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ABSTRACT 
The AM program, an early attempt to mechanize learning by discorery, has recently been expanded 
and extended to set'eral otl, er task. domains. AM's tdtimate failure apparently was due to its inability to 
discot'er new, powerftd, domain-sl~'cific heuristics for the rarious new fiehts it .ncot'ered. A t  that 
time, it seemed straight-fonvard to simply add "lleuristics" as one more field in which to let A.~I 
explore, obsert'e, define, and det'elop. That task--learning new het~ristics by discorery--turned out to 
be much more diffitcult than was realized initially, and we hat'e just now achiered some szwcesses at 
it. Along the w a y  it became clearer why A.~I had succeeded in the first place, and why it was so 
diffuzult to ase the same paradigm to discot'er new heuristics. In essence, a~l was an atttomatic 
programming system, whose primitire actiotts were modificatiotts to pieces of  LISP code, code which 
represented the characteristic functions of  variotes math concepts. It was only beeattse of  the deep 
relationship between LISP and Alathematics that these operatiotts (loop unwinding, recursion elimina- 
tion, composition, argument elimination, function substitution, etc.) which were basic LISP nlutators 
also turned out to yieM a high 'hit rate" of  t'iable, useful new math concepts when applied to 
preciously-known, useful math concepts. Hut no such deep relatiottship existed between LISP and 
Heuristics, and when the basic automatic programming operators were applied to t'iable, useful 
heuristics, they ahnost always produced ttseless (often worse than ttseless) new rides. Ot,r work on the 
nature of  heuristics has enabled the cottstruction of  a new language in which the statement of  hettristics 
is more natural and compact. Briefly, the ~,ocabulary inchtdes many types of  conditiotts, actions, and 
descriptire properties that a heuristic tnight possess; instead of  writing a large lump of  LIsP code to 
represent the he.ristic, one spreads the same information out across dozetts of  'slots'. By employing 
this new language, the old property that AM satisfied fortuitously is once again satisfied: the primitive 
syntactic operators usually now produce meaningful semantic t'ariants of  what they operate on. The 
ties to the foundations of  lleuretics hare been engineered into the syntax at:d t, ocabulary of  the new 
language, partly by design and partly by et, olution, much as John McCarthy engineered ties to the 
foulutations of  Mathematics into LISP. The EURISKO program embodies this language, and it is 
described in this paper, along with its results in eight task domains: design of  natal  fleets, elementary 
set theory and number theory, LISP programming, biological evolution, games in general, the design of  
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three-dimensimtal VLSI devices, the discovery of heuristics which help the system discot'er heuristics, 
and the discovery of appropriate new t)7~es of "slots" itl each domain. Along the way, some very 
powerful new concepts, designs, and heuristics were indeed discovered mechanically. Characteristics 
that make a domain ripe for AM-like exploration for new concepts and conjectures are explicated, plus 
features that make a domain eslx'cially suitable for EURISKO-Ieeel exploration for new heuristics. 

1. Design Decisions in Constructing the EEmSKO Program 

Our  earlier papers in this 'Nature  of Heuristics'  series [9, 12] have motivated 
the task of the EOalSKO program: learning by discovery, in particular learning 
new heuristics as well as new domain-specific definitions of concepts. They 
have given little attention to the architecture of that program, to its results, or 
to w h a t ~ i n  hindsight-- they reflect on our  earlier experiences with A.',t [3]. The 
EU~ISKO project was lirst conceived in 1976. During the past six years, there has 
been an accumulation of 'design ideas'  which have heen tested. Some of these 
have been built into the representation language underlying EURISKO (i.e., RLL 
[8]). Other  ideas have found their way into the EURISKO knowledge base itself, 
as explicitly represented (and malleable) concepts. This section presents these 
ideas and design decisions, and in Sections 2 and 3 we discuss the performance 
of the VZtJRISKO program. The  design ideas fall naturally into three categories: 
those dealing with representation, with control, and with the user interface. 

1.1. hleas about representing concepts 

(I) R t d e s  need  not  dis t inguish "slots" f r o m  "f tmct ions ' .  As in AM, I-UttlSKO'S 
basic representation employs frames (units) with slots. Each slot can be viewed 
as a unary function which is handed a unit-name and returns a value. E.g., 
Worth and IsA are slotnames; they are the names of properties a unit might 
possess. But they can also be considered unary functions: Wor th (Se tUnion)=  
65(]; l sA(Se tUnion)=  {SetOp, BinaryOp,  Dora = RanOp}. Other  unary func- 
tions exist, of course, and can be defined in terms of these more primitive slots. 
For instance, suppose we define AllIsAs as a function which returns the IsA 
value for a concept, plus all their Generalizations, plus all their Generaliza- 
tions, etc. So AIlIsAs(SetUnion) first accesses the IsA slot of SetUnion,  and 
finds {SetOp, BinaryOp, Dora = RanOp}. It next looks on the Generalizations 
slot of those three units, and finds (coincidentally) that they all say {Operation}, 
so it adds that value to the growing list. Continuing, it finds that the General-  
izations slot of Operat ion contains {Active}, and tiredly the Generalizations of 
Active is {Anything}. The final value returned is therefore the set {SetOp, 
BinaryOp, Dora = RanOp,  Operat ion,  Active, Anything}. The point here is 
that the system's  heuristic rules can refer to Isa(SetUnion), and they can refer 
to AlllsAs(SetUnion),  and they need never know nor care whether  one or both 
of them are primitive sl6ts, or in fact whether  they are both computed via some 
more complex algorithm. The decision about which functions are implemented 
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as primitivcs (slots), and which are computed dynamically from others, is 
invisible to the rules, and may change from time to time (e.g., after a great 
amount of experience is accumulated in some domain, it may be apparent  that 
All lsAs is rcqucstcd so often that it should be stored primitively). The rules 
represent guidance knowlcdge which is, af ter  all, independent of the specific 
representation being employed;  this ' s l o t s= func t ions '  scheme adequately 
decouples the two. From the point of view of the rules, all a 'concept '  is is a legal 
argument  for a list of functions (mostly unary ones). 

(2) "GET' knows why it's being called, "PUT" knows how the value is 
justified. As in most f rame-based systems, the most fundamental  access func- 
tions are G E T  and PUT, rather than, e.g., A S S E R T  and MATCH.  The  above 
paragraph shows that instead of writing ( G E T  Cf), which would mean "get the 
value stored in slot f of concept C"),  we shall write simply f (C).  It became 
painfully obvious during the building of AM that G E T  was being called for 
several different reasons in different places. Sometimes,  all that was wanted 
was to know if any values at all were known yet for f (C) ;  sometimes an AM 
rule wanted to know the length of the set of values; sometimes it wanted to 
know some values, but it didn't  mat ter  how up-to-date the answer was; often 
the major  constraint was a limitation on the amount  of resotrrc'es to expend 
(time or space or number  of queries to the human user); and occasionally ' the 
complete  answer'  was required, regardless of how difficult it was to obtain. In 
EURISKO we have begun to accomodate  these differcnt reasons and constraints 
on each call on G E T ,  by providing extra arguments  which specify which reason 
is behind this call (Existence, Length, Some, Up-to-date)  anti how much 
resources can be spent (Time, Cells, Queries). Calls on PUT arc more stan- 
dard; they may trigger some flurry of re-writing, but the only extra argument  
one wishes to supply is an indication of the justification of the value being 
changed. For example,  was this value computed by using values obtained by 
G E T ?  The answer is ahnost always affirmative, so one then asks just how 
precise those values were; e.g., if they were all obtained under severe time 
limits, the value we're  about to PUT will be of dubious accuracy. 

(3) 'The size of ships' can mean different things, and there should be a place 
for each. Consider what it means to say that the Size(Ships)-- Large. We can 
find many separate  interpretations; here are half a dozen: 

(i) Each ship is large (this is guaranteed).  
(ii) The default answer, when asked how big a ship is, is 'Large" (but no 

guarantee).  
(iii) The EUmSKO units representing ships take up a lot of memory.  
(iv) There  arc many elements in the set of all ships. 
(v) Looking over  the unit representing the set of all ships, we see it is very 

big. 
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(vi) Viewing Ships as the name of a kind of slot (e.g., a unit representing a 
fleet might have a slot called Ships, which was filled with a list of ship-names), 
we note a very large number  of entries on such slots (for those units which can 
have a Ships slot). 

Our  aim here is not to argue for a preferred meaning, but rather to point out 
that each meaning should be unambiguously representable.  Having ambiguity, 
in English adds flair to the language, and makes  conversation exciting; but it 
makes computat ion much more costly. We opt to eliminate ambiguity at the 
time knowledge is entered into the system, so that, e.g., the way that 
Size(Ships) = Large gets entered is guaranteed to disambiguate among the six 
meanings listed above. In brief, we (a) replace a unit for X with separate  units 
for AIIXs, TypicalX, and XquaSlot,  and (b) have meta-knowledge recorded in 
slots that are prefaced 'My' .  Eliminating redundancy internally reduces process- 
ing time required, at a small increase in space required. Preserving meta- 
knowledge uses quite a bit of extra space, but enables heuristics to later 
perform inductions that would otherwise be impossible (e.g., noticing regulari- 
ties in all units entered by a certain person, or all a t tempts to synthesize 
examples by a certain new heuristic). 

(4) Each kind of slot has a zozit describing it. In building a knowledge base, 
the need arises to be able to say things abota each kind of slot. We give thrce 
examples.  

(a) What does it mean when a value is stored in slot s of unit U? Is that 
value guaranteed to be a legal entry, or is it just probable that it belongs there? 
Is it going to always be valid, or is it merely currently a valid entry? These and 
other  questions about the epistemological status of entries on a slot will change 
from one task domain to another,  from one program to another,  f rom one slot to 
another.  Each kind of slot should 'know'  what it means to have a value stored on 
itself. 

(b) Another  qucstion whose answer will vary is: Should we redundantly 
cache (store) this value, or just assume we'll recompute  it whenever  we need it? 
Some languages, such as the MOLGEN units package, force the answer to always 
be ' redundantly store ' ;  most languages force the answer to be ' redundantly 
compute ' .  But the optimal answer will depend on how the knowledge base 
grows, changes, and is used (e.g., how often are the values accessed, compared  
to how often they ' re  changed? How much space do they take up?) 

(c) When an entry is added or removcd from an lsA slot, we expect the 
' inverse link' to be likewise added or removed.  This could be built in for each 
type of slot, but that makes defining new slots hard for the user. 

These examples illustrate the utility of representing each kind of slot as a 
unit. "I'bus there are units called CompiledCode,  Generalizations, IsA, etc. For 
instance: 
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NAME: IsA, Isa, Is-a, ISA, IS-A 
Informally: is, element-of, is-in 

DOMAIN/RANGE: (Units--* SetOfUnits) 
IS-A: Sot 
FilledWithA: Set 
EachEntryMustBeA: Unit representing a set 
Inverse: Examples 
UsedBylnheritanceModes: InheritAlonglsAs 
MakesSenseFor: Anything 
MylsA: Eurisko unit 
MySize: 500 words 
MyCreator: D. Lenat 
MyTimeOfCreation: 4/4/79 12:01 
Generalizations: AKindOf 
Specializations: MemberOf, ExtremumOf 
Worth: 600 
Cache: Always 
English: The slot which tells which classes a unit belongs to. 
ALGORITHMS: 

Nonrecursive Slow PossiblyLooping: A (u) {c ~E Concepts ] c.Defn(u)} 
DEFINITIONS: 

Nonrecursive Fast PossiblyLooping: A (u,c) c.Defn(u) 

Most of the slots present for lsA were also meaningful for, e.g., SetUnion [3], 
but a few are new and worth commenting upon. The Inverse slot is filled with 
Examples;  whenever x is added to (removed from) the lsA slot of y, y will be 
addcd to (rcmovcd from) the Examples slot of x. "l-he MakcsSenscFor slot is 
filled with Anything. This slot describes the class of concepts that can legally 
have an IsA s l o t I i n  this case any concept at all. 
MakesSenseFor (Domain /Range)=  Active, since only active concepts (those 
with algorithms) can have domains and ranges. Na tu ra l ly  
MakcsSenseFor(MakesSenseFor)  = Slot, since no other type of unit can legally 
have a MakesSenseFor  slot. The  Cache slot of lsA says Always; it might have 
said Ncver  (which would save some space and squander much time) or some 
more  dynamic predicate instead. 

