GameConcept GameObj Anything Category WeaponType 1,3

DefensiveWeaponType OffensiveWeaponType Obj
AbstractObj PhysGameObj PhysObj)

IsA: (DefensiveWeaponType OffensiveWeaponType PhysGameObj) 1
MyWorth: 400 2
MylnitialWorth: 500 2
Worth: 100 2
InitialWorth: 500 2
Damagelnfo: (SmallWeaponDamage)
Attacklnfo: (EnergyGunAttacklnfo) 8
NumPresent: NEnergyGuns 3
UspPresent: EnergyGunUSP 4
DefendsAs: (BeamDefense) 4
Rarity: (0.11 1 9) 5
FocusTask: (FocusOnEnergyGun) 6
MylsA: (EuriskoUnit)
MyCreator: DLenat 7
MyTirneOfCreation: "4-JUN-81 16.19:46" 7
MyModeOfCreation: (EDIT NucMissile) 7

Name: EnergyGunAttacklnfo
MyWorth: 400
Worth: 500
AIIIsA: (Anything GameConcept)
IsA: (GameConcept)
Generalizations: (Anything WeaponAttacklnfo)
AttacklnfoOf: (EnergyGun)
ToHitShortRange: (8 7 7 6 6 5 5 4 4)

76 D.B. LENA'r

ToHitLongRange: Impossible
SandDefense: ((43210000 O)

(543210000)
(654321000)
(765432100)
(876543210)
(987654321)
(1098765432)
(11109876543)
(121110987654))

FocusTask: (FocusOnEnergyGunAtlacklnfo)
MylsA: (EuriskoUni! ValueOfASIot)
MyCreator: DLenat
MyTimeOfCreation: "4-JUN-8116:33:18"
MyModeOfCreation: (EDIT MissileAttacklnfo)

Note I. The ' l sA ' slot holds the immediate (most specific) sets to which
EnergyGun belongs; the slot 'Al l l sA ' holds those same entries, plus all their
Generalizations, plus all their Generalizations, etc. The 'My l sA ' slot indicates
what this data structure is, namely a trait in an AI program.

Note 2. The slot 'Mylni t ia lWorth ' records the value of the MyWorth slot of the
unit at the time it was created. If the value of MyWorth has never changed,
then there is no Mylnit ialWorth slot needed- -such units only have a MyWorth
Slot; EnergyGunAt tack lnfo is such a unit. These values rellcct how useful the
unit has been to euRmr:o---i.e., how compact it's been, how little CPU time it's
wasted, how naany interesting analogies were built using it, how many of the
structural modifications done to it were fruitful, etc. This is to be contrasted
with the Worth slot of, e.g., EnergyGun, which specifies how useful energy
guns are to have on ships. All values arc in the 0-1000 range. What happened
to lower the MyWorth of EnergyGun? At one time, it was selected as a
candidate for modification; EUR~S~O spent some time trying to analogize
between it and other types of weapons, and nothing much came out of that. As
a result, its MyWorth was dropped from 5(}0 to 400. Why was the Worth of
EnergyGun lowered? Through many tens of simulations, it became clear that
one could buy enough armor plating to make a ship invulnerable to attacks by
these types of weapons, and from then on almost all ships were so armored.
Thus, any ships having energy weapons were at a serious disadvantage, and
gradual ly- -as they los t - - the Worth of EnergyGun declined. Incidentally, this
mistakenly led to a correct heuristic: " I f a weapon cannot hit at all at one range
(e.g., Long Range in this case), then it 's probably not worth having too many of
them." That was not the major problem with energy guns, but the heuristic is a
good one anyway.

Note 3. Most of the slots are filled in with names of other units; for example
the AIIIsA slot of the EnergyGun unit points to the unit called WeaponType . If

NATURE OF HEURISTICS 111 77

new facts should cmerge about wcapontypes (e.g., a heuristic that the bigger
the better, or a new regulation affecting the grouping of weapons into bat-
teries), the unit WeaponType would be edited and modified, but there would
be no need to try to figure out all the effects on other units in the system. The
changcs would be inhcrited by EncrgyGun and only noticcd when they were
needed, when some use was about to be made of them. This is a major source
of power in most frame-based systems. Some of these pointers are actually
indirect SeeUnit; references [8]. For instance, the NumPrescnt slot of EncrgyGun
should be filled simply with a range limit; instead, it contains the list
(*SeeUnit:* NEnergyGuns) . There is a unit called NEncrgyGuns, with a Value
slot that does provide the desired range [anywhere from 0 to Tonnagc/100], but
NEncrgyGuns contains other information about the number of energy guns on
a ship, such as power requirements, balancing, variance and mean values for
this quantity, extreme values, etc.

Note 4. Some slots have a single entry as their value, and some have a list of entries
(even though there may only be one element in that list). The unit representing
each kind of slot indicates the kind of structure to use to fill incarnations of that
kind of s lot--set , bag, list, single item, etc. That unit also specifies the type and
range of the entries that are permissible thereon.

Note 5. The slot called 'Rar i ty ' reflects the fact that, during a recent run,
~:UnmKO examined nine objects, known to be weapons, to see if they were
energy guns; one of them was. This is the kind of bookkeeping record which
heuristic rules might want to access; e.g., rulcs which say " I f C is a specializa-
tion of G, and (empirically) very few G ' s turn out to be C's, t hen . . . " .

Note 6. As EUntSKO worked in this domain, over a hundrcd new workhorse
concepts were trivially synthesized by EOmSKO: concepts of the form FocusOnX,
where X is one of the 146 concepts. Each such FocusOnX concept represcnts a
task, and is pointed to by one or more agcndae, initially the Games agenda. It
records the various times that it was the top task and energy was expended
working on it, when that happened, what the results were, how long it took,
what reasons recommendcd, it, etc. The FocusOnEnergyGun task thus serves
two purposes:

(i) it is a task on an agenda, and when selected it draws EURISKO'S attention
to the concept EnergyGun; various generation rules might then cause EurctSKO
to explore modifications to EnergyGun, analogies to it, patterns in its use, etc.

(ii) it is a record of all the times that that task has ever been worked on, and
as such forms data which can be examined by rules, e.g., this one: " I f most
a t tempts to do X have been slow but fruitful, t hen . . . " . That is, it serves as data
to induct upon.

Note 7. The preface My means " t rea ted as a EURISKO unit, a data structure in a

78 D.B. LENAT

computer program". So MyCreator refers to the person who first typed in the
unit called EnergyGun, or to the name of the heuristic rule which first
synthesized it (in which case MyTimeOfCrea t ion would have to point to a task as
well as to a date). If the EnergyGun unit had a slot called just Creator, it would be
filled with the name of the person who invented the energy gun. Similarly, if it had
a slot called TimeOfCreat ion, it would be the date on which the energy gun was,
first discovered. Such information might be useful to the program, incidentally, if
there were some pattern in the usage of weapons developed by inventor X, or
developed during a certain period of time.

Note 8. Many of F'I.JRISKO'S slots have inverses. Thus At tacklnfo and Attackln-
foOl are inverse slots. IsA and Examples have the same relationship; thus
EnergyGun says it IsA Defensive WeaponType. If we ask for Exam-
ples(DefensiveWeaponType) the value is the list (BeamLaser PulseLaser
SandCastcr EnergyGun Repulsor), which includes EnergyGun. On the unit
called IsA, its Inverse slot is filled with the entry Examples. The Inverse slot of
the Inverse unit is filled with Inverse - - so if slot s is the invcrse of r, then r is
the inverse of s.

