,;,n,,
meEERG

o

rE!

e
[|

";.i":
o

t

4

p—
P
| R ¥

(5

(e
i 'hl l"

i~

PRl R ™

£a

N 3

C?“m‘

T

T

-,
1

e |

5

I R N M L T R L R o o T N R T R A L A I R e S L L T R R T R R T Y R e . R PTG I L R S R T O T R KT DS AR U T RO a |

AD-A155 378

ONC FiLE COBY

-

F
D
Stanford Artificial Intelligence Laboratory July 1976
Memo AIM-286

Computer Science Department
Report No. STAN-CS-76-570 ,

AM: An Artificial Intelligence Approach to
Discovery in Mathematics as Heuristic Search

by
Douglas B. Lenat

APPROVED FOR PUELIC RELEASE;
DISTRIBUTION i3 UNLIMITED (A}

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

s’
COMPUTER SCIENCE DEPARTMENT
Stanford University

™1

I 1 1%

QT FOTE

JUN 1 71985

G

IR L Z BT e 4

Sorm v

85 06 13 140

XL P Y Y A Y A IMAA LRI TR LA T I WU R W WL WL T R O L Y L ST R AT R AT AU RN AR AR R IROUVATR L RS LY T PILEEN IHS Y T |

B
- Stanford Artificial Intelligence Laboratory July 1976
E Memo AIM-286
; Computer Science Department
3 Report No. STAN-CS-76-570

Ty W
or
.

AM: An Artificial Intelligence Approach to

N

fa Discovery in Mathematics as Heuristic Search

= by

S

Douglas B. Lenat

L ABSTRACT

. A program, called "AM", is described which models one aspect of elementary mathematics
research: developing new concepts under the guidance of a large body of heuristic fules.

o "M athematics” is considered as a type of intelligent behavior, not as a finished product.

P:n'

) This dissertation was submitted to the Department of Computer Science and the Committee on

Graduate Studies of Stanford University in partial fulfiliment of the requirements for the degree
p of Doctor of Philosophy. '

This research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract MDA 903-76-C-0206 . The views and conclusions contained in this

:: document are those of the author(s) and should not be interpreted as necessarily representing the
o official policies, either expressed or implied, of Stanford University, ARPA, or the U. S.
Government.

Ot Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
] Virginia 22161.

& Accession For y,

o NTIS GRAAI

DTIC TAB % ,‘?

5 Unannounced O . BTic
[o Justification _ Al oy

‘o By N\ 2

& Distribution/

Availability Codes

A b . 2 \————
Avail and/or
L Dist; | Special
- ! /
x
A x A T AL R L o et et v YR A s
B A B B T SR R R R A R L R L PP L et A TSt

B N
e

Bt

I owe a great debt of thanks to many people, both for the input of new ideas and for the
evaluation, channelling, and pruning of my own.

Let me begin by alphabetically thanking my committee: Bruce Buchanan, Ed Feigenbaum,
Cordell Green, Don Knuth, and Allen Newell. Interacting with each of them has been an
exciting experience, and my thesis has greatly benefited from their guidance.

The following individuals have each informally supplied some ideas or comments that
appear within this thesis. They all hase earned my gratitude, and have significantly
improved the experence you are about to have, that ¢f reading this thesis: Danny Bobrow,
Don Conen, Paul Coehn, Avra Cohn, Randy Davis, Bob Fioyd, Carl Hewitt, Earl Sacerdoti,
Richard Weyrauch, and Terry Winograd. Let me also thank SAIL, SRI, and SUMEX for
providing a sophisticated computing environment in which to work.

Around this point in the Acknowledgements, most theses have some sort of tribute to the
candidate’s wife. Until I was in the throes of this research, I never fuily appreciated the
importance of such support. So let me sincerely acknowledge the indispensable aid I
received from Merle, my wonderful wife, who put up with irverted schedules and who gave
ine the confidence to tackle this problem and the enthusiasm to keep going.

-ive

Ll

LA 10 o O S APl Pt el st s | sacd Ficet S e

Table of en
1. Overview
1.1. Abstract of this Thesis 1
1.2. Five-page Summary of the Project 2
Detour: Analysis of a discovery
What AM does: Syntheses of discoveries
Results _;_
Motiation [optionsl) ¢
Conclusions y
1.3. Ways of viewing AM as some common process ... e © N
AM »s Hill-climbing E
AM 23 Heuristic Search ¥
AM as a Mathematician %
AM a3 » Thesis [optionsl) }-‘:
b
2. An Example: Discovering Prime Numbers lr.
2.1. Discussion of the AM Program 14 ig
Representation ¢
Agends and Heuristics l,f:
2.2. What to get out of — and NOT get out of ~ this example 17 i
2.3. Deciphering the Example 18 Iy
2.4. The Example Itself 20]
2.5. Recapping the Example 27 i
y 5
i 3. Contro} Structure ¥
g 8.1. AM’s Search 28]
$.2. Constraining AM's Search 80 y
‘ 3.3. The Agenda 32 E
E Why an Agends? ;
¥ Details of the Agends scheme £
2 4, Heuristic Rules y
2 4.1. Syntax of the Heuristics 35 ,
Syntax of the Left-hand Side j
f_‘: Syntax of the Right-hand Side .
- 4.2. Heuristics Suggest New Tasks 38 Al
N An Tiustration. “Fill in Generalizations of Equality” §
X The Ratings Game 'f\
- 4.3. Heuristics Create New Concepts 12 Ef
A An fMustration: Discovering Primes N
) The Theory of Crasting New Concepts]
k:- Another Mustration: Squaring a number o
)
e A
bi» =
Z B
-, y
ol -v- Y
¥ Y
. (
4 |
:

,-"-"""..“‘“."-.-,."-’r‘-?,i--.“"J‘.-" PN N .’ y .- I e D Y T Ly
—'-‘{Ld_'- MR R el I A ‘.._".““‘-". ‘}-')x .\ -, '-“ - ‘(:—“ ’Inr'-“"*’." .."-.'_‘:P by ‘;‘1.

Ry A
1

N2k
'I
g

S
It

.

L,

e
At

Sl % o x

[l
R

TN gt a

PR LN -
Fo
Wl

B

.F-
(s

.
v‘-
-

-
Y
N
-
~
-

4.4. Heuristics Fill in Entries for a Specific Facet ..., 47

An Hiustration: "Fill in Examples of Set-union”

Heuristics Propose New Conjectures

An Hiustration: "All primes except 2 are odd"

Ancther illustration: Discovering Unique Factorization
4.5. Gathering Relevant Heuristics

Domain of Applicebility
Rippling
Ordering the Relevant Heuristics

46. AM’s Starting Heuristics
Heuristics Grouped by the Knowledge They Embody
Heuristics Grouped by How Specific They Are

5. AM's Concepts

5.1. Motivation and Overview

A Glimpse of s Typical Concept

The main constraint: Fixed set of facets

BEINGs Representation of Knowiedge
5.2. Facets

Generalizations/Specisiizations
Examples/lsa’s

In-Domain-of /in-Renge-of
Views

Intuitions

Anslogivs

Conjec's

Definitions

Algorithms

Domain/Range

Worth

Intorest

Suggest

Fillin/Check

Other Facets which were Considered

5.8. AM’s Starting Concepts
Disgram of Initial Concepts
Summary of initial Concepts
Rationale behind Choice of Concepts

6. Results
6.1. What AM Did

Linear Task-by-task Summary of s Good Run
Two-Dimensions! Behavior Graph
AM ae & Computer Program

61

105

114

-

o

"

"}):"1

-

A

wm s s P mvyaw FANL O ¥ T LR LS AT e AT e Ve VT R

Appendix 1. Glossary of Technical Terms

Appendix 2. AM’s Concepts

6.2. Experiments with AM

Must the Worth numbers be finely tuned?