1.2. Ideas about control (agendae, reasons, and heuristic rules) 

(1) Tile control structure of the system is represented as part of the knowledge 
base. While an t~t-like agenda mechanism has been retained, the precise control 
algorithm is represented within EURtSKO as a set of concepts, so the system can 
modify it itself. Basically, there is Select-Execute-PostMortem loop represented 
as a unit. Specializations of this unit form the three nested loops that charac- 
terize the EUmSKO program: select and work on a topic; given a topic, select and 
work on a promising task; given a task, select and obey a relevant individual 
heuristic rule. Each topic is a major  category of investigation for the program 
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(e.g., Number  Theory,  Device Physics, Games,  Evolution, Oil Spills); each task 
is an order  of magnitude more specific and minuscule (e.g., "Find some 
examples of prime pal indromes",  "identify the functionality of a newly-desig- 
ned VLSI device"),  and the execution of individual heuristics are yet another  
order  of magnitude smaller ("if trying to find extreme examples of C, then 
extract the base step from a recursive definition of C as one such example ' ; ;  
and see the dozens of heuristics R I - R 2 6  discussed in [12]). 

Representing the control structure explicitly has had three benefits so far. 
First, it facilitates explanation; EURISKO can more coherently explain what it is 
doing at any given moment ,  when asked by the user. Given that it's running in 
a particular function, the user can ask what the purpose of the function is, how 
long it usually takes to run, why it was called, etc. Second, it allows enforced 
semantics [8]. Given that individual rules are supposed to take about a minute 
to run, that an IfPotentiallyRelewmt test is supposed to i~e much faster than an 
IfTrulyRclevant  test for each rule, and other  assumptions upon which the 
system has been built and optimized, it now has a way to enforce those 
constraints. If, for instance, a rule is created whose IfPotcntiallyRclevant is 
taking longer than its IFl 'rulyRelevant, explicit representation and record- 
keeping of the control structure will let this be noticed and corrected. This 
situation has happened many times, for rules synthesized by other  heuristics; it 
might well happen in the future when new human users begin adding rules to 
the system with only a partial view of what the various slot names are supposed 
to mean.  Third, and finally, since the average time and space for each function 
(and the variances of time and space) are built up over  a reliable sample of 
cases, it is possible for EURISKO to notice when it's in danger of being in an 
infinite loop, even a subtle one in which there is no obvious infinite recursion or 
circular list structure involved. The  original motivation for explicitly representing 
control was to enable the program to meaningfully modify its own control code, 
but this has always resulted in bugs (due to an inadequate mastery of program- 
ming, of models of learning, and so on). 

(2) Multiple agendae. The human researcher sticks with a topic for an 
extended period of time. Partly this is due to the ditficulty of 'swapping in' a 
whole new set of concepts, heuristics, etc. Yet part of the reason for this 
behav io r  is more  rational, and worth duplicating in our  mechanical researchers: 
a developing field will often bog down and appear  to stagnate, and this gradual 
winding down of interestingness is punctuated by occasional bursts of (often 
serendipitous) discovery, which lead to many promising things to do, which 
gradually wind down, etc. If the hunmn---or the m a c h i n e i a b a n d o n s  a topic as 
soon as it begins to level out, he/she/it will forever  be limited to making very 
superficial discoveries in many fields. How, then, does EURISKO stay focused on 
a single topic for a noritrivial period of time? 

Some (initially eight) of EURISKO'S concepts (e.g., Games,  DevicePhysics, 
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NumberTheory)  represent ' topics' .  Each topic has a slot called Agenda,  which 
contains its own agenda of tasks dealing with that topic (concept) and/or with 
one or more of its specializations. There  no longer is one central agenda; 
rather, there is a 'current topic',  and its agenda is the one being used for a 
whilc. 

When a task is proposed which deals with a conccpt C, EUmSKO ripples up 
from C along the Generalizations links looking for topics, halting as soon as it 
finds one. Since a concept may have several immediate  Generalizations, there 
may be several upward ripplings going on at once; each one terminates as soon 
as it finds a topic. For instance, suppose some rule proposes a new task 
involving Palindromes. Thcir  immediate  generalizations are Numbers  and 
SymmetricConstructs.  These eventually lead to the topics of NumberTheory  
and Aesthetics. A pointer to the task is put on the agenda of each topic 
encountered.  There  can be several pointers to the same task simultaneously 
existing on different agendae. 

Below we examine the mid-level loop (choosing tasks and working on them) 
and low-level loop (choosing heuristics and obcying them). Here  we are 
considering the top-level loop, which involves choosing a topic, working on it 
for a while (minutes to-- rare ly---days  of CPU time), and then performing a 
pos t -mor tem (after which the loop repeats). Once a topic is chosen, the next lower 
level of loop is entered:  choose a task, work on it, and analyze what happened.  
Note  that a user 's  interests (as defined by the concepts that model individuals and 
groups of individuals) may affect which topics EURtSKO expects the user to be 
interested in, which tasks he would most like to see worked on, etc. 

(3) Dynamic creation and elimination of agendae (topics). On rare occasions, 
a heuristic rule will advise that an agenda be split into pieces. E.g., here are 
two rules which make such recommendat ions:  

If agenda A contains more than four times as many tasks as the average agenda, 
then (try to) split A into about three pieces. 

If the number of units called on per task, when working on tasks of agenda A, is more than ten 
times the rate at which other agendao inspect units, 

then (try to) split A into two pieces. 

Once the recommendat ion is made, o ther  rules have some ability to mean- 
ingfully effect such schisms. One easy way to do this is by creating a new 
agenda for each specialization of the concept (=topic)  of the original big 
agenda A. If there are no known specializations of that concept, other rules 
may still apply. One rule looks for groups of concepts mentioned in some 
fraction (ideally ~) of the tasks on A, but on vcry few (ideally less than ~) of 
tasks on other agendae,  and then uses these groupings to delineate the few new 
topics. Each new topic is explicitly defined and marked as being a new 
specialization of A, and the t~fsks from A are parcelled out onto the new, 
specialized, smaller agendac. 
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When an agenda shrinks too small, rules cause it to be merged into all 
appropriate immediate generalizations" agendae. In such cases, the general 
agendae should adopt (a little of) the small agenda's aesthetics, values, heuris- 
tics, reasons, goals, open problems, p/oints of view.. .  In practice, so far, the 
only things inherited are the tasks themselves. This raises a possible research 
question, but i snot  currently an area we are investigating. 

In one run, EURISKO split the Games agenda into two pieces: one dealing with 
the Traveller fleet design game, and one dealing with all other  games. As it ran 
out of things to try in the Traveller domain, that agenda grew shorter and finally 
(days later) was automatically reincorporated into the Games agenda. 

(4) Selecthlg a task: the half-frame problem. Let's look in more detail at the 
three phases for the middle level: selecting a task, finding rules which help 
satisfy it, and doing a post-mortem on the aftermath on the task's execution. 
Selecting a task is done as follows. The top task's reasons are evaluated 
carefully, and its rating is updated. Reasons often become stale, but rarely 
(during this phase) does a new reason suddenly spring to mind; therefore, a 
task's rating will almost never increase, but may decline quite a bit by the time 
we get around to it. We term this the 'half-frame problem' because it reminds 
us of McCarthy and Hayes'  [13] frame problem, but in a world where changes 
go only in one direction. That constraint lets us efficiently 'solve' the problem: 
If, after reevaluation, the top task's rating falls below that of task number  2, we 
merge it back into the agenda, and repeat this step. Finally, some task will stay 
at the top of the agenda (or we'll be down to re-re-evaluating some task which 
was higher initially--hence we know it won't  be lowered any further). One way 
or another, then, this phase terminates by selecting a task from the agenda. Not 
all the lower-rated tasks have been reevaluated at this time, but that doesn't  
matter  because reevaluating them would only have lowered their ratings 
anyway, so they ahnost certainly aren't  the top task to work on now. 

(5) Executing a task: dynamically assembling a rtde interpreter. The second 
phase then  begins. The first activity is to locate a set of potentially relevant 
heuristic rules, rules whose execution may (help to) satisfy the chosen task. 
Space and time bounds are computed (and may be updated as the rules fire). 
Executing a rule is not so straightfo/nvard as it was in At,! or most other 
rule-based systems. There are several ways that the pieces of the relevant rules 
can be run as executable code--i .e . ,  several possible rule interpreters. Various 
parameters of the current situation determine which ru le  interpreter is used. 
Here  are nine examples. 

If resources are quite limited, the conditions If-Enough-Time, 
If-Enough-Space, If-Enough-UserAccess, etc. will be checked 
quite early on." 
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If the current task is vitally important, those slots may never even 
be considered. 

If very few rules are potentially relevant, then there's little need 
to spend time ordering them. 

If very many rules are potentially relevant, it may be better  to 
evaluate some If slot of all of them, and then place them in some 
order  for further, detailed consideration of relevance. 

In some particularly tricky situations, the rule interpreter must 
know that it is only a provisional choice, and that it must  look for 
features of the environment (as it runs) that cause it to suspend, 
and initiate a quest for a better interpreter.  

A more common, and less drastic, situation occurs when a rule 
interpreter knows it must occasionally check for some new rules 
which might have become relevant since the start of the rule- 
executions. 

All other  consideration being equal, prefer a specific rule to any 
of its generalizations, prefer a rule with shorter running time, 
with (average) fewer number of user interactions initiated, with 
higher Worth, with more ancient TimeOfCreation,  etc. 

If the user is impatient (according to the user model, which, e.g., 
might have noticed a flurry of 1" T's being typed), then execute 
the ThenPrint  actions of the relevant rules before actually work- 
ing on the other  Then slots of any of them. 

If the user likes conjectures, then execute all the ThenConjecture  
slots first. 

These and other  judgmental rules guide EURISKO in choosing and changing--  
or on some occasions synthesizing a new--rule  interpreter for the current task. 
Once assembled, it is handed control and it runs the potentially relevant rules. 
This is itself usually a select-execute-analyze loop, which proceeds until the 
resource bounds have been exceeded, or the rules have all quit. 

(6) Post-mortem of a task: non-blind 'suspend and resume'. After the second 
phase ends, a careful analysis is performed upon that activity. What happened? 
How many rules succeeded? How long did the task take? How much space? Is 
the user (as represented by units modelling him and the groups he belongs t o )  
still interested in this topic, or is it time to (possibly) switch to a new one? The 
task is re-examined in light of its reasons: is it now worth putting back on the 
agenda? With what reasons? 
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If a task failed, it will usually be  placed back on the agenda along with some 
new tasks which (if they succeed) might enable this one to run successfully. 
This task's failure serves as one reason for those new tasks, and when they 
succeed their post -mortem should boost the priority of this task. In trivial cases 
(where no heuristics know why the task failed, what could have helped it), the 
task is simply put back on the agenda, and this mechanism resembles t h e  
familiar blind suspension and resumption of processes. What Eurisko's  control 
structure allows here is a sort of best-first knowledge-guided generalization of that 
mechanism. 

(7) Each heuristic rule is itself a concept; we do not disthzguish metarules from 
rules. Each heuristic rule examines some concepts, modifies them, creates 
similarly typed ones, etc. It just may so happen that some of those concepts 
examined and synthesized will be heuristic rules (will themselves be capable of 
operat ing upon other concepts). For that matter ,  they might even be concepts 
that are heuristics which work on heuristics; this was illustrated toward the end 
of Section 4.12 of [ 12]. There  is no need to distinguish metarules from rules, as we 
can now simply apply a body of heuristics to itself as well as to concepts from 
some technical task domain. After  all, categories should be drawn when and 
only when the distinctions lead to some advantage,  some new ability or  clarity 
or  power.  