Of the 146 added concepts, two represented new types of activities: playing a
game, and running a simulation. Later, a couple other games were added to
E:.URtSKO (Tic-tac-toe and Go) to ensure that the general games concepts truly
were general. Managing a simulation caused us to augment EOItlSKO with three
new heuristics (H61, H62, H63); these (respectively) check for termination, try
to project the ult imate outcome of the simulation, and check for infinite loops
during simulation. One method they employ, e.g., is to moni tor the relative
strengths of the two opponents; if a pattern develops in the progression of
these (e.g., the ratio is always in favor of side 2 and it is increasing in
imbalance), a winner can be projccted. If the strengths remain basically
unchanged for several iterations, an infinite loop (i.e., a draw) can be projected.

Two new If types of slot were introduced, lfSimulating and lfDecidingTer-
ruination; the three new heuristics had values for these new slots as well as
other, more conventional If slots. Two new categories of heuristics were
defined: Terminat ionHeurs and Simulationl-Ieurs. Their quaSIot forms were
useful 'unary functions' which map a game- - such as T C S - - i n t o a set of
heuristics for simulating it, and into a set of heuristics for checking termination
'of the simulation. The inverse links to these two slots are called UsedlnTer-
minating and UsedlnSimulating. They point from a rule to the game(s) or
process(es) it simulates (or tries to terminate). For instance, heuristic H61 has a
slot called UsedlnTerminating, whose value is the singleton list (Traveller-
FleetBattle).

The new units collectively specify the rules of the game and the constraints
on the design process. How did we get EURtSKO tO play the game? The unit
Games is a topic, and as such can have an agenda. One of the new units,

N A T U R E OF IIEURIS-FICS III 79

PlayTravcllerFleetBattle, had no examples, so a general heuristic added a new
task to the Games agenda: "Find examples of PlayTravellerFlectBatt le". The
Games topic was selected as the current topic (by pointing to it with a cursor,
though it could have been sclccted indirectly by supplying a user model that
claimed the user is very interested in games). Once Games was the chosen
topic, there were only a few tasks with higher priority. The first one I.:ORtSKO
ran defined the difference between Games and TwoPersonGames , and made a
note that sometime EURtSKO should look into defining some of those Non-
Tv. 'oPersonGames.

Finally, EURtSKO got around to trying to find examples of PlayTraveller-
FlcctBattle. Each example involved a call on a fleet-designing phase followed
by a battle simulation phase. The new concepts and rules helped carry out these
processes. After each simulated battle, EUR~SKO paused to try to abstract from
the results some new design heuristics. The first step was to isolate the
diffcrcnces between the two fleets. Often they would be similar, and the
ditferences would exist mostly at the level of design of particular individual
ships. Eurisko then framed many different general rules, any one of which
would suffice to prefer the winning design over the losing one. No new
techniques are used for this induction process; rather, the apparent power is
due to a good choice of rcpresentation for the rules, one naturally suited to
rules, to design rules, and evcn more particularly to TCS ship design rules. We
shall have much more to say about this is Scction 5. A fast test of the candidate
rules was made, using any relevant recorded battles from the past. If more than
one proposed heuristic remained, new variant fleets were designcd and simu-
lated, each one embodying one but violating the other heuristics. In cases of
circular victories (A beats B who beats C who beats A) all the candidates
involved were retained, but with somewhat lowered worth. Such situations
were interpreted as analogues of local maxima, and EU,~tSKO would try for a
very different flcet design for the next iteration.

So fleets fight (each battle taking between 2 and 30 minutes), and the battle is
analyzed to determine which design policies are winning, and---occasionally--
what fortuitous circumstances can be abstracted into new design heuristics. An
example of the former (gradual parametcr adjustment) was when the Agility of
ships gradually decreased, in favor of heavier and heavier A r m o r plating of the
hulls. An example of the latter (fortuitous monsters) was when a purely
defensive ship was included in an otherwise-awful ricer, and that fleet cotdd
never be fitlly defeated because that defcnsive ship, being very small, un-
armored, attd super agile, could not be hit by any of the weapons of the larger
nearly-victorious fleet.

EURISKO has by now spent 1300 CPU hours on a personal LtSP machine, the
Xerox 1100, managing this heuristically-guided evolution process. The author
culled through the runs of EURISKO" every 12 hours or so of ntachine time (i.e.,
each morning, after letting it run all night on one or more 1 ll)0"s), weeding out
heuristics he deemed invalid or undesirable, rewarding those lie understood

80 D.B. LENAT

and liked, etc. Thus the final crediting of the win should be about 60/40%
Lenat/EUmSKO, though the significant point here is that neither party could
have won alone. The program came up with all the innovative designs and
design rules (i.e., the loopholes in the TCS formulation), and recognized the
significance of most of these. It was a human observor, however, (tile author)
who appreciated the rest, and who occasionally noticed errors or flaws in the
synthesized design rules which would have wasted inordinate amounts of time
before being corrected by EURISKO.

Most of the battles are tactically trivial, the contest being decided by
the designs of the two fleets; t h a t - - a n d the 100-page thickness of the rule-
b o o k s - - w e r e the reason this appeared to be a valid domain for EURlSKO. It is
also impor t an t - - fo r EURISKO to have a good chance of finding new resul ts - - that
the size of the search space (legal fleet designs) be immense: with 50
parameters per ship, about 10 values for each parameter (sometimes fewer,
often an infinite number), and up to 100 distinct ships to design and include in
each fleet, any systematic or monte carlo analysis of the problem is unlikely to
succeed. In fact, the designers had done a detailed linear programming model
of the game, and their computer runs convinced them that a fleet of about 20
behemoths was the optimal design. This was close to the starting fleet design the
author supplied to EURtSKO, and it was also close to the designs that most of the
tournament entrants came up with.

EURtS•O was originally supplied with what appeared to be a good fleet
design (twenty large ships, each fairly fast and moderately armor-plated, each
with some small weapons and one huge spinal weapon). EUmSKO also had many
'muta t ion ' operators , such as changing the number of ships, their size, their
weaponry, etc. The many const ra in ts - - the TCS rules and fo rmu lae - -were used
to constrain the generation of mutant fleets, and to prune away illegal ones
before simulating them. At first, mutations were random. Soon, pat terns were
perceived: more ships were better; more a rmor was better; smaller ships were
better; etc. Gradually, as each fleet beat the previous one (and a few random
ancestors), its " lessons" were abstracted into new, very specific heuristics.
These rules are specific not only to ship design, but to the particular set of TCS
rules in effect during 1981. The design rules were then used to further constrain
the mutation process.

One very general result that EURISKO abstracted from this evolutionary
design process was a 'nearly ext reme ' heuristic.

In almost all Traveller TCS fleet design situations,
the right decision is go for a nea r ly - -bu t not qu i t e - -ex t reme solution.

Thus, the final ships had Agility 2 (slightly above the absolute minimum), one
weapon of each type of small weapons (rather than 0 or many), the fleet had
almost as many ships a's it could legally have but not quite (96 instead of 100),
etc. Big weapons (enormous spinal mounts capable of blasting another ship to

NATURE OF HEURISTICS III 81

pieces with a single shot) were gradually phased out, in favor of an enormous
number of small missile weapons. The fleet had almost all (75) ships of this type
though there was one ship which was small and super agile and purely
defensive (and literally unhittable by any reasonable enemy ship), and a couple
monstrous hulks which had no chance of defense against normal ships, but
which had weapons just barely accurate enough to hit any enemy ships that
were (of course!) small and agile and purely defensive.