How finely tuned is the Agenda?

How valusble is tacking ressons onto escn task?
What if certain conceots are eliminated/edded?
What if certsin heuristics sre tampersd with?
Can AM work in & ~aw dovain: Plane Geometry?

7. Evaluating AM

7.1, Judging Perforr:ance
AM’s Uttimate Discoveries
The Magnitude of AM’s Progress
The Quality of AM's Route
The Character of 1.5 User-System Interactions
AM's Intuitive Poviers
Experiments on AM
How to Perform Experiments on AM
Futurs Implications of this Project
Open Problems: Suggestions for Future Resesrch
Comparison to Other Systems

7.2. Capabilities and Limitations of AM
Current Abilities
Current Limitations
Limitations of the Agends scheme
Limiting Assumptions
Choice of Domain
Limitations of the Mode! of Math Research
Ultimate powers and wesknesses
7.2. Final Conclusions

Glossary of Math Terms
Glossary of AI Terms

Initial Concepts

Index of Initis! Concepts

Anything, Any-corcept, Active, Pradicate, Objsct-squality, Constant-pr:icats,
Constant-Trus, Constant-False, Operation, Composs, Insert, Set-insert, Us:>-
insert, List-insert, Bag-insert, Delete, Sot-Delete, Bag-Dalete, List-Delnte, ssut-
Delete, Intersect, List-Intersect, Oset-lrntersect, Set-Intersect, Bag-\-‘ersect,
Union, List-Union, Oset-Union, Set-Union, Bag-Union, Difference, List-Dun{, Oset-
Dif¢, Set-Diff, Bag-Diff, Coslescy, Canonize, Poaratisl-replace2, Parallei-repisca,
Repest2, Repest, Parallel-join2, Parallel-join, Reverse-ord-pair, Last-siament,
First-element, All-but-the-first-element, All-tut-ihe-last-elament, Mem>:»,
Peojection], Projection2, 'Jentity, Restrict, irvert-sn-operation, Inverted-op,
Re'stion, Logical-combination, Object, Conjecture, Atom-obj, Truth-value, Structure,
Structure-of-Structures, Ord-Structure, Unord-Structure, Mulliple-elements-
structure, No-multiple-slemerts-structure, Empty-structure, Norsmpty-structurs.
Sete, Bags, Liste, Orderad-psirs, Ouste,

Concepts never fully implemented

~vii-

125

135

153

163
165

172

(O,

.,

o T ST

e s 2T W W LR LSRN LR TR AR AN S A LM N T R Y R e e PR A AL P LALLM N LR AV AR T L

Concepts and Heuristics as coded in LISP
The ‘Compose’ Concapt
The ‘Csets’ Concapt

Concepts cieated by A M

Appendix 8. AM’s Heuristics 226
Heuristics for dealing with Anything
Heuristics for dealing with Any-concept
Heuristics for any fa.et of Any-concept
Heuriatics for the Examples facets of Any-concept
b+ ‘etics for the Conjecs facet of Any-concept
Heuristics for the Analogies facet of Any-concept
Heuristics for the Genl/Spec facets of Any-concept
Heutistics for the View facet of Any-concept
Heuristics for the In-dom/ran-of facets of Any-concept

Heuristics for the Definition facet of Any-concept
Heuristics for dealing with any Active concept
Heuristics for dealing with any Predicate

Heuristics for dealing with any Operation
Heuristics for dealing with any Composition
Heuristics for dealing with any Insertions
Heuristics for dealing with the operation Coalesce
Heuristics for dealing with the operation Canonize
Heuristics for dealing with the operation Substitute
Heuristics for dealing with the operation Restrict
Heuristics for dealing with the operation Invert
Heuristics for dealing with Logical combinations
Heuristics for dealing with Structures

Heuristics for dealing with Ordered-structures
Heuristics for dealing with Unordered-structures
Heuristics for dealing with Multiple-eles-structures
Heuristics for dealing with Sets

Appendix 4. Maximally-Divisible Numbers 2nm
A Meaningful Question
Special Case: n = 233b
Special Case: n = 22305
The General Case
An even stronger claim
AM and Ramanujan

Appendix 5. Traces of AM in Action 287

Prose Traces
A 'Nice’ Task-by .ask Trace
An ‘Unadulterated’ Trace

Appendix 6. Bibliography 337
Documentation

viil

~

. I S R R e R e I R O DU R, DA TS My iy S B M B S e e A] e e R Fia e D S LS § N e S At i B g B

Indeed, you can build a machine to draw demonstrative conclusions for you, but 1
tAink you can never build a machine that wiil draw plausible inferences.

~= Polya

L1 ract of thi 1

——XA program, called "AM", is described which models one aspect of elementary mathematics

research: developing new concepts under the guidance of a large body of heuristic rules.
"Mathematics” is considered a: a type of intzlligent behavior, not as a finished product.

The local heuristics communicate via an agenda mechanism, a global list of tasks for the
system to perform and reasons why each task is plausible. A single task might direct AM to
define a new concept, or to explore some facet of an existing concept, or to examine some
empirical data for regularities, etc. Repeatedly, the program selects from the agenda the
task having the best supporting reasons, and then executes it.

Each concept is an active, structured knowleige module. A hundred very incomplate
modules are initially provided, each one corresponding to an elementary set-theoretic
concept (eg., union). This provides a definite but immense "space™ which AM begins to
explwe. AM extends its knowledge base, ultimately rediscovering hundreds of common
concepts (e.g., numbers) and theorems (e.g., unique factorization).

This approach to plausible inference contains great powers and great limitations.

N

-
)

L | AL

2

b3

?1";"’1"?\;,-")‘,!-“'\' RN

PEAY S0

o
SNl sl e

-5

oy
3 ”
Gt

JR———
F‘ .
‘r" L]

I LAVARTS DN

P

N Bl WA B

1,1 o g g
1 P
PR SEEN

-
L]

T

—y

ks

P -t
A58

T R A ALEN 29 5
: S

. PPN

Ty fay,

2
.

v b Wl
LI

TG
t l‘l 1
-r.

1

59

g

ot P
J L i

h
1,‘

]

¥
.

% ane K v i
Ty amsr b
P
Tl T e I S T

RN E R g ik p a TR SR el g = Jartaian i s 0t Tt ISV by v Sas Sa¥ Sl i S il LR P Wk -7 vt LN Eig -t W RUINRA el QUGS K SRt SR s ML R e g OO B B Y
B e ST g ik A oMV G 2, n

Chapter | AM: Discovery in Mathematics ss Heuristic Search -2-

1,2, Five-page Summary of the Project

Scientists often face the difficult task of formulating nontrivial research problems which are
solvable. In any given branch of science, it is usually easier to tackle a specific given
problem than to propose interesting yet managable new questions to investigate. For
example, contrast solving the Missionaries and Cannibals problem with the more jli-defined
reasoning which led to inventing it.