Unfortunately for my philosophy, EtJRISKO recently chose to define and 
separate  out the set of rules that can operate  sometimes on other  rules--i .e. ,  
the metarules.  It did this mainly for aesthetic reasons (co-identification), and 
decided to keep the distinction around because it noticed a powerful regularity 
involving metarules: running one on rules usually takes much longer than 
running it on domain-level concepts. In hindsight it 's clear that testing a rule 
will take an order  of magnitude more  ettort than testing an object-level 
construct, because testing a rule might require synthesizing and testing a dozen 
domain concepts along the way. Nevertheless,  each metarule  can and does still 
run at both levels. 

As part of what we get from representing each rule as a full-fledged unit, the 
rules are automatically now organized into an enormous generalization/speci- 
alization hierarchy. The  so-called Weak Methods (generate and test, hill 
climbing, etc.) lie at the top (most general), and there are many hundreds of 
entries near  the bot tom (specific judgmental  rules which ment ioned particular 
terms like 'n-doped ' ,  'nuclear dampers ' ,  and 'perfect numbers ') .  But what of 
the structure in between? In particular, what are the next hundred or so nodes 
below the five weak methods? What  is the average depth of the tree, the 
average branching factor, and so on? One aim of this research is to get a bet ter  
grasp of what this 'space of heuristics' looks like, what its Structure is. Our  
results to date were recently presented in [9]. Even though the weak methods 
are encoded as rules in EURISKO, and can be run, few of them have ever 
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succeeded in producing a useful result, and as a result their Worths  are fairly 
low. It is usually more  efficient to devise for the program a specific heuristic for 
some new situation, ra ther  than spending the extra time following a very general 
heuristic. 

Once a task is chosen, say working on concept C, a rule interpreter  is chosen 
or synthesized. This is run on the set of potentially relevant rules, namely the 
rules pointed to by C or by one of its generalizations. The  organization of rules 
into a tree enables this set to be small (on the order  of the log of the total 
number  of rules in the system). The interpreter  will evaluate If parts of rules 
and execute Then parts in some fashion (perhaps dealing with rules one at a 
time, perhaps running all their If 's and then picking a rule at a time to carry out 
its Then's ,  perhaps running all the Then-Conjecture  slots of all truly relevant 
rules immediately,  etc.) The  pos t -mor tem of an individual rule is necessarily 
simple: bookkeeping information about  t ime and space used, new units created, 
etc. are recorded. 

1.3. Ideas about communication 

(1) A s  EURISKO matures, it interacts less as a pupil, more as a co-researcher. 

As with all expert  systems, much system-user interaction has been required 
initially, at system-startup time. These dialogues have been primarily tutorial, 
as we put in one concept after another  by hand. Later  interactions were less 
frequent,  less tutorial in character,  more frequently involving outside experts 
watching and interacting with the program as a performer.  Besides models of 
users and user-groups, EURiSKO should have models of dialogue-modes (tutor- 
ing the system, solving problem,  being taught by the system, etc.) We  did, and 
still do, believe this to be important,  but little work has been done on it as yet. 

(2) EURISKO must  quickly notice when new concepts are related to existing ones. 

EURmKO generates new concepts frequently. One result we 've  noted is the high 
frequency with which these 'new'  concepts are in fact equivalent to an already- 
existing one. So EURISKO should have a fast way of checking each new concept,  
to see if it[ genuinely new or not. We call this ' the recognition problem' .  It 
arises both when the user defines some new concept,  and when EURISKO itself 
does. 

EURISKO currently employs the following strategy to deal with this 
problem, leach unit knows which slots are criteriai, i.e., define it. Each such 
criterial slot s knows the way in which it makes  sense to do matching. The  
existing concepts caught by this simple mechanism can then be examined in 
detail at leisure. For instance, a concept may have Defn as a criterial slot, and 
the Defn may be a conjunction of tests. Consulting AND,  the matcher  finds 
that it is supposed to be insensitive to the order  of the conjuncts, and that it 
should recur on their structure "to determine if they match. Another  concept 
has a criterial s lofwhich is Alg (a procedure  for computing some function). The  
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Alg slot is filled with a LISP PROGN,  and the matcher consults P R O G N  and 
finds that EVAL-ing the program on test arguments to see if gives the same 
answers is one way of testing a match. This does not provide a theoretical 
solution to the general problem of finding potentially-related concepts, but it is 
working satisfactorily, empirically. 

(3) EURISKO ahvays has dte initiative; the user can request but never demand. 
When the user types in some message indicating that he wishes to define or 
modify a concept, that request is placed as a very (but not infinitely-) high 
priority task on the agenda. Note that EUmSKO does not relinquish control at 
any time; it keeps the initiative. When the user types in ' interrupts' ,  EURISKO 
does minimize the amount of time until his/her interrupts are handled, but that 
is only due to courtesy (as defined by rules), not built in to the system in any 
way. 

When the user selects a topic, that topic is given much greater weight than 
any others; yet there may well still be some task on some agenda which has so 
high a rating that its done anyway. The model of the user (based on him/her.as 
an individual and also based on groups the user belongs to) determines how to 
treat his/her requests and interrupts. Some categories (such as AI researchers) 
enjoy seeing a program retaining full control; for other  groups (such as 
mathematicians), EUmSKO knows it must (and does) simulate being a quite 
subservient program. 

(4) Modelling the user enables the creation of a good first impression. Creating 
a good 'first impression' is important. Psychologically, it will overshadow the 
user's attitude toward using the system for a long time to come. Pragmatically, 
EURISKO is dependent  upon outside experts for testing, use, and knowledge base 
building; it is important to keep them interested in interacting with the program. 
Telling a user something he/she already knows about, or omitting an explanation 
in an area he/she is unfamiliar with, are equally serious turn-offs. 

EURISKO solves this problem by building up and using models of its users. 
When a new user logs in, the program attempts to quickly guess as much as 
possible his profession, his interests, his notations. Many of these features are 
co-occuring (e.g., if he writes ' j '  to indicate the square-root of - 1 ,  then he's 
probably an engineer, and he'd feel at ease being shown huge equations and 
formulae). Thus, when a few things are observed, EURISKO can tentatively 
assign (as defaults, as it were) all the other  known co-occuring 'symptoms'.  This 
kind of expectation-filtering inference forms the common source of power 
for many current AI methodologies (frames, scripts, beings, stereotypes, units, 
schemata). 

To support expectation-filtering by user models, a massive data base must 
exist, dealing with people in general, broken into groups, and even some data 
about specific known individual users. As one might expect f rom the EURISKO 
philosophy, each person, each group, and the set AilPeople, get their own 
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separate full-fledged concept frames. A genl/spec hierarchy exists, with the 
most common knowledge at the top node ( 'AIIPeople' in general), and the 
most specific knowledge at the bottom nodes ('Polya', 'Feigenbaum').  At 
present there is not much in this knowledge base, but the results it affects are 
often the most noticeable ones by outsiders. For instance, when a new t~ser 
types ]' T as EURISKO iS starting up, EURISKO concludes that he/she is familiar 
with other computer  systems, is impatient, is probably scientifically-oriented, 
etc. EURISKO does learn simple models of each new user, but there are at 
present very few psychological and societal heuristics for building up (and 
testing!) such models. Based on our  model of theory formation (presented in 
[12]), we are not surprised that only minimal sorts of learning were achieved 
without a deep model of the domain (in this case, the domain of ' the 
psychology of using computer  programs'). 

2. Results of EURISKO Applied to Naval Fleet Design 

New concepts lie 'near the surface' of all fields, though of course some fields 
have been picked cleaner than others (e.g., contrast number theory to AI). 
Mathematics was a poor  choice of domain for AM from this point of view, since 
it has been so well explored throughout the millenia. It is rare that interesting 
new results arise near the surface of old disciplines; one exception is Conway's 
numbers [7]. In fact, in our first graph theory protocol, such a concept was 
discovered (the category of graphs now known as uniquely geodesic: if a path 
exists between two vertices, then a unique shortest path exists). In AM, there 
was always the possibility that while each heuristic seemed intuitively obvious 
and general, its true nature was merely an encoding of some of known 
mathematics, and that that was in fact why it appealed to our intuition (that our 
intuition has been shaped to reflect a rough image of mathematics that exists 
already). We strongly believed this no t  to be the case, however. EURISKO has 
been a good test of the hypothesis that a large but general set of judgmental rules 
for manipulating concepts (and for discovering new rules) can be found and 
operationalized. 

To demonstrate the eflicicacy of its methods to practitioners of the fields it 
works in (e.g., mathematicians) and to practitioners of AI, any program 
claiming to be a 'discovery program' should aspire to two goals: (i) use the 
same methods to discover concepts, conjectures, and heuristics in several 
domains, and (ii) make at least a few genuinely new (to mankind) useful 
discoveries. AM did not meet these criteria well, but EURISKO does. Sections 2 
and 3 of this paper discuss the various tasks EURISKO has worked on, and the results 
it has achieved. Other  articles focus on applications to VLSI design [11], 
elementary mathematics [3], and biological evolution [10]; therefore we shall 
concentrate upon a different task, that of designing a futuristic fleet to compete in 
the Traveller Trillion Credit Squadron (TCS)wargame [14]. 

EURISKO designed a fleet of ships suitable for entry in the 1981 and 1982 
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national Origins tournaments  for TCS. These tournaments  are held on July 4 
weekends,  and run by Game  Designers Workshop,  which is based in Normal,  
Illinois. The 1981 tournament  was held in San Matco,  CA, and the 1982 
tournament  was held on the campus of the University of Maryland, in Baltimore. 
Each tournament  was single elimination, six rounds. EURISKO"S fleet won the first 
tournament ,  thereby becoming the ranking player in the United States (and also, 
an honorary Admiral  in the Traveller  navy). This win is made more significant by 
the fact that no one connected with the program had ever  played this game before 
the tournament ,  nor seen it played, and there were no practice rounds. 
Subsequent to that event, changes were made in the tournament  rules, clmnges 
which nullified most of the unusual features of the submitted fleet. A ditlerent 
collection of rule synergies were opened up by the new rules, however,  and 
EURISKO'S new fleet won the 1982 tournament  as well. 

Each participant has a budget of a trillion 'credits '  (roughly equal to dollars) 
to spend in designing and building a fleet of futuristic ships. There  are over  one 
hundred pages of rules which detail various costs, constraints, and tradeoffs, 
but basically there are two levels of variability in the design process: 

(1) Design an individual ship: worry about tradcoffs between types of 
weapons carried, amount of a rmor  on the hull, agility of the vessel, groupings 
of weapons into batteries, amount  of fuel carried, which systems will have 
backups, etc. 

(2) After  designing many distinct kinds of individual ships, group them 
together into a fleet. The fleet must meet several design constraints (e.g., s o m e  

ships in the fleet, having a total fuel tonnage of at least 10% of the total fleet 
fuel tonnage, must be capable of refueling and processing fuel), and in addition 
must function as a coherent unit. 

To handle this task, 146 units were added, by hand, to EUmSKO. We list their 
names below, illustrate a couple in detail, and then discuss what EURtSKO did. 