Some of the strangest elements of the final fleet were discovered accidentally
rather than as the result of a long, continuous evolution process. The usefulness
of a tiny defensive ship was apprehended after a 'lifeboat' was the only survivor
from one side's fleet, yet round after round it could not be hit at all. That
design was immortalized into a design strategy ("Include one such ship in your
fleet!"), and a very general rule began looking for ships that could destroy it.
Finally, o n e was found; it was quite strange, and would never have been
included except to counter the possibility that the enemy might have small
defensive ships too. Against any normally-armed ship, it would quickly be
destroyed. Basically, this new ship had moderate size, no armor, the largest
possible guidance computer, the slowest possible engines for its size and
equipment, and one single, enormous accelerator weapon- -a weapon usually
ignored because its broad beam glances harmlessly off large armor-plated ships,
but which is very easy to aim. This combination is ineffective for most combat,
but is just enough to fire at the little boats it might be sent against. We were a
little disappointed that none of the other entrants had small defensive "stale-
mate guarantors" of the sort we took.

Almost all the other entrants in the final tournament had fleets that consisted
of about 20 ships, each with a huge spinal mount weapon, low armor, fairly
high agility, and a large number of secondary energy weapons (laser-type
weapons). This contrasted with EtJmSKO'S fleet in almost all ways. Most ships in
our fleet did sprout one solitary laser among their 50 or so weapon batteries,
but not because it was useful in combat-- jus t to absorb damage from enemy
fire (thanks to the somewhat unrealistic scheme by which damage is inflicted on
ships which have been hit). After an exchange of fire, most of the enemy
behemoths did indeed sink one of EURXSKO'S ships, for a total loss of about 15

ships . In return, EtJmsKo's 96 ships sank about 5 of the enemy. So just prior to
the second exchange of fire, the enemy was down to 15 ships, and EtJRISKO 81.
After a second round of fire, the numbers were 11 and 70. Two more
exchanges brought the totals to 1 and 46, and one more round of fire wiped out
the enemy. In this scenario--which was the most common one in all EUrUsno's
battles during the tournament - - there is no need at all to bring any of its
specialty ships into the front lines at any time.

The tournament was run in such a way that, after one player wins a battle,
his fleet is completely reconstituted and repaired to its original state, in
preparation for the next rung of the ladder.

82 D.B. LENAT

pattern became clear. Its second opponent did some calculations and resigned
without ever firing a shot. The subsequent oponents resigned during their first
or second round of combat with this fleet. EURISnO'S few specialty ships
remained unused until the final round of the tournament, battling for 1st versus
2rid place. That opponent also had ships with heavy armor, few large weapons,
low agility, etc. He was lacking any fast ships or fast-ship-killers, though. The,
author simply pointed out to him that if EURISKO were losing then (according to
the TCS rules) our side need put only our fast ship out the front line, withdraw
all the others and repair them, and---once they were finished repairing them-
selves---effectively start the battle all over again. This could go on ad infinitum,
until such time as EURISKO appeared to be winning, and in that case we would
let the battle continue to termination. The opponent did a few calculations and
surrendered without fighting. Thus, while most of the tournament battles took
2--4 hours, most of those involving EURmKO took only a few minutes.

The tournament directors were chagrined that a bizarre fleet such as this one
captured the day, and a similar fleet (though not so extreme) took second
place. The rules for future years' TCS tournaments were changed to eliminate
the design singularities which F tmlSKO found. For example, repairing of
damaged ships was prohibited, so the utility of the unhittable ship became
negligible.

Details of Etm~SKO'S victory at the tournament and a complete listing of the
design of our winning fleet are given in [14]. Rules for the competition are
given in three parts, each of them necessary, each published in a separate
softbound book of about 200 total pages: One on small ship design, one on
large ship design, and one on fleet design and combat rules. These are available
from Game Designers' Workshop, Normal, Illinois, as well as from game and
hobby shops nationwide in the U.S.A.

When rules for the 1982 tournament were announced, EURISKO was set to
work on finding a new fleet design. Although many of its best designs and
design rules were now illegal or useless, mos t of the general heuristics it
synthesized about the game were still valid. Using the 'nearly-extreme' heuris-
tic, for instance, it quickly designed a ship with practically no defense, and that
ship filled a key role in the final fleet. Coincidentally, just as the defensive ship
made a difference in the 1981 final round, the offensive ships made a difference
in the 1982 final round. In each case, their presence caused the opponent to
resign without firing a shot. The bulwark of our 1981 fleet was a ship that was
slow and heavily armored; the majority of ships in our 1982 fleet were very fast
and completely unarmored. Just as most 'experienced' players jeered at the
1981 fleet because it had practically no large weapons, they jeered at the 1982
fleet because it was unarmored and it still had no large weapons, even though
the rules changes had made them much cheaper.

What EURISKO found 'were not fundamental rules for fleet and ship design;
rather, it uncovered anomalies, fortuitous interactions among rules, unrealistic

NATURE OF tHEURISTICS Iil 83

loopholes that hadn't been forseen by the designers of the TCS simulation
system. There may be little of what EUmSr~O found that has application to real
naval design; most of its findings pertained to the fine structure of the TCS
rules, not to the real world. For example, a crew hit reduces the number of
crewmen on a ship from n down to the largest power of I0 smaller than n (e.g.,
from 370 to 100, from 82 to 10); EUmSKO therefore designed ships requiring 99
crewmen, and crewed them with 101 people; the first crew hit therefore had no
effect on the ship's battleworthiness.

The fact that ZU~lSr:O'S discoveries were synergistic loopholes rather than
genuine naval insights is not in itself bad, as our goal was to win the
tournament, not break new ground in real warfare. In fact, the very unreality
of the TCS rules--as any 100-page model of the real world is bound to be
incomplete and have rough edges--promised to aid us in our task. Here was a
search space that had not been explored much by human beings yet; most
designers were applying analogues of rules that hold in real life, and that
yielded them reasonable designs--fleets of the kind the TCS people anti-
cipated. EORISKO was able to walk around in the space defined by the set of
rules, somewhat awkwardly, but (thanks to its absence of common sense
knowledge) with few preconceptions about what an optimal design might be.
Perhaps we will know that the program has 'arrived' when it first fails
to win the TCS tournament. This notion of a large, unexplored search space,
not necessarily well-matched to our everyday comnon-sense intuitions, will
come up again and again in the following pages. It appears to characterize
those domains for which automated discovery (of both concepts and heuristics)
is currently most viable.

The rules will indeed change for July, 1983, including the elimination of
drop- tanks (fuel tanks that can be jettisoned; this improves the speed of a ship
but may strand it after the battle) and other changes that will force a complete
redesign. We look forward to the new challenge.

3. Results of r:URL~KO Applied to Other Tasks

3.1. EUmSKO applied to elementary mathematics

The first domain we added concepts about was mathematics, specifically the
same starting collection of finite set theory concepts ~1 began with. Fifty
heuristics ~vcre added, which subsumed most of AM'S old set of :243. This
condensation was the result of joint effort on the part of the author, W.W.
Bledsoe, and H.A. Simon, begun in 1978 at Carnegie-Mellon University. Not
surprisingly, EURISKO then duplicated many of the results of re, l: finding
elementary set theory theorems, extreme properties of set operations, and
defining useful new objects and otSerations about 50% of the time. The other
50% of its time was spent about half in generating awful concepts (still a bit

84 D.B. LENAT

bet ter than AM'S hit-rate, though), and half in at tempting to produce new
heuristics and types of slots. Even though these latter activities were quite rare,
they were quite t imeconsuming when they did occur. The various set-theory
examples prcsented in [12] wcre drawn from runs of EURISKO.