This thesis is concerned with creative theory formation in maiitematics: how to propose
interesting new concepts and plausible hypotheses connecting them. The experimental

vehicle of my research is a cumputer program called AM' Initially, AM is given the
definitions of 115 simple set-theoretic concepts (like "Delete”, "Equality”). Each concept is
represented internally as a data structure with a couple dozen slots or facets (iike
"Definition”, "Examples”, "Worth"). Initially, most facets of most concepts are blank, anu
AM uses a collection of 250 heuristics — plausible rules of thumb — for guidance, as it tries
to fiil in those blanks. Some heuristics are used to select which specific facet of which specific
concept to explore next, while others are used to actually find some appropriate information
about the chosen facet. Other rules prompt AM to notice simple relationships between

known concepts, to define promising new concepts to investigate, and to estitnate how
interesting each concept is.

1.2.1. Detour: Analysis of a discovery

Before discussing how to synthesize a new theory, consider briefly how to analyze one, how
to construct a plausible chain of reasoning which terminates in a given discovery. One can
do this by working backwards, by reducing the creative act to simpler and simpler creative
acts. For example, consider the concept of prime numbers. How might one bs led to define
such a notion? Notice the following plausible strategy:

“it f is a function which transforms elements of A into elements of B, and
B is ordered, then corsider just those members of A which are
transformed info extremal elemenis of B. This set is en interesting subset
of A"

When f(x) means "divisors of x", and the crdering is "by length®, this heuristic says to

consider those numbers which have a mimal?® number of factors — that is, the primes. So
this rule actually reduces our task frcm "proposing the concept of prime numbers” to the
more elementary problems of "discovering ordering-by-length” and “inventing divisors.of".

But suppose we know this general rule: "if is an interesting function, consider its inverse.” It

! The original masning of this mnemonic has been sbandoned. As Exodus states: | AM that | AM

2 The other extreme, numbers with 8 MAXIMAL number of factors, wss slso proposed by AM ss worth investigating. This led
, AM to meny inters :ting questions. See Appendix 4.

PR

.

- s

......
.....

EEEME R A L R A AT I A S M A M R U e MR S A SR U e o i e Bl 420 S Y 0 i T e TRt I SN SR Bl M o U A

=

Chapter 1 AM: Discovary in Mathamatics as Heuristic Search -3-
reduces the task of discovering divisors-of to the simpler task of discovering multiplication®, ‘—
Eventually, this task reduces to the discovery of very basic notions, like substitution, set- &
union, and equality. To explain how a given researcher might have made a given .
discovery, such an analysis is continued until that inductive task is reduced to "discovering” .
notions which the researcher already knew, which were his conceptual primitives. §
1.2.2. What AM does: Syntheses of discoveries %
This leads to the paradox that the more original a discovery the more obvious it]
seems afterwards. T he creative act is not an act of creation in the sense of the g

Old Testament. It does not create something out of nothing; it uncovers, selects, =
re-shuffles, combines, synthesizes already existing facts, faculties, skills. The more E-
Sfamiliar the parts, the more striking the new whole. i

L

== Koestler

Suppose a large collection of these heuristic strategies has been assembled (e.g., by analyzing
a great many discoveries, and writing down new heuristic rules whenever necessary).
Instead of using them to explain how a given idea mlght have evolved, one can imagine
starting from a basic core of knowledge and "running” the heuristics to generate new
concepts. We're talking about reversing the process described in the last section: not how to
explain discoveries, but how to make them.

AN S NN il WA

Such syntheses are precisely what AM does. The program consists of a large corpus of
E: primitive mathematical concepts, each with a few associated heuristics®. AM’s activities all iy
serve to expand AM itsclf, to enlarge upon a given body of mathematical knowledge. To =]
- cope with the enormity of the potential "search space” invoived, AM uses its heuristics as N
: Jjudgmental criteria to guide development in the most promising direction. It appears that _7
i the process of inventing worthwhile new® concepts can be guided successfully using a s
. collection of a few hundred such heuristics. ;
2 Each concept is represented as a frame-like data structure with 25 different facets or slots. C:
The types of facets include: Examples, Definitions, Generalizations, Dc azin/Range, Analogies, B
E—‘, Interestingness, and many others. Modular representaticn of concepts provides & convenient "
5 scheme for organizing the heuristics; for example, the following strategy fits into the "
Examples facet of the Predicate concept: "If, empirically, 10 times as many elements fail some s
s predicate P, as satisfy it, then some generalization (weakened version) of P might be more S
;I;", interesting thun P". AM considers this suggestion after trviag to fill in examples of each
E;‘_‘ 3 Plus noticing that multiplication is associative and commutative '
£ 4 Srtustion/action rules which function e local "pleusible move gensrators™ Some suzgest taske for the system to carry 5
. out, some suggest ways of satisfying 8 given task, etc
- ¥ Typically, "new" mesns new to AM, not to Msnkind; and "worthwhile” can only be judged in hindsight. -
o he
’
L
X

|

: m
ey

) -,_'_‘_ R R . e g T - I) > * 2 W o m e = a s = s - . - & e - - = = .‘,J"
SR " "1'.*..".‘.-,-’-“..!",.')";71 “'.- -"'.".*-".-4" --~,v--..-..- R T T T T T P T R AL AR et]
. " _ PN N A A M o a A P

Chapter | AM: Ducovery in Mathematics as Heuristic Search -4-

predicate®,

AM is initially given a collection of 115 cote concepts, with only a few facets filled in for
each. Its sole activity is to choose some facet of some concept, and fill in that particular slot.
In so doing, new notions will often emerge. Uninteresting ones are forgotten, mildly
interesting ones are kept as parts of one facet of one concept, and very interesting ones are
granted full concept-module status. Each of these new modules has dozens of blank slots,
hence the space of possible actions (blank facets to fill in) grows rapidly. The same
heuristics are used both to suggest new directions for investigation, and to limit attention:
both to sprout and to prune.

1.2.3. Results

The particular mathematical domains in which AM operates depend upon the choice of
initial concepts. Currently, AM begins with nothing but a scanty knowledge of concepts
which Piaget might describe as prenumerical: Sets, substitution, operations, equality, and so
on. In particular, AM is not told anything about proof, single-valued functions, or
numbers.

From this primitive basis, AM quickly discovered’ elementary numerica! concepts
(corresponding to those we refer to as natural numbers, multiplication, factors, and primes)
and wandered around in the domain of elementary number theory. AM was not designed
to prove anything, but it did conjecture many well-known relationships (e.g., the unique
factorization theorem).

AM was not able to discover any "new-to-Mankind”™ mathematics purely on its own, but Aas
discovered several interesting notions hitherto unknown to the author. A couple bits of new
mathematics have been inspired by AM2Z A synergetic AM—human combination can
sometimes produce better research than either could alone.® Although most of the concepts
AM proposed and developed were already very well known, AM defined some of them in
novel ways (eg., prime pairs were defined by restricting addition to primes; that is, for

which primes p,q,r is it possible that psq=r??).

Everything that AM does can be viewed as testing the underlying body of heuristic rules.
Gradually, this knowledge becomes better organized, its implications clearer. The resultant
body of detailed heuristics may be the germ of a more efficient programme for educating

6 In foct, sfter AM asttempts to find examples of SET-EQUALITY, so few are found that AM decides to generalize that
predicste. The result is the creation of s new predicate which means "Has-the-same-length-a¢" -- i, o
rudimentary precursor to natursl numbers.