Accel AccelAttacklnfo AccelUSP Agility Alg Armor Attacklnfo AltacklnfoOf 
BeamDefense BcamL'aser BearnLaserAnacklnfo BigAcccl BigAccelDamage 
BigAccelUSP Bridge DestroyedDarnage Computer ComputerDcstroycdDamage 
ComputerFib ComputerlnternalDarnage ComputerRadiationDamage Config 
Configuration ConfigurationDefense CrewDamage CriticalHitDamage 
CriticalTypeOfDamage Damage Damagelnfo DamagelnfoOf DamageTableOf 
DefendsAs DefendsUslng DcfensiveWealmmType EnergyGun 
Energ}GunAttacklnfo EnergyGunOSP Fleet FleetBattle FrozenWatch 
FrozenWatchflfoopsDeadDamage FuelDamage Game GameConcept GameObj 
GamePlaying Games H6I H62 H63 HEMissile llandleComputerlntefnalDamage 
! landlcComputerRadiationDamage HandleCrewDamage 
I landlcCriticalHitDamage HandleDamage HandleFuelDamage 
1 landleJumpDamage l landleManeuverDamage HandlePowerDamage 
HandleScreenDamage tlandleWeaponDamage Hangar/BoatDcstro:,'edDamage 
IfDeeidingTermination lfSimulating Juggernaut JumpDarnage 
JumpDcstroyedDarrrdge LaserUSP ManeuverDamage 
ManeuverDestroyedDamage Manu MesonGun MesonGunAttacklnfo 
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MesonGunDamage MesonGunUSP MesonScrcen MesonScreenDcfensc 
MesonScrecnUSP Missile MissileAttacklnfo MissileUSP Missler NAccels 
NBigAccels NEnergyGuns NLasers NMesonGuns NMcsonScrcens NMissiles 
NNucMissiles NNuclearDampcrs NNumber NRepulsors NSandCaslers 
NSmallAccels NucMissile NucMissileDamage NuclearDamper 
NuclearDampcrDcfense NuclearDamperUSP OffensiveWeaponType 
PhysGameObj PlayTravellerFleetBattle RangeDesired Repulsor RepulsorDefense 
RcpulsorUSP SandCaster SandCasterUSP SandDefense Scooter Screen 
ScrcenDamage ScreenDestroycdDamage Ship ShipVaporizedDamage Ships 
SimulationHeurs SizeMod SizeUSP SmallAccel SmallAccelDamage 
SmalIAccelUSP SmallWeaponDamage Spine/FireControlDcstroyedDamage 
TerminationHeurs To} lit Tot litl-xmgRange Tol litShortRange ToPlay ToPlayOf 
Tonnage TravellcrFleet TravellerFleetBattle TwoPcrsonGame TypeOfDamage 
USPNucMissile UnFairGame UsedlnSimulating UsedlnTerminating UspPrescnt 
WarGame Weapon WeaponAttacklnfo WeaponDamage WeaponType 

Each concept is represented by a unit that takes about half a page of text to 
describe. Here are two of these units, shown the way they exist in EURtSKO. The 
first describes a type of weapon available to ships; its offensive power is 
described in more detail by the second unit. 

Name. EnergyGun see Note 
Generalizations: (Anything Weapon) 
AIIIsA: (GameConcept GameObj Anything Category WeaponType 1,3 

DefensiveWeaponType OffensiveWeaponType Obj 
AbstractObj PhysGameObj PhysObj) 

IsA: (DefensiveWeaponType OffensiveWeaponType PhysGameObj) 1 
MyWorth: 400 2 
MylnitialWorth: 500 2 
Worth: 100 2 
InitialWorth: 500 2 
Damagelnfo: (SmallWeaponDamage) 
Attacklnfo: (EnergyGunAttacklnfo) 8 
NumPresent: NEnergyGuns 3 
UspPresent: EnergyGunUSP 4 
DefendsAs: (BeamDefense) 4 
Rarity: (0.11 1 9) 5 
FocusTask: (FocusOnEnergyGun) 6 
MylsA: (EuriskoUnit) 
MyCreator: DLenat 7 
MyTirneOfCreation: "4-JUN-81 16.19:46" 7 
MyModeOfCreation: (EDIT NucMissile) 7 

Name: EnergyGunAttacklnfo 
MyWorth: 400 
Worth: 500 
AIIIsA: (Anything GameConcept) 
IsA: (GameConcept) 
Generalizations: (Anything WeaponAttacklnfo) 
AttacklnfoOf: (EnergyGun) 
ToHitShortRange: (8 7 7 6 6 5 5 4 4) 



76 D.B. LENA'r 

ToHitLongRange: Impossible 
SandDefense: ((43210000 O) 

(543210000) 
(654321000) 
(765432100) 
(876543210) 
(987654321) 
(1098765432) 
(11109876543) 
(121110987654)) 

FocusTask: (FocusOnEnergyGunAtlacklnfo) 
MylsA: (EuriskoUni! ValueOfASIot) 
MyCreator: DLenat 
MyTimeOfCreation: "4-JUN-8116:33:18" 
MyModeOfCreation: (EDIT MissileAttacklnfo) 

Note I. The  ' l sA '  slot holds the immediate  (most specific) sets to which 
EnergyGun belongs; the slot 'Al l l sA '  holds those same entries, plus all their 
Generalizations,  plus all their Generalizations,  etc. The  'My l sA '  slot indicates 
what this data structure is, namely a trait in an AI  program. 

Note 2. The  slot 'Mylni t ia lWorth '  records the value of the MyWorth slot of the 
unit at the time it was created. If the value of MyWorth has never changed, 
then there is no Mylnit ialWorth slot needed- -such  units only have a MyWorth  
Slot; EnergyGunAt tack lnfo  is such a unit. These values rellcct how useful the 
unit has been to euRmr:o---i.e., how compact  it's been, how little CPU time it's 
wasted, how naany interesting analogies were built using it, how many of the 
structural modifications done to it were fruitful, etc. This is to be contrasted 
with the Worth slot of, e.g., EnergyGun,  which specifies how useful energy 
guns are to have on ships. All values arc in the 0-1000 range. What  happened 
to lower the MyWorth of EnergyGun? At one time, it was selected as a 
candidate for modification; EUR~S~O spent some time trying to analogize 
between it and other  types of weapons,  and nothing much came out of that. As 
a result, its MyWorth was dropped from 5(}0 to 400. Why was the Worth of 
EnergyGun lowered? Through many tens of simulations, it became clear that 
one could buy enough armor  plating to make a ship invulnerable to attacks by 
these types of weapons, and from then on almost all ships were so armored.  
Thus, any ships having energy weapons were at a serious disadvantage, and 
gradual ly- -as  they los t - - the  Worth of EnergyGun declined. Incidentally, this 
mistakenly led to a correct heuristic: " I f  a weapon cannot hit at all at one range 
(e.g., Long Range in this case), then it 's probably not worth having too many of 
them."  That was not the major  problem with energy guns, but the heuristic is a 
good one anyway. 

Note 3. Most of the slots are filled in with names of other  units; for example 
the AIIIsA slot of the EnergyGun unit points to the unit called WeaponType .  If 
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new facts should cmerge  about wcapontypes (e.g., a heuristic that the bigger 
the better,  or  a new regulation affecting the grouping of weapons into bat- 
teries), the unit WeaponType  would be edited and modified, but there would 
be no need to try to figure out all the effects on other units in the system. The  
changcs would be inhcrited by EncrgyGun and only noticcd when they were 
needed, when some use was about to be made of them. This is a major  source 
of power  in most frame-based systems. Some of these pointers are actually 
indirect SeeUnit;  references [8]. For instance, the NumPrescnt  slot of EncrgyGun 
should be filled simply with a range limit; instead, it contains the list 
(*SeeUnit:* NEnergyGuns) .  There  is a unit called NEncrgyGuns,  with a Value 
slot that does provide the desired range [anywhere from 0 to Tonnagc/100], but 
NEncrgyGuns  contains other  information about the number  of energy guns on 
a ship, such as power requirements,  balancing, variance and mean values for 
this quantity, extreme values, etc. 

Note 4. Some slots have a single entry as their value, and some have a list of entries 
(even though there may only be one element in that list). The unit representing 
each kind of slot indicates the kind of structure to use to fill incarnations of that 
kind of s lot--set ,  bag, list, single item, etc. That  unit also specifies the type and 
range of the entries that are permissible thereon. 

Note 5. The slot called 'Rar i ty '  reflects the fact that, during a recent run, 
~:UnmKO examined nine objects, known to be weapons,  to see if they were 
energy guns; one of them was. This is the kind of bookkeeping record which 
heuristic rules might want to access; e.g., rulcs which say " I f  C is a specializa- 
tion of G, and (empirically) very few G ' s  turn out to be C's,  t hen . . . " .  

Note 6. As EUntSKO worked in this domain,  over  a hundrcd new workhorse 
concepts were trivially synthesized by EOmSKO: concepts of the form FocusOnX, 
where X is one of the 146 concepts. Each such FocusOnX concept represcnts a 
task, and is pointed to by one or more agcndae,  initially the Games  agenda. It 
records the various times that it was the top task and energy was expended 
working on it, when that happened,  what the results were, how long it took, 
what reasons recommendcd,  it, etc. The FocusOnEnergyGun task thus serves 
two purposes: 

(i) it is a task on an agenda, and when selected it draws EURISKO'S attention 
to the concept EnergyGun;  various generation rules might then cause EurctSKO 
to explore modifications to EnergyGun,  analogies to it, patterns in its use, etc. 

(ii) it is a record of all the times that that task has ever  been worked on, and 
as such forms data which can be examined by rules, e.g., this one: " I f  most 
a t tempts  to do X have been slow but fruitful, t hen . . . " .  That  is, it serves as data 
to induct upon. 

Note 7. The preface My means " t rea ted  as a EURISKO unit, a data structure in a 
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computer  program".  So MyCreator  refers to the person who first typed in the 
unit called EnergyGun,  or to the name of the heuristic rule which first 
synthesized it (in which case MyTimeOfCrea t ion  would have to point to a task as 
well as to a date). If the EnergyGun unit had a slot called just Creator,  it would be 
filled with the name of the person who invented the energy gun. Similarly, if it had 
a slot called TimeOfCreat ion,  it would be the date on which the energy gun was, 
first discovered. Such information might be useful to the program, incidentally, if 
there were some pattern in the usage of weapons developed by inventor X, or 
developed during a certain period of time. 

Note 8. Many of F'I.JRISKO'S slots have inverses. Thus At tacklnfo and Attackln-  
foOl  are inverse slots. IsA and Examples have the same relationship; thus 
EnergyGun says it IsA Defensive WeaponType.  If we ask for Exam- 
ples(DefensiveWeaponType)  the value is the list (BeamLaser  PulseLaser 
SandCastcr  EnergyGun Repulsor),  which includes EnergyGun.  On the unit 
called IsA, its Inverse slot is filled with the entry Examples.  The  Inverse slot of 
the Inverse unit is filled with Inverse - - so  if slot s is the invcrse of r, then r is 
the inverse of s. 

Of  the 146 added concepts, two represented new types of activities: playing a 
game, and running a simulation. Later,  a couple other  games were added to 
E:.URtSKO (Tic-tac-toe and Go) to ensure that the general games concepts truly 
were general. Managing a simulation caused us to augment EOItlSKO with three 
new heuristics (H61, H62,  H63); these (respectively) check for termination,  try 
to project the ult imate outcome of the simulation, and check for infinite loops 
during simulation. One method they employ,  e.g., is to moni tor  the relative 
strengths of the two opponents;  if a pattern develops in the progression of 
these (e.g., the ratio is always in favor of side 2 and it is increasing in 
imbalance), a winner can be projccted.  If the strengths remain basically 
unchanged for several iterations, an infinite loop (i.e., a draw) can be projected.  

Two new If types of slot were introduced, lfSimulating and lfDecidingTer- 
ruination; the three new heuristics had values for these new slots as well as 
other, more  conventional If slots. Two new categories of heuristics were 
defined: Terminat ionHeurs  and Simulationl-Ieurs. Their  quaSIot  forms were 
useful 'unary functions' which map a game- - such  as T C S - - i n t o  a set of 
heuristics for simulating it, and into a set of heuristics for checking termination 
'of the simulation. The  inverse links to these two slots are called UsedlnTer-  
minating and UsedlnSimulating. They point from a rule to the game(s) or 
process(es) it simulates (or tries to terminate).  For instance, heuristic H61 has a 
slot called UsedlnTerminating,  whose value is the singleton list (Traveller- 
FleetBattle). 

The new units collectively specify the rules of the game and the constraints 
on the design process. How did we get EURtSKO tO play the game? The  unit 
Games  is a topic, and as such can have an agenda. One of the new units, 
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PlayTravcllerFleetBattle,  had no examples,  so a general heuristic added a new 
task to the Games  agenda: "Find examples of PlayTravellerFlectBatt le".  The  
Games  topic was selected as the current topic (by pointing to it with a cursor, 
though it could have been sclccted indirectly by supplying a user model that 
claimed the user is very interested in games). Once Games  was the chosen 
topic, there were only a few tasks with higher priority. The first one I.:ORtSKO 
ran defined the difference between Games  and TwoPersonGames ,  and made a 
note that sometime EURtSKO should look into defining some of those Non- 
Tv. 'oPersonGames.  