"l-he knowledge base now contains number theory (divisibility theory)
concepts as well. Most number theory concepts were discovered by EURISKO,
and latcr hand-smoothed by the author: e.g., a valid but inefficient factoring
algorithm was replaced by an clticient one. It is hoped that EURtSKO may find
some new results on fringes of that area.

About 200 math concepts were present in the system, to work in set theory
and number theory. After about 500 hours of running, another thousand
concepts had been considered, and 200 of them had proven interesting
(empirically, in the program's judgment , and later confirmed by human in-
spection). Of these new concepts, I I were valuable, specific new heuristics, and
7 were useful new types of slots. Of the 7 new slot types, four were slots that
only heuristics could possess.

It is worth explaining those four new If and Then types of slots which were
synthesized: If-Constant, If-Identity, If-Unchanged, and Then-Conjecture . The
three If slots were needed because of the high frequency with which new
functions turned out to be closely related to (i) a constant function, (ii) the
idcntity function, (iii) the same function they were synthesized from. After
synthesizing the new Then slot, EORlSKO defined the two new bookkeeping slots
listed above: ThenConjec tureRecord and ThenConjectureFai ledRecord. Each
(unit representing a) heuristic rule, call it H, can have either or both of these
bookkeeping slots, as well as having a ThenConjec ture slot. The bookkeping
slots keep track of how often (for this heuristic H) the ThenConjectureSIot has
been evaluated, and what fraction of the time it signalled an error (an Abort
message) and forced H ' s execution to terminate.

Several useful heuristics were discovered by EURISKO. Here is one example:

" I f an inverse function is going to be used even once,
then it 's usually worthwhile to search for a fast algorithm
for computing it."

This was abstracted from a couple experienccs where- - in number theory---an
operat ion was very easy to compute, but its inverse took a long time. In particular,
i ' imes was quick, but Times-Inv (finding all possible factorizations of a number)
was lengthy. The amount of time taken up was large even by comparison to the
time required to look for algorithms, so EtJRlSKO produced this heuristic. As with
most heuristics, EUR~SKO would have run bet ter if it had had this heuristic from the
beginning.

Sadly, no powerful nrw heuristics, specific to set theory or number theory,
were devised. This may reflect the 'well- trodden' character of e lementary

NATURE OF HEURISTICS Ili 85

mathematics; i.e., so many great minds have wandered in that territory so long
that there is little left to find from shallow experiential induction and analogy.
The failure also might be due to the rigid, traditional way in which EURISKO'S
math knowledge was organized and represented.

3.2. EURISKO applied to LISP programming

�9 Two hundred of the most common INTERLISP functions have been represen-
ted as units within EURISKO. This may sound impressive, but falls f a r short of
our original goal, which was to have a separate unit representing each one of
EURISKO'S functions and any LISP functions they call, giving descriptive in-
formation about it. This was to hold for (i) LISP primitives, such as EQ and
MAPCAR, (ii) hand coded LISP functions used by the EURISKO system, such as
MapUnits and FindRandomSubset, and (iii) implicit unary functions--i.e., all
the types of slots a unit might possess, such as MyCreator and IfPoten-
tiaIiyRelevant. We have only begun to scratch the surface on representing LISP
primitives; about one half of EURISKO'S own functions have units representing
them, and all of the slots have such a unit.

These units about LISP, programming, and EURISKO itself enable the EURISKO
program to monitor and modify its own behavior, as well as synthesize and
modify new LISP functions. EURISKO gathers data about LISP, just as it did about
elementary mathematics or naval fleets.

For example, EURiSKO was originally given units for EQ and EQUAL, with
no explicit connection recorded between them. Eventually, it got around to
recording examples (and nonexamples) for each, and conjectured that EQ was
a restriction (a more specialized predicate) of E Q U A L , which is true. A heuristic
suggested disjoining an EQ test onto the front of E Q U A L , as this might
speed E Q U A L up. Surprisingly (to the author, though not to EUmSKO), it did!
This turned out to be a small bug in INTERLlSe-O, which was then immediately
fixed. The bug made E Q U A L much slower than E Q in the case of identical
arguments passed to E Q U A L .

Once it had the conjecture about EQ being a special kind of E Q U A L ,
EURISKO was able to look through its code and specialize bits of it by replacing
E Q U A L by EQ, or to generalize them by substituting in the reverse order. As
the author had been somewhat careful in coding the program, it is not
surprising that most of these generalizations were useless, and most of the
specializat'ions were downright bugs, but occasional improvements in its own
code were made by this policy.

A very general heuristic EURISKO possessed said: " I f f can often be used in place
of g, and f uses less resources, then replace g by f wherever possible" This was
specialized by EURISKO into a new LISP programming heuristic which we recognize
as a valid one:

"If you can use EQ instead of E Q U A L , do it to save t ime",

86 D.B. LENAT

Next, EtJRISKO analyzed tile differences between E Q and E Q U A L .
Specifically, it defined the set of structures which can be E Q U A L but not EQ,
and then defined the complement of that set. This turned out to be the concept
we refer to as LISP atoms. In analogy to humankind, once EtJRISKO discovered
atoms it was able to destroy its environment (by clobbering C D R of atoms),
and once that capability existed it was hard to prevent it from happening.

Its two 'discoveries' were E Q (instead of E Q U A L) and N C O N C (instead of
APPEND) ; both of these were fast but sometimcs wrong (or even hazardous to
apply). This led EURISKO tO define a class of LXSt' functions that were fast but
dangerous, indeed a useful concept for INTERLISP programmers to form.

Later, EURISKO began to generalize some useful LISP predicates, in some cases
predicates we had defined using A N D as thcir central connective. One
generalization technique was to remove a conjunct or two, and this often led to
errors in evaluation. As a result, one additional interesting LISP heuristic was
found:

"Sometinmes ' A N D ' means 'do in sequence' , and sometimes it
means 'doable simultaneously' , and only the latter case is likely to
yield good results if you ' re considering generalizing a piece of code
by removing conjuncts."

EURISKO'S progress in this domain was entertaining, and a fundamental
feature of this domain became clear: large programs are carefully engineered
artifacts, complex constructs with thousands of pieces in a kind of unstable
equilibrium. Any sort of random perturbat ion is likely to produce an error
rather than a novel mutant. The analogy to biological evolution is strong. The
high 'hit rate ' AM enjoyed, mutating LtSe functions to find new math concepts,
was due to the intimate tics between LiSP and mathematics. V.UmSKO had
successes in automatic programming only when it modified functions which had
been coded as units. Why was this?

In a unit, each chunk of real LISP code - - an entry on a slot of the uni t - -was
quite small and fell into the sterotypical category for that type of slot. For
instance, consider the slot called ThcnDefineNewConcepts . If a unit
(representing a LISI' function) had some entries on that slot, one knew exactly
what their format would be like (a series of calls on unit-defining and initializ-
ing routines), what their purpose was (to bring new units into existence), what
kinds of things they were likely to be doing (copying from another unit with
some modifications), how long these things should take (about 10 seconds per
unit defined), etc. This foreknowledge allowed meaningful changes to be made
almost all the time, rather than ahnost never (in the case of modifying a large,
opaque lump of LiSP code abont which nothing is known).