Y "Discovering” a concept means that (1) AM recognized it ss » distinguished entity (s g, by formulating its definition) and
#slso (2) AM decided it was worth investigating (sither becsuse of the interesting way it was formed, or
becsuse of surprising preliminary empirical results)

s This is supported by Gelernter's experiences with his geometry program' White lecturing sbout how it might prove @
certain theorem sbout isosceles triangles, he came up with s new, cute proof. Similarly, Guard and Eastman
noticed an intermediate result of their SAM resolution theorem prover, and wisely interpreted it as o
nontrivisl result in Iattice theory (now known as SAM's lemma).

’ The answer is thet either p or q must be 2, and thet the other two primes are & prime pair -- ie,, they differ by iwo.

oy
YooFu

et o

PR
R ‘J
PP

-
x s

21

L

[E poare]

pont}

g
2.

1

5 £43

PR

TR

4

e
AL A

m"..l -.i

PPAPLIAS

A R A A A AR e A R R A P A A AR R AN L PR TR 0 ai g Ll g g ana B A L Ll it e Sae B e e

Chapter | AM: Discovary in Mathematics as Heuristic Search 5

math students than the current dogma'®

Another benefit of actually constructing AM is that of experimentation: one can vary the
concepts AM starts with, vary the heuristics available, etc, and study the effects on AM’s
behavior. Several such experiments were performed. One involved adding a couple dozen
new concepts from an entirely new domain: plane geometry. AM busied itself exploring
elementary geometric concepts, and was almost as productive there as in its original domain.
New concepts were defined, and new con jectures formulated. Other experiments indicated
that AM was more robust than anticipated; it withstood many kinds of "de-tuning”. Others
demonstrated the tremendous impact that a few key concepts (e.g., Equality) had on AM’s
behavior. Several more experiments and extensions have been planned for the future.

1.2.4. Motivation [optional

We need a super-mathematics in which the operations are as unknown as the
quantities they operate on, and a super-mathematician, who does not know what
he is doing when he performs these operations.

== Eddington

Although the motivation {or carrying out this research of course preceded the effort, I have
delayed until this section a discussion of why this is worthwhile, why it was attempted.

First there was the inherent interest of getting a handle on scientific creativity. AM is partly
a demonstration that some aspects of creative theory formation can be demystified, can be
modelled as simple rule-governed behavior.

Related to this is the potential for learning from AM more about the processes of concept
formation. This was touched on previously, and several experiments already performed on
AM will be detailed fater.

Third, AM itself may grow into something of pragmatic value. Perhaps it will become a
useful tool for mathematicians, for educators, or as a model for similar systems in more
"practical” fields. Perhaps in the future we scientisis will be able to rely on automated
assistants to carry out the "hack” phases of research, the tiresome legwork necessary for
"secondary” creativity.

Historically, the domain of AM came from a search for a scientific field whose activities had
no specific goal, and in which natural language abilities were unnecessary. This was to test
out the BEINGs [Lenat 75b) ideas for a modular representation of knowledge.

10 Currently, an educator tahas the very best work sny mathematician has ever done, polishes it until its brilsnce is
blinding, then presents it to the student to induce upon. Many individuals (eg., Knuth and Polya) have
pointed out this blunder. A few (ag., Papert at MIT, Adams st Stanford) are experimenting with more
reslistic strategies for "teaching” creativity. See the ufouncu by these suthors in the bibliography.

. e ram A - . N . ow - e =
. R e, e , . NI . v R A L]

s v -f ‘ _i '- AT W, ,.’_).-‘.‘.-4""4 .. ._{'_'- PR { \ v et-.1-\-",.:;“\‘{“.‘-hx".'!'.‘:{ sty R-h ’\ \ _""

'y ‘\.,,-_ LIRS AP P INKY BT el I A { Luxa vf L R e e T e L \'M‘ IS I

T I '?-'s'“’"“i

R N R v v

P ”
AL Y W

oy
Lt s

MRS T L ¥

LRI | SR T

[——
R F

s b

PR I e
ele oy

Vartan. LI L e I Tt S BN e

x

T

b WG OTT

- -
LT

U
»

-~
“a

Chapter | AM: Discavery in Mathematics as Heuristic Search -6-

It would be unfair not to mention the usual bad reasons for this research: the "Look ma, no
hands” syndrome, the A researcher’s classic maternal urges, ego, the usual thesis drives, etc.

1.2.£. Conclusions

AM is forced to judge a priori the value of each new concept, to lose interest quickly in
concepts which aren’t going to develop into anything. Often, such judgments can only be
based on hindsight. For similar reasons, AM has difficulty formulating new heuristics
which are relevant to the new concepts it creates. Heuristics are often merely compiled
hindsight. While AM's "approach” to empirical research may be used in other scientific
domains, the main limitation (reliance on hindsight) will probably recur. This prevents
AM from progressing indefinitely far on its own.

This ultimate limitation was reached. AM’s performace degraded more and more as it
progressed further away from its initial base of concepts. Nevertheless, AM demonstrated
that selected aspects of creative discovery in elementary mathematics could be adequately
represented as a heuristic search process. Actually constructing a computer model of this
activity has provided an experimental vehicle for studying the dynamics of plausible
empirical inference.

1.3, Ways of viewing AM as some common process

This section will provide a few metaphors: some hints for squeezing AM into paradigms
with which the reader might be familiar. ~ar example, the existence of heuristics in AM is
functionally the same as the presence of domain-specific information in any knowledge-
based system.

Consider assumptions, axioms, definitions, and theorems to be syntactic rules for the
language that we call Mathematics. Thus theorem-proving, and the whole of textbook
mathematics, is a purely syntactic process. Then the heuristic rules used by a
mathematician (and by AM) would correspond to the semantic knowledge associated with
these more formal methods.

Just as one can upgrade natural-language-understanding by incorporating semantic
knowledge, so AM is only as successful as the heuristics it knows.

Four more ways of "viewing” AM as something else will be provided: (i) AM as a hill-
climber, (ii) AM as a heuristic search program, (iii) AM as a mathematician, and (iv) AM
as a thesis.

1.3.1. AM as Hill-climbing

Let's draw an analogy between the process of developing new mathematics and the familiar
process of hill-climbing. We may visualize AM as exploring a space using a measuring or
evaluation” function which imparts to it a topography.

I U3

Bt Al 3

bl et A4 |

T

[Siiweidl

a8

¥

il 2t

i3

e

v wn

M e] R e e] PR IR S A I T S IR it Pl et s B A a Vb ar e aul (un i g WR gt Lot iy TR RUA ¢ Ho Rt B I S oiia ol £ 00 S Lol ol W R Ve LN TS0 Nl bt |

Chapter | AM: Discovery in Msthematics as Heuristic Search -7-

Consider AM’s core of very simple knowledge. By compounding its known concepts and
methods, AM can explore beyond the frontier of this foundation a little wherever it wishes.
The incredible variety of alternatives to investigate includes all known mathematics, much
trivia, countless deadends, and so on. The only "successful” paths near the core are the
narrow ridges of known mathematics (plus perhaps a few as-yet-undiscovered isolated
peaks).

How can AM walk through this immense space, with any hope of following the few, slender :
trails of already-established mathematics (or some equally successful new fields)) AM must
do hill-climbing: As new concepts are formed, decide how promising they are, and always
explore the currently most-promising new concept. The evaluation function is quite
nontrivial, and this thesis may be viewed as an attempt to study and explain and duplicate

the judgmental criteria people employ. Preliminary attempts'' at codifying such ‘
"mysterious" emotive forces as intuition, aesthetics, utility, richness, interestingness,
relevance.. indicated that a large but not unmanageable collection of heuristic rules should
suffice.