Finally, EURtSKO got around to trying to find examples of PlayTraveller- 
FlcctBattle. Each example involved a call on a fleet-designing phase followed 
by a battle simulation phase. The new concepts and rules helped carry out these 
processes. After  each simulated battle, EUR~SKO paused to try to abstract from 
the results some new design heuristics. The first step was to isolate the 
diffcrcnces between the two fleets. Often they would be similar, and the 
ditferences would exist mostly at the level of design of particular individual 
ships. Eurisko then framed many different general rules, any one of which 
would suffice to prefer  the winning design over  the losing one. No new 
techniques are used for this induction process; rather, the apparent  power is 
due to a good choice of rcpresentation for the rules, one naturally suited to 
rules, to design rules, and evcn more particularly to TCS ship design rules. We 
shall have much more to say about this is Scction 5. A fast test of the candidate 
rules was made, using any relevant recorded battles from the past. If more than 
one proposed heuristic remained,  new variant fleets were designcd and simu- 
lated, each one embodying one but violating the other  heuristics. In cases of 
circular victories (A beats B who beats C who beats A)  all the candidates 
involved were retained, but with somewhat  lowered worth. Such situations 
were interpreted as analogues of local maxima, and EU,~tSKO would try for a 
very different flcet design for the next iteration. 

So fleets fight (each battle taking between 2 and 30 minutes), and the battle is 
analyzed to determine which design policies are winning, and---occasionally--  
what fortuitous circumstances can be abstracted into new design heuristics. An 
example of the former  (gradual parametcr  adjustment)  was when the Agility of 
ships gradually decreased, in favor of heavier and heavier A r m o r  plating of the 
hulls. An example of the latter (fortuitous monsters)  was when a purely 
defensive ship was included in an otherwise-awful ricer, and that fleet cotdd 
never be fitlly defeated because that defcnsive ship, being very small, un- 
armored,  attd super agile, could not be hit by any of the weapons of the larger 
nearly-victorious fleet. 

EURISKO has by now spent 1300 CPU hours on a personal LtSP machine, the 
Xerox 1100, managing this heuristically-guided evolution process. The author 
culled through the runs of EURISKO" every 12 hours or so of ntachine time (i.e., 
each morning, after letting it run all night on one or more 1 ll)0"s), weeding out 
heuristics he deemed invalid or undesirable, rewarding those lie understood 
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and liked, etc. Thus the final crediting of the win should be about  60/40% 
Lenat/EUmSKO, though the significant point here is that neither party could 
have won alone. The  program came up with all the innovative designs and 
design rules (i.e., the loopholes in the TCS formulation), and recognized the 
significance of most of these. It was a human observor,  however,  (tile author) 
who appreciated the rest, and who occasionally noticed errors or flaws in the 
synthesized design rules which would have wasted inordinate amounts  of time 
before being corrected by EURISKO. 

Most of the battles are tactically trivial, the contest being decided by 
the designs of the two fleets; t h a t - - a n d  the 100-page thickness of the rule- 
b o o k s - - w e r e  the reason this appeared to be a valid domain for EURlSKO. It is 
also impor t an t - - fo r  EURISKO to have a good chance of finding new resul ts - - that  
the size of the search space (legal fleet designs) be immense: with 50 
parameters  per  ship, about 10 values for each parameter  (sometimes fewer, 
often an infinite number),  and up to 100 distinct ships to design and include in 
each fleet, any systematic or monte  carlo analysis of the problem is unlikely to 
succeed. In fact, the designers had done a detailed linear programming model 
of the game, and their computer  runs convinced them that a fleet of about 20 
behemoths  was the optimal design. This was close to the starting fleet design the 
author supplied to EURtSKO, and it was also close to the designs that most of the 
tournament  entrants came up with. 

EURtS•O was originally supplied with what appeared to be a good fleet 
design (twenty large ships, each fairly fast and moderately  armor-plated,  each 
with some small weapons and one huge spinal weapon).  EUmSKO also had many 
'muta t ion '  operators ,  such as changing the number  of ships, their size, their 
weaponry,  etc. The many const ra in ts - - the  TCS rules and fo rmu lae - -were  used 
to constrain the generation of mutant  fleets, and to prune away illegal ones 
before simulating them. At first, mutations were random. Soon, pat terns were 
perceived: more  ships were better;  more  a rmor  was better;  smaller ships were 
better;  etc. Gradually,  as each fleet beat  the previous one (and a few random 
ancestors), its " lessons" were abstracted into new, very specific heuristics. 
These rules are specific not only to ship design, but to the particular set of TCS 
rules in effect during 1981. The design rules were then used to further constrain 
the mutation process. 

One very general result that EURISKO abstracted from this evolutionary 
design process was a 'nearly ext reme '  heuristic. 

In almost all Traveller  TCS fleet design situations, 
the right decision is go for a nea r ly - -bu t  not qu i t e - -ex t reme  solution. 

Thus, the final ships had Agility 2 (slightly above the absolute minimum),  one 
weapon of each type of small weapons  (rather than 0 or many), the fleet had 
almost as many ships a's it could legally have but not quite (96 instead of 100), 
etc. Big weapons (enormous spinal mounts capable of blasting another  ship to 
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pieces with a single shot) were gradually phased out, in favor of an enormous 
number of small missile weapons. The fleet had almost all (75) ships of this type 
though there was one ship which was small and super agile and purely 
defensive (and literally unhittable by any reasonable enemy ship), and a couple 
monstrous hulks which had no chance of defense against normal ships, but 
which had weapons just barely accurate enough to hit any enemy ships that 
were (of course!) small and agile and purely defensive. 

Some of the strangest elements of the final fleet were discovered accidentally 
rather than as the result of a long, continuous evolution process. The usefulness 
of a tiny defensive ship was apprehended after a 'lifeboat' was the only survivor 
from one side's fleet, yet round after round it could not be hit at all. That  
design was immortalized into a design strategy ("Include one such ship in your  
fleet!"), and a very general rule began looking for ships that could destroy it. 
Finally, o n e  was found; it was quite strange, and would never have been 
included except to counter  the possibility that the enemy might have small 
defensive ships too. Against any normally-armed ship, it would quickly be 
destroyed. Basically, this new ship had moderate  size, no armor, the largest 
possible guidance computer,  the slowest possible engines for its size and 
equipment,  and one single, enormous accelerator weapon- -a  weapon usually 
ignored because its broad beam glances harmlessly off large armor-plated ships, 
but which is very easy to aim. This combination is ineffective for most combat, 
but is just enough to fire at the little boats it might be sent against. We were a 
little disappointed that none of the other entrants had small defensive "stale- 
mate guarantors" of the sort we took. 

Almost all the other  entrants in the final tournament had fleets that consisted 
of about 20 ships, each with a huge spinal mount weapon, low armor, fairly 
high agility, and a large number of secondary energy weapons (laser-type 
weapons). This contrasted with EtJmSKO'S fleet in almost all ways. Most ships in 
our  fleet did sprout one solitary laser among their 50 or so weapon batteries, 
but not because it was useful in combat-- jus t  to absorb damage from enemy 
fire (thanks to the somewhat unrealistic scheme by which damage is inflicted on 
ships which have been hit). After an exchange of fire, most of the enemy 
behemoths did indeed sink one of EURXSKO'S ships, for a total loss of about 15 

ships .  In return, EtJmsKo's 96 ships sank about 5 of the enemy. So just prior to 
the second exchange of fire, the enemy was down to 15 ships, and EtJRISKO 81. 
After  a second round of fire, the numbers were 11 and 70. Two more 
exchanges brought the totals to 1 and 46, and one more round of fire wiped out 
the enemy. In this scenario--which was the most common one in all EUrUsno's 
battles during the tournament - - there  is no need at all to bring any of its 
specialty ships into the front lines at any time. 

The tournament was run in such a way that, after one player wins a battle, 
his fleet is completely reconstituted and repaired to its original state, in 
preparation for the next rung of the ladder. 
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pattern became clear. Its second opponent  did some calculations and resigned 
without ever firing a shot. The subsequent oponents resigned during their first 
or second round of combat with this fleet. EURISnO'S few specialty ships 
remained unused until the final round of the tournament,  battling for 1st versus 
2rid place. That opponent  also had ships with heavy armor, few large weapons, 
low agility, etc. He was lacking any fast ships or fast-ship-killers, though. The, 
author simply pointed out to him that if EURISKO were losing then (according to 
the TCS rules) our  side need put only our  fast ship out the front line, withdraw 
all the others and repair them, and---once they were finished repairing them- 
selves---effectively start the battle all over again. This could go on ad infinitum, 
until such time as EURISKO appeared to be winning, and in that case we would 
let the battle continue to termination. The opponent  did a few calculations and 
surrendered without fighting. Thus, while most of the tournament battles took 
2--4 hours, most of those involving EURmKO took only a few minutes. 

The tournament directors were chagrined that a bizarre fleet such as this one 
captured the day, and a similar fleet (though not so extreme) took second 
place. The rules for future years' TCS tournaments were changed to eliminate 
the design singularities which F tmlSKO found. For  example, repairing of 
damaged ships was prohibited, so the utility of the unhittable ship became 
negligible. 

Details of Etm~SKO'S victory at the tournament  and a complete listing of the 
design of our  winning fleet are given in [14]. Rules for the competition are 
given in three parts, each of them necessary, each published in a separate 
softbound book of about 200 total pages: One on small ship design, one on 
large ship design, and one on fleet design and combat rules. These are available 
from Game Designers' Workshop, Normal, Illinois, as well as from game and 
hobby shops nationwide in the U.S.A. 

When rules for the 1982 tournament were announced, EURISKO was set to 
work on finding a new fleet design. Although many of its best designs and 
design rules were now illegal or useless, mos t  of the general heuristics it 
synthesized about the game were still valid. Using the 'nearly-extreme' heuris- 
tic, for instance, it quickly designed a ship with practically no defense, and that 
ship filled a key role in the final fleet. Coincidentally, just as the defensive ship 
made a difference in the 1981 final round, the offensive ships made a difference 
in the 1982 final round. In each case, their presence caused the opponent  to 
resign without firing a shot. The bulwark of our  1981 fleet was a ship that was 
slow and heavily armored; the majority of ships in our  1982 fleet were very fast 
and completely unarmored. Just as most 'experienced'  players jeered at the 
1981 fleet because it had practically no large weapons, they jeered at the 1982 
fleet because it was unarmored and it still had no large weapons, even though 
the rules changes had made them much cheaper. 

What EURISKO found 'were  not fundamental rules for fleet and ship design; 
rather, it uncovered anomalies, fortuitous interactions among rules, unrealistic 
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loopholes that hadn't  been forseen by the designers of the TCS simulation 
system. There may be little of what EUmSr~O found that has application to real 
naval design; most of its findings pertained to the fine structure of the TCS 
rules, not to the real world. For example, a crew hit reduces the number of 
crewmen on a ship from n down to the largest power of I0 smaller than n (e.g., 
from 370 to 100, from 82 to 10); EUmSKO therefore designed ships requiring 99 
crewmen, and crewed them with 101 people; the first crew hit therefore had no 
effect on the ship's battleworthiness. 

The fact that ZU~lSr:O'S discoveries were synergistic loopholes rather than 
genuine naval insights is not in itself bad, as our goal was to win the 
tournament,  not break new ground in real warfare. In fact, the very unreality 
of the TCS rules--as any 100-page model of the real world is bound to be 
incomplete and have rough edges--promised to aid us in our task. Here  was a 
search space that had not been explored much by human beings yet; most 
designers were applying analogues of rules that hold in real life, and that 
yielded them reasonable designs--fleets of the kind the TCS people anti- 
cipated. EORISKO was able to walk around in the space defined by the set of 
rules, somewhat awkwardly, but (thanks to its absence of common sense 
knowledge) with few preconceptions about what an optimal design might be. 
Perhaps we will know that the program has 'arrived' when it first fails 
to win the TCS tournament.  This notion of a large, unexplored search space, 
not necessarily well-matched to our  everyday comnon-sense intuitions, will 
come up again and again in the following pages. It appears to characterize 
those domains for which automated discovery (of both concepts and heuristics) 
is currently most viable. 