3.3. EUmS~:O applied to other tasks

Thcre have been six ac{ditional domains in which large-scale applications of
I:.umsKo were done. Below we briefly describe five of these tasks and the

N A T U R E OF I IEURISTICS Ill 87

outcomes of applying EURISKO. The sixth domain, OilSpills, relies more on RLL
than on EURtSKO per se, and is covered in detail in [6].

(1) Evolution. One task domain was biological evolution: the simulation of
organisms competing, followed by the most fit ones reproducing mutated
offspring for the next simulated generation. Heuristics for guiding the mutation
process (to increase the viability of the offspring) were easily induced. Some of
these were as trivial as noting that whenever an improved animal was produced
with a change in parameter X, that animal also happened to have a certain
change in parameter Y; this got compiled into the heuristic that in the future
any mutations of X ought to have a higher chance to modify Y as well. An
example of this from the simulation was "decreased ability to defend in
combat" and "increased sensitivity to nearness of predators". An example
from homo sapiens might be "increased skull size" and "increased cephalopel-
vic diameter", though it appears our DNA lacks this heuristic.

The net effect of having these heuristics for guiding plausible mutations was
that, in a single generation, an offspring would emerge with a whole con-
stellation of related mutations that worked together. For example, one had
thicker fur, a thicker fat layer, whiter fur, smaller ears, etc. It is not known
whether there is any biological validity to this radical hypothesis, but there is
no doubt that the simulated evolution progressed almost not at all when
mutation was random, and quite rapidly when mutation was under control of a
body of heuristic rules. See [10].

(2) Games. A second EURISKO task domain we have not discussed in broad
terms yet is that of Games. It was mentioned above, in Second 2, that EUmSKO
was applied to other games besides Traveller TCS. Indeed, several general
Games concepts were added to the knowledge base: material, position, tactic,
two-person game, fairness, player, opponent , etc. Also, a few heuristics were
inserted, as very general strategies: simultaneous action, feint, pin, trap. These
were little used in TCS, since the battles themselves were strategically trivial,
or in tic-tac-toe, since the entire search space is too small to warrant that level
of consideration. In Go, however, these did get used. The level of play was
never very high, but the system demonstrated the application of the general
games strategies, and found specializations of them to Go. This is significant
because they were derived using Chess and Bridge as model games, by a
system builder who did not even know the rules for Go.

One are~ of current research is getting EUatSKO to discover interesting new
games; that is, make up a set of rules, simulate the game, and evaluate it
according to various criteria (surprise ending, size of search spacing, etc.) The
game-independent strategies should be specialized into specific, powerful
heuristics by EU~ISKO. Occasionally, several heuristics which were abstracted
from expericnces in various games'should be generalized into a new high-level
strategy. The task was suggested by discussions with Herbert Simon in 1977;

88 D.B. LENAT

the first parts of the programme were done by Ramano Rao, using EURISKO
during the summer of 1981.

(3) VLSI design. The most recent task EURISKO has been applied to is that of
three-dimensional VLSI circuit design, and the related problem of discovering
new physical devices for that technology. This work has been quite successful,
and is discussed in [I1], so we shall limit our remarks to a couple b r i e f
paragraphs here. Technical information about building so-called highrise VLSI
chips can be found in [5].

The paradigm for EURISKO'S exploration is
device, finds its I/O behavior, tries to 'parse'
knows about and can use, and then evaluates

a loop in which it generates a
this into functionality it already
the results. At first, we had this

loop take place at the level of charge carriers moving through semiconducting
material, various types of dopants, electric fields being applied to regions of the
plane, materials of different types being abutted, etc. Many of the well-known
primitive devices were synthesized quickly, such as the MOS~T transistor and
the silicon diode. This is because they were short sentences in the language we
had defined (a language with verbs like Abut, ApplyEField, and with nouns
like nDopedRegion, IntrinsicChannelRegion).

Our expert, Professor James Gibbons of Stanford University's Center for
Integrated Systems, quickly decided that we were working at too low a level,
and we switched to the level of conduction paths. The philosophy was that if
we could produce an interesting design at that level, he could find a way to
realize it in hardware. Our first efforts were systematic searches, and this gave
us an appreciation for the size of the search space. A very compact three-
dimensional design for a flip-flop was also serendipitously synthesized. We soon
switched back into the AM and EURtSKO paradigm of using heuristics to guide the
synthesis of new devices. Almost immediately, symmetry heuristics produced a
very powerful yet simple device, one which simultaneously computes N A N D and
OR, using only two small metal regions, two n-doped regions, two p-doped
regions, and one intrinsic channel region. These devices now form the primitive
building blocks of our high-rise chip designs. When stacked into arrays, each
device uses only one region of each type (n, p, metal, channel). We illustrate the
device in Fig. 1, but refer to [11] for a detailed explanation of EUmSKO'S forays into
this domain.

Criteria for interestingness of new devices include nonlinearity, state, com-
puting previously-known function us ing less space, fewer componenets, less
power, faster, easier to produce, etc. A device which is superior along any of
these dimensions, even if it is slightly inferior along others, might be useful and
is worth naming and saving.

Besides many useful devices and circuits, we now have a few useful heuristics
for the task of desigfiing three-dimensional VLSI circuits; in every second
metal layer, wires should run N-S (and in the other metal layers, E-W); any
3-D folding of a 2-D design should replace (most of) the pairs of gates sharing a

N A T U R E O F I IEURISTICS III

A / A NAND(A,B)

Metal tile

I I I II " I ',, I P-do d I III t, le

89

Iqo. I. EURISKO'S JMOS cross, the first XMOS device. Side view. When either metal tile is High, a
channel connects the two negatively-(n-)doped regions. When either metal tile is Low, conduction
occurs between the positivcly-fp-)doped regions. Note that, if one metal tile is I ligh and one Low, a
channel of electrons and a channel of holes both exist and flow (at right angles) inside the central,
intrinsic Channel region (nearly obscured in the diagram). The devices tesselate three-space.

common control by single pieces of metal serving simultaneously as gates for
regions above and below them; etc.

(4) Heuretics. A fourth task domain for ~umsKo was that of Heuretics (the
study of heuristics) itself. In [9] we discusscd the nature of heuristics, why we
consider Heuretics to be a scientific ficld in which one can do experiments and
form conjectures, and what we have learned from this work. In operational
terms, EOmSKO spent time forming and testing heuristics about learning new
heuristics. How does it do this? Here is one sequence of behaviors EUalSKO
carried out:

A heuristic H I 2 had been used many times, and--since heuristics are just
special kinds of opcra tors - -another heuristic fired, one which said "If an
operator has been used many times successfully, it's worth trying to generalize
it". So a task was formulated and added to an agenda, and eventually it was
worked on. That task said to try to form generalizations of H I2 . Many
heuristics applied (were potentially relevant to satisfying this new task), and
created such new units. One heuristic noticed that the main connective in the
If-Potentially-Relevant slot of H12 was AND, and decided to gencralize H 1 2
by replacing that connective with OR. Indeed, that new heuristic H I 2 ' did
claim it was potentially relevant much more often, but it never was truly
relevant any more often, nor did it take noticably less time to evaluate Hl2 ' s
If-Potentially-Relevant slot. All in all, this kind of generalization had turned
out to be a mistake. When EURISgO detected this, it eliminated H I T , and it
synthesized a few new heuristics each of which~i f they had only existed
earl ier--would have prevented H I 2 ' from ever being allowed to survive. One

91) D.B. LENAT

of these said to never replace A N D by O R in an If slot of a heuristic; one said
never to generalize the If Potential ly-Relevant slot of a heuristic; one said
never change the main connective in a slot. Since EURISKO knew that most of
these heuristics would be wrong, or at least extreme, it gave each one only
some chance of being followed, and detailed records were kept of their
performances. Ultimately, the first new heuristic (and a variant of the second
one) remained as permanent entries in EURISKO'S knowledge base.