The important visualization to make is that with proper evaluation criteria, AM’s planar
mass of interrelated concepts is transformed into a three-dimensional relief map: the knowr
lines of development become mountain ranges, soaring above the vast flat plains of trivia
and inconsistency below.

Occasionally an isolated hill is discovered near the core;'? certainly whole ranges lie

undiscovered for long periods of time'3, and the terrrain far from the initial core is not yet
explored at all.

ey g g gy cy w m m ek ey rwe i s s g

1.3.2. AM as Heuristic Search

As the title of this section — and this thesis — proclaims, AM is a kind of “heuristic search”
program. That must mean that AM is exploring a particular “space,” using some informatl
evaluation criteria to guide it. i

g m e mn wam

The flavor of search which is used here is that of progressively enlarging a tree. Certain
"evaluation-function” heuristics are used to decide which node of the tree to expand next,
and other guiding rules are then used to produce from that node a few interesting successor
nodes. To do mathematical research well, I claim that it is necessary and sufficent to have
good methods for proposing new concepts from existing ones, and for deciding how
interesting each "node” (partially-studied concept) is.

e ¥ v =

e e

AM is initially supplied with a few facts about some simple math concepts. AM then

.

n Thesa took the form of informal simulations. Although far from controlied sxperiments, they indicated the feasability of
sttempting to create AM, by yielding an spproximete figure for the amount of informal knowledge such &
system would need

12 ¢ ¢, Conway's rumbars, s3 described in [Knuth 74]
13 E g, non-Euclidean geometries weren't thought of until 1848

X Iy ww -y vy

DU S Y B 2 A U

------- AR LI LI B e T L IS AL B AL e SRR

<

B AN) N e T R A i AV S

N OO A R R R L A 4
- . - = - - - - - "

T
Xy] ;o

v

o

xa o K y Yy
o s

ar.-.]:.f‘. R

Ll

]

" EN

Chapter | AM: Discovery in Msthematics as Heuristic Search -8-

explores mathematics by selectively enlarging that basis. One could say that AM consists of
an active body of mathematical concepts, plus enough "wisdom” to use and develop them
effectively. For "wisdom", read “"heuristics”. Loosely speaking, then, AM is a heuristic search
program. To see this more clearly, we must explain what the nodes of AM’s search space
are, what the successor operators or links are, and what the evaluation function is.

AM'’s space can be considered to consist of all nodes which are consistent, partially-filled-in
concepts. Then a primitive "legal move" for AM would be to (i) enlarge some facet of some
concept, or (ii) create a new, partially-complete concept. Consider momentarily the size of
this space. If there were no constraint on what the new concepts can ve, and no informal
knowledge for quickly finding entries for a desired facet, a blind "legal-move” program
would go nowhere ~ slowly! One shouldn’t even call the activity such a program would be
doing "math research.”

The heuristic rules are used as little "plausible move generators”. They suggest wnich facet
of which concept to enlarge next, and they suggest specific new concepts to create. The only
activities which AM will consider doing are those which have been motivated for some

specific good'? reason. A global agenda of tasks is maintained, listing all the activities
suggested but not yet worked on.

AM has a definite algorithm for rating the nodes of its space. Many heuristics exist merely
to estimate the worth of any given concept. Other heuristics use these worth ratings to

order the tasks on the global agenda list. Yet AM has no specific goal criteria: it can never

"halt”, never succeed or fail in any absolute sense. AM goes on forever'S,

Consider Nilsson’s descriptions of depth-first searching and breadth-first searching ([Nilsson
71]). He has us maintain a list of “"open” nodes. Repeatedly, he plucks the top one and
expands it. In the process, some new nodes may be added to the Open list. In the case of
depth-first searching, they are added at the top; the next node to expand is the one most
recently created; the Open-list is being used as a push-down stack. For breadth-first search,
new nodes are added at the bottom; they aren't expanded until all the older nodes have
been; the Open-list is used as a queue. For heuristic search, or "best-first” search, new npodes
are evaluated in some numeric way, and then "merged” into the already-sorted list of Open
nodes.

This process is very similar to the agenda mechanism AM uses to manage its search. This
will be discussed in detail in Chapter 3. Each entry on the agenda consists of three parts:
(i) a plausible task for AM to do, (ii) a list of reasons supporting that task, and (iii) a
numeric estimate of the overall priority this task should have. When a task is suggested for
some reason, it is added to the agenda. A task may be suggested several times, for different
reasons. The global priority value assigned to each task is based on the combined value of
its reasons. The control structure of AM is simply to select the task with the highest
priority, execute it, and select a new one. The agenda mechanism appears to be a very well-
suited data structure for managing a "best-first™ search process.

14 Of courss, AM thinks a reason is "good"” if -- and only if - it was told that by 8 heuristic rule; o those rules had better
be plavsile, prefrrably the ones sctually used by the experts.

15 Technicslly, forsver is sbout 100,000 list cells and s couple cpu hours.

S s A m “ m -~ I T I L TN S LT R T
u'—,f-"l'-."‘l.---n‘(‘o-_“'. "’-_"-_i'. PR '“w“l,,‘ 4.'-'.'.‘_‘-' {".. a T T e ST TN e e, e M S Bl L

......

S RRTRERE RAR R 20 s Tk 2 8 on 2ot ties Rool B SN e b LR Rat e 1 oEaw Rt Ra R 10 Rt +3 Ban et e Lo Bt o S5 S A e SR Fre i e o IS S A e AR R e N B

S q
ot
(

= X
& Chapter | AM: Discovery in Mathematics a3 Heurrstic Search -G ::
= Similar control structures were used in LT [Newell, Shaw, & Simon 57), the predictor part 2
i of Dendral [Buchanan et ai 69), SIMULA-67 [Daht 68], and KRL (Bobrow & Winograd o
77). The main difference is that in AM, symbolic reasons are used (albeit in trivial token- -

like ways) to decide whether — and how much — to boost the priority of a task when it is N

suggested again.

[AT AL

There are several difficulties and anomalies in forcing AM into the heuristic search

creation of new heuristic rules; "Compose” is both a concept and an operation which results

ﬁ paradigm. In a typical heuristic search (e.g., Dendral [Feigenbaum et al 71}, Meta-Dendral 5
N [Buchanan et al 72), most game-playing programs [Samuel 67)), a "search space” is defined N
implicitly by a "legal move generator”. Heuristics are present to constrain that generator so N

Y that only plausible nodes are produced. The second kind of heuristic search, of which AM -
e is an example, contains no "legal move generator”. Instead, AM’s heuristics are used as N
plausible move generators. Those heuristics themselves implicitly define the possible tasks 7

-~ AM might consider, and all such tasks should be plausible one. In the first kind of search, =
.. removing a heuristic widens the search space; in AM’s kind of search, removing a heuristic N
- reduces it. i

v Another anomaly Is that the operators which AM uses to enlarge and explore the space of g
. concepts are themselves mathematical concepts (e.g, some heuristic rules result in the el