The rules will indeed change for July, 1983, including the elimination of 
drop- tanks  (fuel tanks that can be jettisoned; this improves the speed of a ship 
but may strand it after the battle) and other  changes that will force a complete 
redesign. We look forward to the new challenge. 

3. Results of r:URL~KO Applied to Other Tasks 

3.1. EUmSKO applied to elementary mathematics 

The first domain we added concepts about was mathematics, specifically the 
same starting collection of finite set theory concepts ~1  began with. Fifty 
heuristics ~vcre added, which subsumed most of AM'S old set of :243. This 
condensation was the result of joint effort on the part of the author, W.W. 
Bledsoe, and H.A. Simon, begun in 1978 at Carnegie-Mellon University. Not 
surprisingly, EURISKO then duplicated many of the results of re, l: finding 
elementary set theory theorems, extreme properties of set operations, and 
defining useful new objects and otSerations about 50% of the time. The  other  
50% of its time was spent about half in generating awful concepts (still a bit 
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bet ter  than AM'S hit-rate, though), and half in at tempting to produce new 
heuristics and types of slots. Even though these latter activities were quite rare, 
they were quite t imeconsuming when they did occur. The various set-theory 
examples prcsented in [12] wcre drawn from runs of EURISKO. 

"l-he knowledge base now contains number  theory (divisibility theory) 
concepts as well. Most number  theory concepts were discovered by EURISKO, 
and latcr hand-smoothed by the author: e.g., a valid but inefficient factoring 
algorithm was replaced by an clticient one. It is hoped that EURtSKO may find 
some new results on fringes of that area. 

About  200 math concepts were present in the system, to work in set theory 
and number  theory. After  about 500 hours of running, another  thousand 
concepts had been considered, and 200 of them had proven interesting 
(empirically, in the program's  judgment ,  and later confirmed by human in- 
spection). Of these new concepts, I I were valuable, specific new heuristics, and 
7 were useful new types of slots. Of  the 7 new slot types, four were slots that 
only heuristics could possess. 

It is worth explaining those four new If and Then types of slots which were 
synthesized: If-Constant,  If-Identity, If-Unchanged,  and Then-Conjecture .  The 
three If slots were needed because of the high frequency with which new 
functions turned out to be closely related to (i) a constant function, (ii) the 
idcntity function, (iii) the same function they were synthesized from. After  
synthesizing the new Then slot, EORlSKO defined the two new bookkeeping slots 
listed above:  ThenConjec tureRecord  and ThenConjectureFai ledRecord.  Each 
(unit representing a) heuristic rule, call it H, can have either or both of these 
bookkeeping slots, as well as having a ThenConjec ture  slot. The bookkeping 
slots keep track of how often (for this heuristic H) the ThenConjectureSIot  has 
been evaluated, and what fraction of the time it signalled an error  (an Abort  
message) and forced H ' s  execution to terminate.  

Several useful heuristics were discovered by EURISKO. Here  is one example:  

" I f  an inverse function is going to be used even once, 
then it 's usually worthwhile to search for a fast algorithm 
for computing it." 

This was abstracted from a couple experienccs where- - in  number  theory---an 
operat ion was very easy to compute,  but its inverse took a long time. In particular, 
i ' imes  was quick, but Times-Inv (finding all possible factorizations of a number)  
was lengthy. The amount  of time taken up was large even by comparison to the 
time required to look for algorithms, so EtJRlSKO produced this heuristic. As with 
most heuristics, EUR~SKO would have run bet ter  if it had had this heuristic from the 
beginning. 

Sadly, no powerful nrw heuristics, specific to set theory or number  theory, 
were devised. This may reflect the 'well- trodden'  character of e lementary 
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mathematics; i.e., so many great minds have wandered in that territory so long 
that there is little left to find from shallow experiential induction and analogy. 
The failure also might be due to the rigid, traditional way in which EURISKO'S 
math knowledge was organized and represented. 

3.2. EURISKO applied to LISP programming 

�9 Two hundred of the most common INTERLISP functions have been represen- 
ted as units within EURISKO. This may sound impressive, but falls f a r  short of 
our  original goal, which was to have a separate unit representing each one of 
EURISKO'S functions and any LISP functions they call, giving descriptive in- 
formation about it. This was to hold for (i) LISP primitives, such as EQ and 
MAPCAR,  (ii) hand coded LISP functions used by the EURISKO system, such as 
MapUnits and FindRandomSubset,  and (iii) implicit unary functions--i.e.,  all 
the types of slots a unit might possess, such as MyCreator  and IfPoten- 
tiaIiyRelevant. We have only begun to scratch the surface on representing LISP 
primitives; about one half of EURISKO'S own functions have units representing 
them, and all of the slots have such a unit. 

These units about LISP, programming, and EURISKO itself enable the EURISKO 
program to monitor  and modify its own behavior, as well as synthesize and 
modify new LISP functions. EURISKO gathers data about LISP, just as it did about 
elementary mathematics or naval fleets. 

For example, EURiSKO was originally given units for EQ  and EQUAL,  with 
no explicit connection recorded between them. Eventually, it got around to 
recording examples (and nonexamples) for each, and conjectured that EQ  was 
a restriction (a more specialized predicate) of E Q U A L ,  which is true. A heuristic 
suggested disjoining an EQ test onto the front of E Q U A L ,  as this might 
speed E Q U A L  up. Surprisingly (to the author, though not to EUmSKO), it did! 
This turned out to be a small bug in INTERLlSe-O, which was then immediately 
fixed. The bug made E Q U A L  much slower than E Q  in the case of identical 
arguments passed to E Q U A L .  

Once it had the conjecture about EQ being a special kind of E Q U A L ,  
EURISKO was able to look through its code and specialize bits of it by replacing 
E Q U A L  by EQ, or to generalize them by substituting in the reverse order.  As 
the author had been somewhat careful in coding the program, it is not 
surprising that most of these generalizations were useless, and most of the 
specializat'ions were downright bugs, but occasional improvements in its own 
code were made by this policy. 

A very general heuristic EURISKO possessed said: " I f f  can often be used in place 
of g, and f uses less resources, then replace g by f wherever possible" This was 
specialized by EURISKO into a new LISP programming heuristic which we recognize 
as a valid one: 

"If  you can use EQ instead of E Q U A L ,  do it to save t ime", 
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Next, EtJRISKO analyzed tile differences between E Q  and E Q U A L .  
Specifically, it defined the set of structures which can be E Q U A L  but not EQ, 
and then defined the complement  of that set. This turned out to be the concept 
we refer to as LISP atoms. In analogy to humankind,  once EtJRISKO discovered 
atoms it was able to destroy its environment  (by clobbering C D R  of atoms), 
and once that capability existed it was hard to prevent it from happening. 

Its two 'discoveries'  were E Q  (instead of E Q U A L )  and N C O N C  (instead of 
APPEND) ;  both of these were fast but sometimcs wrong (or even hazardous to 
apply). This led EURISKO tO define a class of LXSt' functions that were fast but 
dangerous,  indeed a useful concept for INTERLISP programmers  to form. 

Later,  EURISKO began to generalize some useful LISP predicates, in some cases 
predicates we had defined using A N D  as thcir central connective. One 
generalization technique was to remove a conjunct or two, and this often led to 
errors in evaluation. As a result, one additional interesting LISP heuristic was 
found: 

"Sometinmes ' A N D '  means 'do in sequence' ,  and sometimes it 
means 'doable  simultaneously' ,  and only the latter case is likely to 
yield good results if you ' re  considering generalizing a piece of code 
by removing conjuncts." 

EURISKO'S progress in this domain was entertaining, and a fundamental  
feature of this domain became clear: large programs are carefully engineered 
artifacts, complex constructs with thousands of pieces in a kind of unstable 
equilibrium. Any sort of random perturbat ion is likely to produce an error 
rather than a novel mutant.  The analogy to biological evolution is strong. The 
high 'hit rate '  AM enjoyed, mutating LtSe functions to find new math concepts, 
was due to the intimate tics between LiSP and mathematics.  V.UmSKO had 
successes in automatic  programming only when it modified functions which had 
been coded as units. Why was this? 

In a unit, each chunk of real LISP code - - an  entry on a slot of the uni t - -was  
quite small and fell into the sterotypical category for that type of slot. For 
instance, consider the slot called ThcnDefineNewConcepts .  If a unit 
(representing a LISI' function) had some entries on that slot, one knew exactly 
what their format  would be like (a series of calls on unit-defining and initializ- 
ing routines), what their purpose was (to bring new units into existence), what 
kinds of things they were likely to be doing (copying from another  unit with 
some modifications), how long these things should take (about 10 seconds per 
unit defined), etc. This foreknowledge allowed meaningful changes to be made 
almost all the time, rather than ahnost never (in the case of modifying a large, 
opaque lump of LiSP code abont which nothing is known). 

3.3. EUmS~:O applied to other tasks 

Thcre  have been six ac{ditional domains in which large-scale applications of 
I:.umsKo were done. Below we briefly describe five of these tasks and the 
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outcomes of applying EURISKO. The sixth domain, OilSpills, relies more on RLL 
than on EURtSKO per se, and is covered in detail in [6]. 

(1) Evolution. One task domain was biological evolution: the simulation of 
organisms competing, followed by the most fit ones reproducing mutated 
offspring for the next simulated generation. Heuristics for guiding the mutation 
process (to increase the viability of the offspring) were easily induced. Some of 
these were as trivial as noting that whenever an improved animal was produced 
with a change in parameter  X, that animal also happened to have a certain 
change in parameter  Y; this got compiled into the heuristic that in the future 
any mutations of X ought to have a higher chance to modify Y as well. An 
example of this from the simulation was "decreased ability to defend in 
combat"  and "increased sensitivity to nearness of predators".  An example 
from homo sapiens might be "increased skull size" and "increased cephalopel- 
vic diameter",  though it appears our DNA lacks this heuristic. 

The net effect of having these heuristics for guiding plausible mutations was 
that, in a single generation, an offspring would emerge with a whole con- 
stellation of related mutations that worked together. For example, one had 
thicker fur, a thicker fat layer, whiter fur, smaller ears, etc. It is not known 
whether there is any biological validity to this radical hypothesis, but there is 
no doubt that the simulated evolution progressed almost not at all when 
mutation was random, and quite rapidly when mutation was under control of a 
body of heuristic rules. See [10]. 

(2) Games. A second EURISKO task domain we have not discussed in broad 
terms yet is that of Games. It was mentioned above, in Second 2, that EUmSKO 
was applied to other  games besides Traveller TCS. Indeed, several general 
Games concepts were added to the knowledge base: material, position, tactic, 
two-person game, fairness, player, opponent ,  etc. Also, a few heuristics were 
inserted, as very general strategies: simultaneous action, feint, pin, trap. These 
were little used in TCS, since the battles themselves were strategically trivial, 
or  in tic-tac-toe, since the entire search space is too small to warrant that level 
of consideration. In Go, however, these did get used. The level of play was 
never very high, but the system demonstrated the application of the general 
games strategies, and found specializations of them to Go. This is significant 
because they were derived using Chess and Bridge as model games, by a 
system builder who did not even know the rules for Go. 

One are~ of current research is getting EUatSKO to discover interesting new 
games; that is, make up a set of rules, simulate the game, and evaluate it 
according to various criteria (surprise ending, size of search spacing, etc.) The 
game-independent strategies should be specialized into specific, powerful 
heuristics by EU~ISKO. Occasionally, several heuristics which were abstracted 
from expericnces in various games'should be generalized into a new high-level 
strategy. The task was suggested by discussions with Herbert  Simon in 1977; 



88 D.B. LENAT 

the first parts of the programme were done by Ramano Rao, using EURISKO 
during the summer of 1981. 

(3) VLSI design. The most recent task EURISKO has been applied to is that of 
three-dimensional VLSI circuit design, and the related problem of discovering 
new physical devices for that technology. This work has been quite successful, 
and is discussed in [I1], so we shall limit our remarks to a couple b r i e f  
paragraphs here. Technical information about building so-called highrise VLSI 
chips can be found in [5]. 