It is important to note the level at which EUmSKO is working: it finds new
concepts and conjectures in, say, naval fleet design. It finds new heuristics in
that domain as well, as it also finds some new heuristics about how to find new
heuristics. Strange 'bugs ' can arise at those two highest levels; we give an
example of each that EUlUSKO encountered:

One of the first heuristics that v.tJmsr~o synthesized (H59) quickly attained
nearly the highest Worth possible (999). Quite excitedly, we examined it and
could not understand at first what it was doing that was so terrific. We
monitored it carefully, and finally realized how it worked: whenever a new
conjecture was made with high worth, this rule put its own name down as one
of the discoverers! It turned out to be particularly difficult to prevent this
generic type of finessing of EUmSKO'S evaluation mechanism. Since the rules
had full access to EURtSKO'S code, they would have access to any safeguards we
might try to implement. We finally opted for having a small 'meta- level ' of
protected code that the rest of the system could not modify.

The second 'bug ' is even stranger. A heuristic arose which (as part of a
daring but ill-advised experinaent EURISKO was conducting) said that all
machine-synthesized heuristics were terrible and should be eliminated. Luckily,
EURtSKO chose this very heuristic as one of the first to eliminate, and the
problem solved itself.

(5) Representation. The fifth task domain not discussed earlier is that of
representation of knowledge. This is a very difficult area, one in which people
have not made dramatic inroads in the last few millenia. EORISKO'S task is quite
constrained, actually: look for useful new slots which are specific to the various
domains you are working in. Some heuristics guide EURISKO in deciding when
it's t ime to define a new type of slot. For instance:

If the average number of entr ies on s slots (for those units that have any entr ies on an s slot) is
quite h igh-- i .e. , three t imes the average over all types of s lots~-

then try to f ind special izat ions s; that will enable the parti t ioning of entr ies on all the s slots in the
system.

When the VLSI domain was explored, one slot that became over taxed was
Parts. Previously, it had had very few entries, but now devices were coming
along with dozens and sbmetimes hundreds of parts. The rule above fired, and
a task was formed, to try to specialize Parts. When this task was ultimately

NATURE OF HEURISTICS lit 91

chosen and worked on, other heuristics guided EURISKO into meaningful split-
tings to make:

If you must decide how to specialize slot s,
then try to find a set of predicates that cover the entries;

s o m e suggestions are: defined the same way, same syntactic type, used same way,
related to s a m e Topic, structurally similar.

In the case of the Parts slot, this heuristic succeeded in causing a split based
on syntactic type: gates, doped regions, channel regions, wires, etc. had
separate recognizable formats. Henceforth, each VLSI device had no explicit
Parts slot; rather, it had slots called Gates, DopedRegions , etc. Later, when the
Terminals slot was being strained to its limit, EURmKO suggested splitting it into
InputTerminals and XorOutputTcrminals (sets of terminals having the property
that precisely one element in each set can be an output terminal).

Once a new slot is defined, existing heuristics call readily be specialized to
deal with it (i.e., those that already deal with generalizations of that slot). E a c h
slot has a definition, remember , and existing units can have this slot (according
to its MakesSenseFor slot) will have some of their existing slots shortened or
replaced, by adding this new slot and some of the entries that used to exist
elsewhere on the unit. Incrementally, the slot is integrated into the network of
slots that defines the representat ion of knowledge in the system.

This type of act ivi ty--formulat ing new domain-specific s lo t s - -happened
rarely, but we believe it to be one of the most important long-range activities
EtJRmKO can do. When a vocabulary is well chosen, thoughts become easy to
express; the set of slots is essentially such a vocabulary, and must be aug-
mented as new domains are explored.

4. Conclusions about Mechanizing the Process of Discovery

From the work on A~t and EURISKO, we have acquired some insights into
automated discovery. Some domains are bet ter suited to this process than
others, and the discovery program must contain certain elements in any case.
We summarize these conclusions here, and then use them to explain the
following phenomena: why ANt worked so well, why AM ultimately failed, why it
took so long to do EURISKO, and why EURmKO now works. Finally, we use the
conclusions to explain our plans for future research in this area.

(1) The domahl should be as little explored as possible. Fields which are
already very well understood are not promising candidates in which to search
for new discoveries, either at the domain- or at the heuristic-level. Until a
machine can match human breadth of vision, insight, sources for metaphor and
analogy, etc., its main advan tage /nus t lie in breaking new ground rather than
scouring old ground for neglected gems. Set theory is not likely to yield many

92 D.B. LENAT

new results easily; young fields such as graph theory are more promising;
neonatal fields such as VLSI design are even more attractive. Another danger
in choosing a very well-established field is that by now much of even the
research activities in that field have become algorithmic and scripted.

But what if one 's goal is to explore the phenomenon of discovery, not
particulary to produce useful new ones? We still advise steering clear 9f
well-developed fields. In them, not only has knowledge accreted, but an
adequate representation has also formed in which to hold that knowledge. If
your program starts with this adequate representation, which it is likely to do,
then the discovery of facts and heuristics will be greatly facil i tated--which will
give you misleading information about the process of discovery. For example,
even though Ar, l later discovered arithmetic, little significance can be attached
to that, as it already possessed the notion of bag (multiset), which is the natural
way to represent arguments to arithmetic functions.

(2) There mtlst be a way to s imtdate--or directly carry oza--experiments. The
field of exobiology satisfies the former criterion of being almost completely
unexplored, but fails miserably on this one. Building a program to suggest
experiments in molecular genetics sounds like a promising task--unt i l one asks
how the proposed experiments will be evaluated, how the program is supposed
to evaluate partially worked out hypotheses along the way, etc. In some cases
the outside world can be replaced by a teletype hookup to a human expert, but
this is never quite as good as working in a field which is represented internally
in the machine. Two approaches to this are a formalization (such as the axioms
and definitions for some field of mathematics) and a simulation (such as a set of
routines that compute answers to Mechanics situations they are asked about).
One disadvantage of simulators is that the discovery program cannot go
'beyond ' a reformulation of the same knowledge that went into the simulator.
Given a Newtonian simulator, the program may come up with Newton 's laws,
or Lagrange's , but not Einstein's.

(3) The 'search space' shotdd be too immense for other methods to work. No
human should be able to manually, exhaustively search tl~e same space as the
program is walking around in. One big advantage the machine has over the
person is that of tirelessness. It is not an accident that EURISKO'S searches in the
space of fleet designs consumed over a thousand CPU hours, nor that its VLSI
explorations took ten times that much.