0 in new concepts). Thus AM should be viewed as a mass of knowledge which enlarges itself
i repeatedly. Typically, computer programs keep the information they "discover” quite i
separate from the knowledge they use to make discoveries'® Z:'
. Perhaps the greatost difference between AM ard typical heuristic search procedures is that =
AM has no well-defined target concepts or target relationships. Rather, its "goal criterion” — =
. its sole aim — 15 to maximize the interestingness level of the activities it performs, the X
zf.: priority ratings of the top tasks on the agenda. It doesn’t matter precisely which definitions :{
=, or con jectures AM discovers — or misses — so long as it spends its time on plausible tasks. %
There is no fixed set of theorems that AM should discover, so AM is not a typical problem- R\
& solver. There is no fixed set of traps AM should avoid, no small set of legal moves, and no “
E winning/losing behavior, so AM is not a typical game-player. ~
- For example, no stigma is attached to the fact that AM never discovered real numbers'’; it E
. was rather surprising that AM managed to discover natural numbers! Even if it hadn't “
done that, it would have been acceptable'® if AM had simply gone off and developed ideas -
in st theory.)
N L
t:‘ s Of courss this is often becauss the two kinds of knowledge are very different. For a chess-player, the first kind is .E”
o "good board positions,” and the second is "sirategies for making s good move.” Theorem-provers are an W

T

exception. They produce s new theoram, and then use it (simost ke a new operator) in future proofs. A
program to learn to play checkers {Samuel 67] hes this same flavor, thereby indicating that this ‘self-help’
property is not a function of the task domein, nct simply a characteristic of mathematics.

- 17 There are many "nice” things which AM didn't -~ and can't -- do. e g., devising geomstric concepts from its initis! simple
sot-theoretic knowledge. See the discussion of the imitations of AM, Section 7.2.

LA A

- 18 Acceptatie to whom? Is there really a domain-invariant criterion for udgmg the quality of AM's actions? See the “
i discussions in Section 7.1 ",
b &
ix} :
) 5._
ie

ol

R R i Yl U

T

™
R Al it b}

Chapter | AM: Discovery in Mathematics as Heuristic Search ~10-

1.5.8. AM as a Mathematician |

Before diving into the innards of AM, let's take a moment to discuss the totality of the
mathematics which AM carried vut. Like a contemporary historian summarizing the work
of the Babylonian mathematicians, we shan't hesitate to use current terms and criticize by
current standards.

AM began its investigations with scanty knowledge of a few set-theoretic concepts (sets,
equality of sets, set operations). Most of the obvious set-theory relations (e.g, de Morgan’s
laws) were eventually uncovered; since AM never fully understood abstract algebra, the
statement and verification of each of these was quite obscure. AM never derived a formal
notion of infinity, but it naively established con jectures like "a set can never be a member of
itself”, and procedures for making chains of new sets ("insert a set into itself”). No
sophisticated set theory (e.g., diagonalization) was ever done.

After this initial period of exploration, AM decided that “equality” was worth generalizing,
and thereby discovered the relation "same-size-as”. "Natural numbers” were based on this,
and soon most simple arithmetic operations were defined.

Since addition arose as an analog to union, and multiplication as a repeated substitution

followed by a generalized kind of unioning'? it came as quite a surprise when AM noticed
that they were related (namely, N+N=2xN). AM later re-discovered multiplication in three
other ways: as repeated addition, as the numeric analog of the Cartesian product of sets,

and by studying the cardinality of power sets2%, These operations were defined in different
ways, so it was an unexpected {to AM) discnvery when they all turned out to be equivalent.
These surprises caused AM to give the concept ‘Times' quite a high Worth rating.

Exponentiation was defined as repeated multiplication. Unfortunately, AM never found any
obvious properties of expanentiation, hence lost all interest in it.

Soon after defining multiplication, AM investigated the process of multiplying a number by
itself: squaring. The inverse of this turned out to be interesting, aid led to the definition of
square-root. AM remained content to play around with the concept of integer-square-root.
Although it isolated the set of numbers which had no square root, AM was never close to
discovering rationals, let alone irrationals.

Raising to fourth-powers, and fourth-rooting, were discovered at this time. Perfect squares
and perfect fourth-powers were isolated. Many other numeric operations and kinds of
numbers were isolated: Odds, Evens, Doubling, Halving, etc. Primitive notions of numeric
inequality were defined but AM never even discovered Trichotomy.

The associativity and commutativity of multiplication indicated that it could accept a BAG

19 Take two bags A and B. Replace sach element of A by the bag B. Remove one fevel of parentheses by taking the union of
il slements of the trensfigursd bag A Then thet new bag will have as many elemenis as the product of the
lengths of the two original bags.

2 The size of the set of all subsets of S is 25, Thus the powsr set of AUB has length equs! to tho product of the lengths
of the powsr sets of A and B individually (assuming A and B are disyoint).

DIEEC Y

- . ., . - . . S D I N TN TR T S [[LA S T
., . N T e T T T T e T e T e e st Ty e e e T e N L O T T T I S e e L S
EE A . . . Lo - . 2 PPl o,

! LS a

I

F"’? l!v

o
«
v

A

PR
AL

wrly

o
z

s Nl ey)
. [y

2]

&

“J
sy

e
"
'

n

i

!1 .:I‘.:-I ": J

R

s

i

. 4%

e e

n
[T T

ragL

ARy
x,

Lt
4 '

>

-

¢

]

t

Ty

Chapter | AM: Discovery in Mathamatics as Heuristic Search -1t

of numbers as its argument. When AM defined the inverse operation corresponding to
Times, this property allowed the definition to be: "any bag of numbers (>1) whose product is
x". This was just the notion of factoring a number x. Minimally-factorable numbers
turned out to be what we call primes. Maximally-factorable numbers were also thought to

be interesting.

Prime pairs were discovered in a bizarre way: by restricting addition (its arguments and its

values) to Primes2! AM conjectured the fundamental theorem of arithmetic (unique
factorization into primes) and Goldbach’s con jecture (every even number >2 is the sum of
two primes) in a surprisingly symmetric way. The unary representation of numbers gave
way to a representation as a bag of primes (based on unique facisrization), but AM never

thought of exponential notation. 2 Since the key concepts of remainder, greater-than, ged,
and exponentiation were never mastered, progress in nutmber theory was arrested.

When a new base of geometric concepts was added, AM began finding some more general
associations. In place of the strict definitions for the equality of lines, angles, and triangles,
came new definitions of concepts we refer to as Parallel, Equal-measure, Similar, Congruent,
Translation, Rotation, plus many which have no common nare (eg. the relationship of two
triangles sharing a common angle). A cute geometric interpretation of Goldbach's

conjecture was found?, Lacking a geometry "model” (an analogic representation like the
one Gelernter employed), AM was doomed to failure with respect to proposing only
plausible geometric con jectures.

Similar restrictions due to poor "visualization” abilities would crop up in topology. The
concepts of continuity, infinity, and measure would have to be fed to AM before it could
enter the domains of analysis. More and more drastic changes in its initial base would be
required, as the desired domain gets further and further from simple finite set theory and
elementary number theory.

2 That is, consider the set of triples p,q,r, all primes, for which psqer. Then one of them must be "2", and the other two
must therefore form a prime pair.