The paradigm for EURISKO'S exploration is 
device, finds its I/O behavior, tries to 'parse' 
knows about and can use, and then evaluates 

a loop in which it generates a 
this into functionality it already 
the results. At first, we had this 

loop take place at the level of charge carriers moving through semiconducting 
material, various types of dopants, electric fields being applied to regions of the 
plane, materials of different types being abutted, etc. Many of the well-known 
primitive devices were synthesized quickly, such as the MOS~T transistor and 
the silicon diode. This is because they were short sentences in the language we 
had defined (a language with verbs like Abut,  ApplyEField, and with nouns 
like nDopedRegion,  IntrinsicChannelRegion). 

Our expert, Professor James Gibbons of Stanford University's Center  for 
Integrated Systems, quickly decided that we were working at too low a level, 
and we switched to the level of conduction paths. The philosophy was that if 
we could produce an interesting design at that level, he could find a way to 
realize it in hardware. Our first efforts were systematic searches, and this gave 
us an appreciation for the size of the search space. A very compact three- 
dimensional design for a flip-flop was also serendipitously synthesized. We soon 
switched back into the AM and EURtSKO paradigm of using heuristics to guide the 
synthesis of new devices. Almost immediately, symmetry heuristics produced a 
very powerful yet simple device, one which simultaneously computes N A N D  and 
OR, using only two small metal regions, two n-doped regions, two p-doped 
regions, and one intrinsic channel region. These devices now form the primitive 
building blocks of our  high-rise chip designs. When stacked into arrays, each 
device uses only one region of each type (n, p, metal, channel). We illustrate the 
device in Fig. 1, but refer to [11] for a detailed explanation of EUmSKO'S forays into 
this domain. 

Criteria for interestingness of new devices include nonlinearity, state, com- 
puting previously-known function us ing less space, fewer componenets,  less 
power, faster, easier to produce, etc. A device which is superior along any of 
these dimensions, even if it is slightly inferior along others, might be useful and 
is worth naming and saving. 

Besides many useful devices and circuits, we now have a few useful heuristics 
for the task of desigfiing three-dimensional VLSI circuits; in every second 
metal layer, wires should run N-S (and in the other  metal layers, E-W);  any 
3-D folding of a 2-D design should replace (most of) the pairs of gates sharing a 
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Iqo. I. EURISKO'S JMOS cross, the first XMOS device. Side view. When either metal tile is High, a 
channel  connects  the two negatively-(n-)doped regions. When either metal tile is Low, conduction 
occurs between the positivcly-fp-)doped regions. Note that,  if one metal  tile is I ligh and one Low, a 
channel  of electrons and a channel  of holes both exist and flow (at right angles) inside the central, 
intrinsic Channel  region (nearly obscured in the diagram). The  devices tesselate three-space. 

common control by single pieces of metal serving simultaneously as gates for 
regions above and below them; etc. 

(4) Heuretics. A fourth task domain for ~umsKo was that of Heuretics (the 
study of heuristics) itself. In [9] we discusscd the nature of heuristics, why we 
consider Heuretics to be a scientific ficld in which one can do experiments and 
form conjectures, and what we have learned from this work. In operational 
terms, EOmSKO spent time forming and testing heuristics about learning new 
heuristics. How does it do this? Here is one sequence of behaviors EUalSKO 
carried out: 

A heuristic H I 2  had been used many times, and--since heuristics are just 
special kinds of opcra tors - -another  heuristic fired, one which said "If  an 
operator  has been used many times successfully, it's worth trying to generalize 
it". So a task was formulated and added to an agenda, and eventually it was 
worked on. That task said to try to form generalizations of H I2 .  Many 
heuristics applied (were potentially relevant to satisfying this new task), and 
created such new units. One heuristic noticed that the main connective in the 
If-Potentially-Relevant slot of H12  was AND, and decided to gencralize H 1 2  
by replacing that connective with OR. Indeed, that new heuristic H I 2 '  did 
claim it was potentially relevant much more often, but it never was truly 
relevant any more often, nor did it take noticably less time to evaluate Hl2 ' s  
If-Potentially-Relevant slot. All in all, this kind of generalization had turned 
out to be a mistake. When EURISgO detected this, it eliminated H I T ,  and it 
synthesized a few new heuristics each of which~i f  they had only existed 
earl ier--would have prevented H I 2 '  from ever being allowed to survive. One 



91) D.B. LENAT 

of these said to never replace A N D  by O R  in an If slot of a heuristic; one said 
never to generalize the If Potential ly-Relevant slot of a heuristic; one said 
never change the main connective in a slot. Since EURISKO knew that most of 
these heuristics would be wrong, or at least extreme, it gave each one only 
some chance of being followed, and detailed records were kept of their 
performances.  Ultimately, the first new heuristic (and a variant of the second 
one) remained as permanent  entries in EURISKO'S knowledge base. 

It is important  to note the level at which EUmSKO is working: it finds new 
concepts and conjectures in, say, naval fleet design. It finds new heuristics in 
that domain as well, as it also finds some new heuristics about how to find new 
heuristics. Strange 'bugs '  can arise at those two highest levels; we give an 
example of each that EUlUSKO encountered:  

One of the first heuristics that v.tJmsr~o synthesized (H59) quickly attained 
nearly the highest Worth possible (999). Quite excitedly, we examined it and 
could not understand at first what it was doing that was so terrific. We 
monitored it carefully, and finally realized how it worked: whenever  a new 
conjecture was made with high worth, this rule put its own name down as one 
of the discoverers! It turned out to be particularly difficult to prevent  this 
generic type of finessing of EUmSKO'S evaluation mechanism. Since the rules 
had full access to EURtSKO'S code, they would have access to any safeguards we 
might try to implement.  We finally opted for having a small 'meta- level '  of 
protected code that the rest of the system could not modify. 

The  second 'bug '  is even stranger. A heuristic arose which (as part  of a 
daring but ill-advised experinaent EURISKO was conducting) said that all 
machine-synthesized heuristics were terrible and should be eliminated. Luckily, 
EURtSKO chose this very heuristic as one of the first to eliminate, and the 
problem solved itself. 

(5) Representation. The fifth task domain not discussed earlier is that of 
representation of knowledge. This is a very difficult area, one in which people 
have not made dramatic  inroads in the last few millenia. EORISKO'S task is quite 
constrained, actually: look for useful new slots which are specific to the various 
domains you are working in. Some heuristics guide EURISKO in deciding when 
it's t ime to define a new type of slot. For instance: 

If the average number of entr ies on s slots (for those units that have any  entr ies on an s slot) is 
quite h igh-- i .e. ,  three t imes the average  over  all types of s lots~-  

then  try to f ind special izat ions s;  that will enable the parti t ioning of entr ies on all the s slots in the 
system. 

When the VLSI domain was explored, one slot that became over taxed was 
Parts. Previously, it had had very few entries, but now devices were coming 
along with dozens and sbmetimes hundreds of parts. The  rule above fired, and 
a task was formed, to try to specialize Parts. When this task was ultimately 
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chosen and worked on, other  heuristics guided EURISKO into meaningful split- 
tings to make:  

If you must decide how to specialize slot s, 
then try to find a set of predicates that cover the entries; 

s o m e  suggestions are: defined the same way, same syntactic type, used same way, 
related to s a m e  Topic, structurally similar. 

In the case of the Parts slot, this heuristic succeeded in causing a split based 
on syntactic type: gates, doped regions, channel regions, wires, etc. had 
separate  recognizable formats. Henceforth,  each VLSI device had no explicit 
Parts slot; rather, it had slots called Gates,  DopedRegions ,  etc. Later,  when the 
Terminals  slot was being strained to its limit, EURmKO suggested splitting it into 
InputTerminals  and XorOutputTcrminals  (sets of terminals having the property 
that precisely one element  in each set can be an output terminal). 

Once a new slot is defined, existing heuristics call readily be specialized to 
deal with it (i.e., those that already deal with generalizations of that slot). E a c h  
slot has a definition, remember ,  and existing units can have this slot (according 
to its MakesSenseFor  slot) will have some of their existing slots shortened or 
replaced, by adding this new slot and some of the entries that used to exist 
elsewhere on the unit. Incrementally,  the slot is integrated into the network of 
slots that defines the representat ion of knowledge in the system. 

This type of act ivi ty--formulat ing new domain-specific s lo t s - -happened  
rarely, but we believe it to be one of the most important  long-range activities 
EtJRmKO can do. When a vocabulary is well chosen, thoughts become easy to 
express; the set of slots is essentially such a vocabulary, and must be aug- 
mented as new domains are explored. 

4. Conclusions about Mechanizing the Process of Discovery 

From the work on A~t and EURISKO, we have acquired some insights into 
automated  discovery. Some domains are bet ter  suited to this process than 
others, and the discovery program must contain certain elements in any case. 
We summarize  these conclusions here, and then use them to explain the 
following phenomena:  why ANt worked so well, why AM ultimately failed, why it 
took so long to do EURISKO, and why EURmKO now works. Finally, we use the 
conclusions to explain our  plans for future research in this area. 

(1) The domahl should be as little explored as possible. Fields which are 
already very well understood are not promising candidates in which to search 
for new discoveries, either at the domain- or  at the heuristic-level. Until a 
machine can match human breadth of vision, insight, sources for metaphor  and 
analogy, etc., its main advan tage /nus t  lie in breaking new ground rather  than 
scouring old ground for neglected gems. Set theory is not likely to yield many 
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new results easily; young fields such as graph theory are more  promising; 
neonatal fields such as VLSI design are even more attractive. Another  danger 
in choosing a very well-established field is that by now much of even the 
research activities in that field have become algorithmic and scripted. 

But what if one 's  goal is to explore the phenomenon of discovery, not 
particulary to produce useful new ones? We still advise steering clear 9f 
well-developed fields. In them, not only has knowledge accreted, but an 
adequate  representation has also formed in which to hold that knowledge. If 
your program starts with this adequate  representation,  which it is likely to do, 
then the discovery of facts and heuristics will be greatly facil i tated--which will 
give you misleading information about the process of discovery. For example,  
even though Ar, l later discovered arithmetic, little significance can be attached 
to that, as it already possessed the notion of bag (multiset), which is the natural 
way to represent arguments to arithmetic functions. 

(2) There mtlst be a way to s imtdate--or  directly carry oza--experiments. The 
field of exobiology satisfies the former  criterion of being almost completely 
unexplored, but fails miserably on this one. Building a program to suggest 
experiments  in molecular genetics sounds like a promising task--unt i l  one asks 
how the proposed experiments  will be evaluated, how the program is supposed 
to evaluate partially worked out hypotheses along the way, etc. In some cases 
the outside world can be replaced by a teletype hookup to a human expert,  but 
this is never  quite as good as working in a field which is represented internally 
in the machine. Two approaches to this are a formalization (such as the axioms 
and definitions for some field of mathematics)  and a simulation (such as a set of 
routines that compute  answers to Mechanics situations they are asked about). 
One disadvantage of simulators is that the discovery program cannot go 
'beyond '  a reformulation of the same knowledge that went into the simulator. 
Given a Newtonian simulator, the program may come up with Newton 's  laws, 
or  Lagrange's ,  but not Einstein's. 

(3) The 'search space' shotdd be too immense for other methods to work. No 
human should be able to manually,  exhaustively search tl~e same space as the 
program is walking around in. One  big advantage the machine has over  the 
person is that of tirelessness. It is not an accident that EURISKO'S searches in the 
space of fleet designs consumed over  a thousand CPU hours, nor that its VLSI 
explorations took ten times that much. 

Usually this criterion means " too  big for systematic explorat ion",  but all we 
are requiring is that it mean " too  big for manual exhaustive search".  DENDRAL'S 
problem space is a good example:  chemists claimed (in refereed articles 
published in the best chemical journals) to have found all structural isomers of 
various formulae;  DENDR^L was able to systematically search the space, and 
often found omissions ' f rom these lists. This is a case of problem solving rather 
than discovery, but the constraint we are trying to articulate is a general one of 
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what it means for a problem to have the right 'size' for attack by AI methods.  
Note that this criterion has a converse: the search space should not be too 

immense for heuristic methods to work. Looking for useful VLSI deviccs is an 
example of this bracketing; interesting devices arise about once in 500 plausible 
candidates examined. If they were once in a billion, the task would not be 
suitable for automation in the 1980s; if they were once in five, one wouldn' t  
need an AI program to find them. 