Usually this criterion means " too big for systematic explorat ion", but all we
are requiring is that it mean " too big for manual exhaustive search". DENDRAL'S
problem space is a good example: chemists claimed (in refereed articles
published in the best chemical journals) to have found all structural isomers of
various formulae; DENDR^L was able to systematically search the space, and
often found omissions ' f rom these lists. This is a case of problem solving rather
than discovery, but the constraint we are trying to articulate is a general one of

NATURE OF IIEURISTICS III 93

what it means for a problem to have the right 'size' for attack by AI methods.
Note that this criterion has a converse: the search space should not be too

immense for heuristic methods to work. Looking for useful VLSI deviccs is an
example of this bracketing; interesting devices arise about once in 500 plausible
candidates examined. If they were once in a billion, the task would not be
suitable for automation in the 1980s; if they were once in five, one wouldn' t
need an AI program to find them.

(4) There should be many objects, operators, kinds of objects, and kinds of
�9 operators. They shouM be related hierarchically and in other ways. This makcs a

frame-based (class-oriented) representation useful: Each "way in which two
entities can be related" is a different type of slot. A hierarchical organization
makes the usual modes of inheritance important. The large number of objects
and operators raises the need for an intelligent program, one which can keep
track of complex interactions among many entities.

(5) The task domain must be rich in heuristic structure. Complexity of the
domain raises the utility of plausible, inexact reasoning, as more precise
inference becomes unmanageable or impossible. There should bc many good
heuristics which can apply, and no good algorithms. Theorem proving in
propositional calculus is a poor domain for automated discovery, as it admits
only a few heuristics; it is an even worse domain for discovcry of new
heuristics, because what few heuristics do apply in propositional calculus are
already well known. Let us be a little more specific about the need for
heuristics vis-a-vis algorithms:

(6) There must be ways to generate, to prune, and to evaluate. Many heuristics
of each of three types should be available: heuristics which generate (suggest
plausible moves), heuristics which evaluate (judge the worth and specific
problems with the discoveries), and heuristics which prune (eliminate im-
plausible paths before they are explored too deeply). It is acceptable for an
algorithm to exist for one or even two of these processes, but not for all three.

(7) Tire 'language' one uses to represent tire concepts must be a natural one,
given the set of objects and operators. This is one of the most crucial conclusions,
and one we did not arrive at until recently. At a very abstract level, one can
view the domain task as being one in which domain operators (e.g., lab
proccdures! mathematical functions) are applied to domain objects (e.g., cul-
tures, sets). In addition, EURISKO has a collection of higher level operators
which combine domain entities (both objects and operators) into new ones
(e.g., AddPlasmid, Compose, Conjoin) and which perform surgery on in-
dividual domain entities to produce modified ones (e.g., Mutate, Generalize,
Coalesce). The task of an AM-like discoverer is to apply these higher-level
operators in a fruitful, efficient mahner, having a high 'hit rate' . That is, a high
percentage of the time the result should be a new, useful domain entity. The

94 D.B. LENAT

task of a EUl~tSKo-like discoverer is to find heuristics which guide the application
of the higher-level operators, so that the results will often be fruitful. If the
high-level operators are well matched to the way the domain entities are
represented, then not too much guidance will be required; most of tile
applications will yield meaningful new concepts. If there is a serious mismatch,
then the p rob lem may not be remedied even by a good set of guiding
heuristics. See [1].

An example of a mismatch is one of differing granularity: the high-level
operators are good at working on 2-line chunks of 'code' , but your represen-
tation only includes three types of slots, so each unit has three enormous
chunks of code that ' represent ' it. When a mismatch is present, either the
high-level operators or the details of the representation scheme must be
adjusted until a match is (re)established.

But the high-level operators are nearly domain-independent: compose,
coalesce, repeat, disjoin, weaken, etc. So almost all the necessary ac-
comodat ion must be done not by them but by the representat ion scheme in
which the domain knowledge is encoded. For instance, if a frame-bascd
representat ion is employed, then the set of slots must be adjusted until the
right 'granulari ty ' is achieved (e.g., each slot having about two lines worth of
entries).

In other words, even though the discovery of new heuristics is important , the
presence (and maintenance) of an appropr ia te representation for knowledge is
even more necessary. Once you do have such a match, as in AM'S case, the main
problem then appears to be the discovery of new heuristics.

(8) Criteria which make a domain suitable for AM-like exploration (discovery
of new concepts and confectltres) a re I taken to ex tremesI the same criteria
which make a domain sttitable for r:.URlSKo-like exploration (discovery of new
hettristics). This is an interesting corollary to the need for heuristic structure.
To be well-suited to ~ t - l ike exploration, a domain must be open-ended,
uncharted, internally formalizable, and possess a rich structure of heuristics. In
extreme cases, the domain is so unexplored that not even the heuristics are
available; i.e., there are no human experts in tile field. In that situation,
EURISKO'S approach may be fruitfully applied, since any useful heuristics it
produces will be welcome new discoveries.

5. Interpreting A~| and ~:UmSKO ill Light of These Conclusions

Of the domains in which EURISKO has so far been applied, the two which most
closely satisfy all the above criteria are the Traveller TCS game and the
three-dimensional VLSI design task. These are in fact the two areas in which
EORISKO has discovered valuable domain-level concepts and useful new heuristics
as well.

In this subsection we consider the behavior of ar, l and EURiSKO, applying tile

NATUI~,E OF HEURISTICS Ill 95

previous criteria to explain successes, failures, and difficulties encountered.
This is an admittedly circular argument, since those criteria were abstracted
from just such experiences. Only future research with EURtSKO, in new task
domains and more deeply in its present ones, will be able to test those claims.

First, we address the issue of why AM worked. Tile denseness of useful
mathematical concepts appears crucial; namely, that a large fraction of the
time, when we modified some old concepts, the things we got were useful ncw
concepts. As the next to last criterion above indicated, denseness is dependent
on the set of operators one has for getting new concepts, and the represen-
tation one uses. In At, l, the representation was frame-based at a superficial
level, but each concept ' s definition was a single chunk of LiSP code. That is,
each concept was supplied with a usP program which computed its charac-
teristic function. To see if X is a SetOfSets, e.g., one goes to the concept called
SetOfSets, look for its Defn property, and finds an expression like

(A (s) (AND (Apply* (Defn Set) s)
(E V E R Y s (Defn Set))))

This predicate checks that s is a set and that so is every element of s. What
AM did, typically, was to modify such characteristic functions, combine them,
etc., and t h e n i o n c e it had a new piece of t.~sP code - - see what concept it was
the characteristic function of. For instance, if asked to generalize SetOfSets, Ar, i
could substitute List for Set, and get a new piece of I.tse that said

(A (s) (AND (Apply* (Defn List) s)
(E V E R Y s (Dcfn List))))

Ar, i would then simply assume that this was the characteristic function for
s o m e conccpt similar to, but more general than, SetOfSets. it would set up a
new unit, giving it this predicate as a Dcfn, and eventually might get around to
trying to find examples of such things, look for conjectures about them, and so
on. Often, as in this case, the result was indeed meaningful.

Thus ASl was actually not walking around in the space of mathematical
concepts, it was walking around in the space of 'small LtSI' predicates' . Its
primitives were functions that modificd LtSr predicates, combined them, etc.,
and the reason Ar~t achieved good results is because these high level operations,
applied to short l.tsp code for characteristic functions, often yields short use
code for characteristic functions of different but useful concepts. When cast in
this form, ii appears much more like a tluke that AM worked. It is thanks to the
natural relationship between L~sl, and mathematics (therefore thanks to John
McCarthy, Alonzo Church, and others) that common math functions can be
stated so succinctly in Line. Brevity is a key attribute in any kind of asemantic
exploration. If useful concepts are short expressions in your language, then you
have some c h a n c e o f coming across them often, even if you don' t know much
about the terrain.