22 5 tengential note: All of the discoveries mentioned above were made by AM working by itself, with 8 human being
observing its behavior. If the level of sophistication of AM's concepts were higher (or the level of
sophisticstion of its users were lower), then it might be worthwhie to develop s nice user--system
interface. The user in that case could -- and ought to -~ work right slong with AM ss » co-resaarcher.

s Given ol angles of a prime number of degress, (0,1,2,3,5,7,11,.,179 degress), then any angle between O and 180
degrees can be approximated (to within | degres) ss the sum of two of those angles.

g gy e g g e - = e o =

e g pe—— e s

s, e mrmy rgrr g ey

Lt T Lttt]

v ey I B SR A N

e Y

TR R Y 1 on

Em‘n

“§7dx

2o) S o W ol S3uf Bl 0 Yol SN ol Rl e iy =g ity

AT -

Chapter | AM: Discorary in Mathematics as Heuristic Search -12-

1.3.4. AM as a Thesis [optional]

Walking home along a deserted street late at night, the reader may imagine
himself to feel in the small of Ais back a cold, hard object; and to hear the words
spoken behind him, ‘Easy now. This is a stick-up. Hand over your money.’ W hat
does the reader do? He attempts to generate the utterance. He says to himself,
now if 1 were standing bekind someone holding a cold, hard object against his
back, what would make me say that? What would I mean by it? The reader is
advised tact he can only arrive at the deep structure of this book, and through the
deep structure the semantics, if he attempts to generate the book for himself. The
author wishes him luck.

' i
£

»
- ll,(

S

== Linderholm

Don'’t be scared by the weight of the document you’re now hoiding. If you flip to page 165,
you'll see that the last two-thirds are just appendices.

Each chapter is of roughly equal importance, which explains the huge variation in length.
Start looking over Chapter 2 right away: it contains a detailed example of what AM does.
Since you're reading this sentence now, we'll assume tha: you want a preview of what’s to
come in the rest of this document.

Chapter 3 covers the top-level control structure of the system, which is based around the
notion of an ‘agenda’ of tasks to perform. In Chapter 4 the low-level control structure is
revealed: AM is really guided by a mass of heuristic rules of varying generality. Chapter 5
contains more than you want to know about the representation of knowledge in AM. The
diagram showing some of AM's starting concepts (page 105) is worth a look, even out of
context.

Most of the results of the project are presented in Chapter 6. In addition to simply ‘running’
AM, several experiments have been conducted with it. It’s awkward to evaluate AM, and
therefore Chapter 7 is quite long and detailed.

The appendices provide material which supplements the text. Appendix 2 contains a
description of all the initial concepts, some examples of how they were coded into Lisp, and
a partial list of the concepts AM defined and investigated along the way. Appendix 3
exhibits all 242 heuristics that AM is explicitly provided with. Appendix 4 is essentially a
math article, about the major discovery that AM motivated: rmaximally-divisible numbers.
Finally, Appendix 5 contains traces of AM in action: a long prose description, a long task-
by-task description, and a long undoctored transcript excerpt. Appendix 1 hasn’t been
mentioned yet, and forms the sub ject of the remainder of this section.

This thesis — and its readers — must come to grips with a very interdisciplinary problem.
For the reader whose background is in Artificial Intelligence, most of the system’s actions —
the "mathematics” it does — may seem inherently uninteresting. For the mathematician, the
word "LISP" signifies nothing beyond a speech impediment (to Artificial Intelligence types it

.............

AL A A B2 e L e A I A A R T R AL S SalN fe £ R L A DL d 4 W B R A T R PR NN S A RS TS & AaCh S Sh v Vi N e P S ¥ B P2l e :-.:‘

kY
-3
A
=

e
S

v

Chepter 1 AM: Discovery in Mathematics as Heuristic Search ~13-

also connotes a programming impediment). If 1 don’t describe "LISP" the first time 1
mention it, 2 large fraction of potential readers will never realize that potential. If I do stcp
to describe LISP, the other readers will be bored.

- o

A
M
s

te

In an attempt not to lose readers due to jargon, two glossaries of terms have been compiled.
Appendix L1 (p. 165) contains capsule descriptions of the mathematical terms, ideas, and
notations used in this thesis. Appendix 1.2 renders the analogous service for . rtificial
Intelligence jargon and computer science concepts.

r
2
5

g

&Y
Pl A~ .

Pl

>
.

S

R e e O T S I T T o L T T R T T T T U P VL
et et o, T T ettt . - » ~ - AT T e v ATt et Wt At - » R
SR el e R . S Cat s ‘_-,-,,-_~_-,s'_i,-,-. A I i . Ll A

&

l‘\

Y 1a-

N Chapter 2. An Example: Discovering Prime Numbers
e

R

This chapter will present an example of AM in action, an excerpt from the output of AM,

- as it investigates scme concepts.

After a brief discussion of AM's control structure in Section 2.1, the reader will be told

- what the point of this example is — and is not. Section 2.3 provides a few eleventh-hour
n hints at decoding the example.
A The excerpt itself follows in Sectior: 2.4. It skips the first half of the session, and picks up
o at a point just after AM has defined the concept "Divisors-of”. Soon afterward, AM defines
) Primes, and begins to find interesting con jectures related to them. The excerpt goes on to
o show how AM conjectured the fundamental theorem of arithmetic and Goldbach’s
o conjecture. AM derived the notion of partitioning a collection of n objects into smaller
bundles, but failed to find any interesting con jectures about that process. Instead, AM was
side-tracked into the (probably) fruitless investigation of numbaers which can be represented
; as the sum of two primes in one unique way.

The final section of this chapter will recap this example the way a math historian might
o report it.

2.1, Discussion of the AM Program

2.1.1. Representation

- AM is a program which expands a knowledge base of mathematical concepts. Each concept
is stored as a particular kind of data structure, namely as a collection of properties or

A “facets” of the concept. For example, here is a miniature example of a concept':

0

! The roght arrow {"+") in the box on the next page is the symbol for “implies”. "Nos." is an abbraviation for "Numbers®. Tho
" veartical bar "|” i o symbol for the predizate “divides evenly into™; the hook "+" is a symbol for the predicate
> “the negation of". "®" indicates exclusive o7, and the symbol “V" is read "for all". Please consult the
&4 glossery, Appendix 1.1, for fuller discussion of these, plus other math terms like "Prime pairs”.

o T MU M T e M Ha M TRl S A T A R AR RIS R AT A U e L R U LW U L LR WY UL R ER R T e DX T W T e T T T TR AT T T

Al
%
Chapnter 2 AM: Discovery in Mathematics as Heuristic Search -15- =
i::
NAME: Prime Numbers
UEFINITIONS: v
ORIGIN: Number-of-divisors-of(x) s 2
PREDICATE-CALCULUS: Prime(x) = (Vz)(zix = 21 @ 2=x) ~—
ITERATIVE: (for x>1): For i from 2 to Sqri(x), ~(ilx) P“
EXAMPLES: 2, 3, 5,7, 11, 13, 17 ~
BOUNDARY: 2, 3 3¢
BOUNDARY-FAILURES: 0, | i
FAILURES: 12 -
?{:f
GENERALIZATIONS: Nos., Nos. with an even nc. of divisors, Nos. with a prime no. of divisors
SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniquely-addables : «;j::‘
COMJECS: Unique factorization, Goldbach's conjeciure, Extremes of Number-of-divisors-of
i~
INTU'S: 4 metaphor to the effect that Primes are the building blocks of all numbers E:,
ANA! CGIES: w3
Maximally=-divisible numbers are converse extremes of Number=-of-divisors-of ;:J
Factor & ncn=simple group into simple groups
INTEREST: Conjecturas tying Primes to TIMES, to Divisors~of, to closely related operations Y,
i
WORTH: 800
w2
5
"Creating a new concept” is a well-defined activity: it involves setting up a new data A
structure like the one above, and filing in entries for some of its facets or slots. Filling in a &
particular facet of a particular concept is also quite well-defined, and is accomplished by
executing a collection of relevant heuristic rules. This proces: will be described in great b
detail in later chapters. e
N 2.1.2. Agenda and Heuristics "
4 An agenda of plausible tasks is maintained by AM. A typical task is "Fill-in examples of -
Primes”. The agenda may contain hundreds of entries such as this one. AM repeatedly i
selects the top task from the agenda and tries to carry it out. This is the whole control o
4 structure! Of course, we must still explain how AM creates plausible new tasks to place on
. the 2genda, how AM decides which task will be the best one to execute next, and how it "
,i carries out a task. i