(4) There should be many  objects, operators, kinds of  objects, and kinds of  
�9 operators. They shouM be related hierarchically and in other ways. This makcs  a 

frame-based (class-oriented) representation useful: Each "way in which two 
entities can be related" is a different type of slot. A hierarchical organization 
makes  the usual modes of inheritance important.  The  large number  of objects 
and operators  raises the need for an intelligent program, one which can keep 
track of complex interactions among many entities. 

(5) The task domain must be rich in heuristic structure. Complexity of the 
domain raises the utility of plausible, inexact reasoning, as more precise 
inference becomes unmanageable  or impossible. There  should bc many  good 
heuristics which can apply, and no good algorithms. Theorem proving in 
propositional calculus is a poor  domain for automated discovery, as it admits 
only a few heuristics; it is an even worse domain for discovcry of new 
heuristics, because what few heuristics do apply in propositional calculus are 
already well known. Let us be a little more  specific about the need for 
heuristics vis-a-vis algorithms: 

(6) There must be ways to generate, to prune, and to evaluate. Many heuristics 
of each of three types should be available: heuristics which generate (suggest 
plausible moves), heuristics which evaluate (judge the worth and specific 
problems with the discoveries), and heuristics which prune (eliminate im- 
plausible paths before they are explored too deeply). It is acceptable for an 
algorithm to exist for one or even two of these processes, but not for all three. 

(7) Tire 'language' one uses to represent tire concepts must be a natural one, 
given the set of  objects and operators. This is one of the most crucial conclusions, 
and one we did not arrive at until recently. At a very abstract level, one can 
view the domain task as being one in which domain operators  (e.g., lab 
proccdures! mathematical  functions) are applied to domain objects (e.g., cul- 
tures, sets). In addition, EURISKO has a collection of higher level operators  
which combine domain entities (both objects and operators)  into new ones 
(e.g., AddPlasmid,  Compose,  Conjoin) and which perform surgery on in- 
dividual domain entities to produce modified ones (e.g., Mutate,  Generalize,  
Coalesce). The  task of an AM-like discoverer is to apply these higher-level 
operators  in a fruitful, efficient mahner,  having a high 'hit rate' .  That is, a high 
percentage of the time the result should be a new, useful domain entity. The  
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task of a EUl~tSKo-like discoverer is to find heuristics which guide the application 
of the higher-level operators,  so that the results will often be fruitful. If the 
high-level operators  are well matched to the way the domain entities are 
represented,  then not too much guidance will be required; most of tile 
applications will yield meaningful new concepts. If there is a serious mismatch, 
then the p rob lem may not be remedied even by a good set of guiding 
heuristics. See [1]. 

An example of a mismatch is one of differing granularity: the high-level 
operators  are good at working on 2-line chunks of 'code' ,  but your  represen- 
tation only includes three types of slots, so each unit has three enormous  
chunks of code that ' represent '  it. When a mismatch is present,  either the 
high-level operators  or  the details of the representation scheme must be 
adjusted until a match is (re)established. 

But the high-level operators  are nearly domain-independent:  compose,  
coalesce, repeat,  disjoin, weaken,  etc. So almost all the necessary ac- 
comodat ion must be done not by them but by the representat ion scheme in 
which the domain knowledge is encoded. For instance, if a frame-bascd 
representat ion is employed,  then the set of slots must be adjusted until the 
right 'granulari ty '  is achieved (e.g., each slot having about two lines worth of 
entries). 

In other  words, even though the discovery of new heuristics is important ,  the 
presence (and maintenance) of an appropr ia te  representation for knowledge is 
even more necessary. Once you do have such a match, as in AM'S case, the main 
problem then appears  to be the discovery of new heuristics. 

(8) Criteria which make a domain suitable for AM-like exploration (discovery 
of new concepts and confectltres) a re I taken  to ex tremesI the  same criteria 
which make a domain sttitable for r:.URlSKo-like exploration (discovery of new 
hettristics). This is an interesting corollary to the need for heuristic structure. 
To  be well-suited to ~ t - l ike  exploration, a domain must be open-ended,  
uncharted, internally formalizable, and possess a rich structure of heuristics. In 
extreme cases, the domain is so unexplored that not even the heuristics are 
available; i.e., there are no human experts  in tile field. In that situation, 
EURISKO'S approach may be fruitfully applied, since any useful heuristics it 
produces will be welcome new discoveries. 

5. Interpreting A~| and ~:UmSKO ill Light of These Conclusions 

Of  the domains in which EURISKO has so far been applied, the two which most 
closely satisfy all the above criteria are the Traveller  TCS game and the 
three-dimensional VLSI design task. These are in fact the two areas in which 
EORISKO has discovered valuable domain-level concepts and useful new heuristics 
as well. 

In this subsection we consider the behavior  of ar, l and EURiSKO, applying tile 
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previous criteria to explain successes, failures, and difficulties encountered.  
This is an admittedly circular argument,  since those criteria were abstracted 
from just such experiences. Only future research with EURtSKO, in new task 
domains and more deeply in its present ones, will be able to test those claims. 

First, we address the issue of why AM worked. Tile denseness of useful 
mathematical  concepts appears  crucial; namely, that a large fraction of the 
time, when we modified some old concepts, the things we got were useful ncw 
concepts. As the next to last criterion above indicated, denseness is dependent  
on the set of operators  one has for getting new concepts, and the represen- 
tation one uses. In At, l, the representation was frame-based at a superficial 
level, but each concept ' s  definition was a single chunk of LiSP code. That is, 
each concept was supplied with a usP program which computed its charac- 
teristic function. To  see if X is a SetOfSets, e.g., one goes to the concept called 
SetOfSets, look for its Defn property,  and finds an expression like 

(A (s) (AND (Apply* (Defn Set) s) 
( E V E R Y  s (Defn Set)))) 

This predicate checks that s is a set and that so is every element of s. What 
AM did, typically, was to modify such characteristic functions, combine them, 
etc., and t h e n i o n c e  it had a new piece of t.~sP code - - see  what concept it was 
the characteristic function of. For instance, if asked to generalize SetOfSets, Ar, i 
could substitute List for Set, and get a new piece of I.tse that said 

(A (s) (AND (Apply* (Defn List) s) 
( E V E R Y  s (Dcfn List)))) 

Ar, i would then simply assume that this was the characteristic function for 
s o m e  conccpt similar to, but more general than, SetOfSets. it would set up a 
new unit, giving it this predicate as a Dcfn, and eventually might get around to 
trying to find examples of such things, look for conjectures about them, and so 
on. Often, as in this case, the result was indeed meaningful. 

Thus ASl was actually not walking around in the space of mathematical  
concepts, it was walking around in the space of 'small LtSI' predicates' .  Its 
primitives were functions that modificd LtSr predicates, combined them, etc., 
and the reason Ar~t achieved good results is because these high level operations,  
applied to short l.tsp code for characteristic functions, often yields short use  
code for characteristic functions of different but useful concepts. When cast in 
this form, ii appears  much more like a tluke that AM worked.  It is thanks to the 
natural relationship between L~sl, and mathematics  (therefore thanks to John 
McCarthy,  Alonzo Church, and others) that common math functions can be 
stated so succinctly in Line. Brevity is a key attribute in any kind of asemantic 
exploration. If useful concepts are short expressions in your language, then you 
have some c h a n c e o f  coming across them often, even if you don' t  know much 
about the terrain. 
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As AM worked on, it built up larger and larger definitions for its derived 
concepts; instead of being a couple lines long, they became half a page in 
length. The  old high-level combiners  and mutators  no longer were able to 
maintain a high 'hit rate ' .  AM needed at least one of the following: 

(i) new high-level operators  (never likely to happen too often!), 
(ii) new heuristics to guide the process so that syntactic serendipity would not 

have to be relied upon (this is what EURISKO was aimed at), 
(iii) a new and different set of slots (or, equivalent ly,  a different set of 

programming primitives than LISP), SO that the concepts '  definitions would once 
again be short expressions which the high-level operators  could work on 
fruitfully, or, finally, 

(iv) a good interface to a human expert,  so as to work in the mode  known as 
man-mach ine  interaction [2]. 

The  final two alternatives are the most powerful and plausible. The  fourth 
one, man-mach ine  interaction, is not so useful in the fields EURISKO explores, as 
there a r e  as yet no human experts in Traveller  TCS, 3D VLSI design, etc. The  
third alternative was not considered until 1979. In 1976 we began trying to 
simply get a program, like AM, to get new heuristics. The  obvious approach was 
to let the heuristics (which served Ar, l SO well for so long) apply to each other.  
Time after time, the results were terrible. We now see the reason: each 
heuristic, though represented superficially as a unit, had two executable slots 
that basically defined it: IF and T H E N .  Each of those slots had a large chunk 
of use  code in it, and the heuristics tried valiantly to guide high-level operators  
as they combined and modified these huge chunks of LISP code. The  situation 
here was one of an even worse mismatch than existed in AM when we gave up on 
that; many of the heuristics had IF or T H E N  slots that were over  a page long. 
This problem, and its solution, had been remarkably  well predicted by Amarel  
[1] many years earlier. 

Gradually,  over  the past six years, our. a t tempts  have met with more  and 
more success. What  had we been doing? As time went on, we found ourselves 
defining more  and more  kinds of slots that a heuristic might have, and 
occasionally new types of slots for 'object- level '  concepts as well. This new 
language allowed the size of the pieces of LISP code on each slot of each 
heuristic to shrink. As the average size declined, from 60 lines to 3, the old 
high-level operators  (combiners and mutators)  began to produce a high per- 
centage of 'winners '  once again. Valid, valuable heuristics were being syn- 

. 
theslzed. To  prevent  EtJmSKO from eventually thrashing, this set of slots must be 
dynamically expandable,  and indeed that has been a major  recent focus of our  
work. For every seven heuristics EURiSKO finds, on the average,  a new kind of 
slot is defined. 

Once one tackles the problem, it is not difficult to find a useful set of slots to 
replace IF and T H E N .  Tile method we (and EURISKO) use is to look over  the 
current IF and T H E N  slots' values, looking for commonal i ty  in the code 
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therein. For instance, many rules called P R I N T  near the very end of their 
execution; that caused us to add "lhenFinallyPrint as a slot that heuristics could 
have, give it the proper  definitions, eliminate the print commands from the 
T t t E N  slot of all the heuristics, and add them (in shorter  form, since we could 
leave off the common details) to the ThenFinallyPrint slots. This happened over  
and over  again, for various categories of tests and actions, until now we no 
longer have an 1F or T H E N  slot per se. Each type of test or action falls into the 
purview of some specialized kind of slot. If a proper  kind cannot be found, that 
is a signal (to us, and now to EURIS~O) that a new kind of slot should be defined. 

The criteria in Section 4 are guiding our present research directions on 
EURISKO. We are focussing on domains which are large, unexplored, complex, and 
rich with heuristic structure, and being very conscious to employ a 
representation which is well matched with our set of high-level concept- 
synthesis operators.  The  task which satisfies these criteria most closely is the 
design of three ditnensional VLSI devices, and that is the task we are choosing 
to concentrate upon. More theoretically, we are investigating ways to discover 
appropriate  new slots, judgmental  rules for nlonitoring the goodness of match 
between representation and high level operators,  and new entries for the set of 
high-level operators  that generate,  prune, and evaluate new concepts. 

Our  original 1976 assumption was that heuristics could be treated just like 
math concepts, and we could apply the same methods (heuristic search) to 
discover new ones. But we were fortunate in choosing elementary mathematics  
as the test domain for AM; heuristics are like most other domains, it's 
mathemat ics  that 's  special and (thanks to LISP) particularly easy. As demon-  
strated by the recent successful performances of our  r:URISKO program, we are 
developing an understanding of what it takes to find new concepts in other 
fields, including the discovery of new heuristics. 
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