9 6 D . B . L E N A T

As AM worked on, it built up larger and larger definitions for its derived
concepts; instead of being a couple lines long, they became half a page in
length. The old high-level combiners and mutators no longer were able to
maintain a high 'hit rate ' . AM needed at least one of the following:

(i) new high-level operators (never likely to happen too often!),
(ii) new heuristics to guide the process so that syntactic serendipity would not

have to be relied upon (this is what EURISKO was aimed at),
(iii) a new and different set of slots (or, equivalent ly, a different set of

programming primitives than LISP), SO that the concepts ' definitions would once
again be short expressions which the high-level operators could work on
fruitfully, or, finally,

(iv) a good interface to a human expert, so as to work in the mode known as
man-mach ine interaction [2].

The final two alternatives are the most powerful and plausible. The fourth
one, man-mach ine interaction, is not so useful in the fields EURISKO explores, as
there a r e as yet no human experts in Traveller TCS, 3D VLSI design, etc. The
third alternative was not considered until 1979. In 1976 we began trying to
simply get a program, like AM, to get new heuristics. The obvious approach was
to let the heuristics (which served Ar, l SO well for so long) apply to each other.
Time after time, the results were terrible. We now see the reason: each
heuristic, though represented superficially as a unit, had two executable slots
that basically defined it: IF and T H E N . Each of those slots had a large chunk
of use code in it, and the heuristics tried valiantly to guide high-level operators
as they combined and modified these huge chunks of LISP code. The situation
here was one of an even worse mismatch than existed in AM when we gave up on
that; many of the heuristics had IF or T H E N slots that were over a page long.
This problem, and its solution, had been remarkably well predicted by Amarel
[1] many years earlier.

Gradually, over the past six years, our. a t tempts have met with more and
more success. What had we been doing? As time went on, we found ourselves
defining more and more kinds of slots that a heuristic might have, and
occasionally new types of slots for 'object- level ' concepts as well. This new
language allowed the size of the pieces of LISP code on each slot of each
heuristic to shrink. As the average size declined, from 60 lines to 3, the old
high-level operators (combiners and mutators) began to produce a high per-
centage of 'winners ' once again. Valid, valuable heuristics were being syn-

.
theslzed. To prevent EtJmSKO from eventually thrashing, this set of slots must be
dynamically expandable, and indeed that has been a major recent focus of our
work. For every seven heuristics EURiSKO finds, on the average, a new kind of
slot is defined.

Once one tackles the problem, it is not difficult to find a useful set of slots to
replace IF and T H E N . Tile method we (and EURISKO) use is to look over the
current IF and T H E N slots' values, looking for commonal i ty in the code

NATURE OF HEURISTICS 111 97

therein. For instance, many rules called P R I N T near the very end of their
execution; that caused us to add "lhenFinallyPrint as a slot that heuristics could
have, give it the proper definitions, eliminate the print commands from the
T t t E N slot of all the heuristics, and add them (in shorter form, since we could
leave off the common details) to the ThenFinallyPrint slots. This happened over
and over again, for various categories of tests and actions, until now we no
longer have an 1F or T H E N slot per se. Each type of test or action falls into the
purview of some specialized kind of slot. If a proper kind cannot be found, that
is a signal (to us, and now to EURIS~O) that a new kind of slot should be defined.

The criteria in Section 4 are guiding our present research directions on
EURISKO. We are focussing on domains which are large, unexplored, complex, and
rich with heuristic structure, and being very conscious to employ a
representation which is well matched with our set of high-level concept-
synthesis operators. The task which satisfies these criteria most closely is the
design of three ditnensional VLSI devices, and that is the task we are choosing
to concentrate upon. More theoretically, we are investigating ways to discover
appropriate new slots, judgmental rules for nlonitoring the goodness of match
between representation and high level operators, and new entries for the set of
high-level operators that generate, prune, and evaluate new concepts.

Our original 1976 assumption was that heuristics could be treated just like
math concepts, and we could apply the same methods (heuristic search) to
discover new ones. But we were fortunate in choosing elementary mathematics
as the test domain for AM; heuristics are like most other domains, it's
mathemat ics that 's special and (thanks to LISP) particularly easy. As demon-
strated by the recent successful performances of our r:URISKO program, we are
developing an understanding of what it takes to find new concepts in other
fields, including the discovery of new heuristics.

ACKNOWLEDGMENT

This work has benefited from tile many useful comments by Saul Amarel. Dan Bobrow, John Seely
Brown, Bruce Buchanan. Ed Feigenbaum. Grog Harris, Judea Pearl, Elaine Rich. James Saxe,
Mark Stefik. and the late John Gaschnig. EURISKO is written in RLL, a self-describing and
self-modifying representation language constructed by Russ Grelner, Greg l larris, and the author.
I am grateful to XEROX PARC's CIS and Stanford University's HPP for providing unparalleled
computational environments, and to ONR (N00014-80.C-0609). ARPA, and XEROX for financial
support.

REFERENCES

I. Amarcl, S., On the representation of problems of rcasoni0g about actions, in: D. Michie (Ed.),
Afachine Intelligence 3 (Elsevier, New York, 196,q) 131-171.

2. Blcdsoe, W.W. and Brucll P., A man-machine theorem-proving system, Artificial hztelligence 5
(1974) 51-72,

3. Davis, F.. anti Lenat, D.. Knowledge Baxed Systems in A I (McGraw-llill. New York, 19,'ql).

98 D.B. LENAT

4. Feigenbaum, E.A., Knowledge engineering: the practical side of artificial intelligence, HPP
�9 Memo, Stanford University, Stanford, CA, 1980.

5. Gibbons, J. and Lee, K.F., One-gate-wide CMOS inverter on laser-recrystalized polysilicon,
IEEE Electron Device Letters 1(6) (1980).

6. Hayes-Roth, F., Waterman, D. and Lenat, D. (Eds.), Building Expert Systems, Proc. 1980 San
Diego Workshop in Expert Systems (Addison-Wesley, Reading, MA, 1982).

7. Knuth, D., Surreal Numbers (Addison-Wesley, Reading, MA, 1974).
8. Lenat, D.B. and Greiner, R.D., RLL: a representation language language, Proc. First Annual

Meeting of the American Association for Artificial Intelligence (AAAI), Stanford, CA, 1980.
9. Lenat, D.B., The nature of heuristics, Artificial Intelligence 19(2) (1982) 189-249.

10. Lenat, D.B., Learning by discovery: three case studies in natural and artificial learning systems,
in: R.S. Michalski, T. Mitchell and J.G. Carbonell (Eds.), Machine Learning (Tioga Press, Palo
Alto, CA, 1982).

11. Lenat, D.B., Sutherland W.R. and Gibbons, J., Heuristic search for new microcircuit struc-
tures, A1 hfagazine 3(3) (1982) 17-33.

12. Lenat, D.B., Theory formation by heuristic search; the nature of heuristics II: Background and
examples, Artificial bztelligence 21(1, 2) (1983) 31-59.

13. McCarthy, J. and Hayes, P., Some philosophical problems from the standpoint of artificial
intelligence, in: B. Meltzer and D. Michie (Eds.), hlachine bztelligence 4 (Edinburgh University
Press, Edinburgh, 1969) 463--502.

14. Wiseman, Results of the 1981 Trillion credit squadron competition, J. Travellers Aid Soc.
(1981).

Received A u g u s t 1982; revised version received October 1982