T T T T T W T A e T A T T N A T T A T R T T I N R N PR N AT SR TR TR I PR TR R LT PO O T T R N e Vet AR e R R f'&
!g;
|
i
N Chapter 2 AM: Discovery in Mathematics as Heuristic Search -16-
p If the task is "Fill in new Algorithms for Set-union”, then satisfying it would mean actually]
E synthesizing some new procedures, some new LISP code capable of forming the union of A
any two sets. A heuristic rule is relevant to a task iff executing that rule brings AM closer R
to satisfying that task. Relevance is determined a priori by where the rule is stored. A rule J
o tacked onto the Domain/range facet of the Compose concept would be presumed relevant to K
i the task "Check the Domain/range of InsertoDelete”. 3
4
l Once a task is chesen from the agenda, AM gathers some heuristic rules which might be !
" relevant to satisfying that task. They are executed, and then AM picks a new task. While
a rule is executing, three kinds of actions or effects can occur: 3
2 (1) Facets of some concepts can get filled in (e.g., examples of primes may actually be found
ar.d ta=ked onto the “Examples” facet of the "Primes” concept). A typical heuristic rule "
- which might have this effect is: E
~ To fill in examples of X, where X is a kind of Y (for some more general concept Y),
- Check the examples of Y; some of them may be examples of X as well.
o For the task of filling in examples of Primes, this rule would have AM notice that g
Primes is a kind of Number, and therefore look over all the known examples of g
- Number. Some of those would be primes, and would be transferred to the Examples [
"\ facet of Primes. :
. (i1) New concepts may be created (e.g., the concept “primes which are uniquely representable %
e as the sum of two other primes” may be somehow be deemed worth studying). A g
- typical heuristic rule which might result in this new concept is: A
~ If scme {but not most) examples of X are also examples of Y (for some concept Y), »
- Create a new concept definod as the intersection of those 2 concepts (X and Y). K
N Suppose AM has already isolated the concept of being representable as the sum of two L
E primes in only one way (AM actually calls such numbers "Uniquely-prime-addable :
ey numbers”). Wien AM notices that some primes are in this set, the above rule will -
create a brand new concept, defined as the set of numbers which are both prime and '{
"4 uniquely prime addable. %
W b
(1) New tasks may be addec to the agenda (e.g, the current activity may suggest that the ;E
- following task is worth considering: "Generalize the concept of prime numbers™). A ‘z
oy typical heuristic rule which might have this effect is: q
] If very few examples of X are found, :
s Then add the following tack to the agenda: "Generalize the concept X". -
o Of course, AM contains a precise meaning for the phrase "very few". When AM looks £
) for primes among examples of already-known kinds of numbers, it will find dozens of s
2 non-examples for every example of a prime it uncovers. "Very few" is thus naturally ¥
(v L
C".
E{.,-F (::
£ x

L A el A e b

Chapter 2 AM: Discovary in Matheamatics as Heuristic Search -17-

implemented as a statistical confidence level?.

The concept of an ageusia is certainly not new: schedulers have been around for a long
time. But one imports:.* ‘eature of AM's agenda scheme is a new idea: attaching — and
using — a list of quasl-sym!:aolic3 reasons to each task which explain why the task is worth
considering, why it's plausible. It is the responsibility of the Aeuristic rules to include reasons

for any tasks they propose® For example, let's reconsider the heuristic rule mentioned in (i)
above. It really looks more like the following:

If very few axamples of X are found,

Then add the following task fo the agenda: "Generalize the concept X7, for the following
reason: "X's sre quite rare; a slightly (ess restrictive concept might be more
interesting”.

If the same task is proposed by several rules, then several different reasons for it may be
present. In addition, one ephemeral reason also exists: "Focus of attention”. Any tasks
which are similar to the one last executed get "Focus of attention” as a bonus reason. AM
uses all these reasons, eg. to decide how to rank the tasks on the agenda. The
“intelligence” AM exhibits is not so much “what it does”, but rather the order in which it
arranges its agenda®. AM uses the list of reasons in another way: Once a task has been
selected, the quality of the reasons is used to decide how much time and space the task will
be permitted to absorb, before AM quits and moves on to a new task. This whole
mechanism will be detailed in Section 3.3.2, on Page 33.

2.2, What to get out of - and NOT get out of -~ this example

The purpose of the example which begins on page 20 is to convey a bit of AM’s flavor.
After reading through it, the reader should be convinced that AM is not a theorem-prover,
nor is it randomly manipulating entries in a knowledge Lase, nor is it exhaustively
manipulating or searching. AM is carefully growing a network of data structures
representing mathematical concepts, by repeatedly using heuristics both (a) for guidance in
choosing a task to work on next, and (b) to provide methods to satisfy the chosen task.

2 The ratio o5 examples found to non-examples stumbled over lies between .00: snd .05. Philosophers ocutraged by this may
be somewhat appoased by knowisdge that large changes in the precise numbers very rarely alter AM's
behavior

3 Zach reason is an English sentance. Wiile AM can tell whether two given reasons coincide, it can't actually do any internal
processing on them. If this lack of intelligence had proved to be s limiting problem, then more work would
have been expended on giving AM some such sbilities.

4 An slternatve schems, perhaps even 8 bit more humsn-ike, would be to (perhaps only occasionally) allow a burst of
poorly-motivated tasks to be proposed, and then use some pruning criteria to weed out the obvious losers.
During this time, AM could typs out to the user (who otherwise would be clossly monitoring its activities) 8
cute anthropomorphic phrase ke “I'm now sitting back and puffing on my pipe, lost in contemplation.”

5 For example, siternating a randomly-chocen task and the "best” task (the one AM chose to do) only siows the system
down by a factor of 2, vet it totally destroys its credibility as & rational resesrcher (ss jdged by the
human user of AM). This is one conciusion of experiment 2 (see Section 6.2.2, page 129).

LA R R e T RE T R1R Rak |

AT Se A A i et e i T ML S M B S S e e e C R S R S R L A M A A L |
i
) o
ok K
= a
o 8
»‘-". Chapter 2 AM: Discovery in Mathematics as Heuristic Search -18- -
The following points are important but can't be conveyed by any lone example: 2
e () Although AM appears to have reasonable natural language abilities, this is a typical Al -
b illusion: most of the phrases AM types are mere tokens, and the syntax which the user -
’ must obey is unnaturally constrained. For the sake of clarity, I have "touched up” some
of the wording, indentation, syntax, etc. of what AM actually outputs, but left the spirit =
! of each phrase intact. As the reader becomes more familiar with AM, future examples e
v can be “unretouched”. If he wishes, he may glance at Appendix 5.3, which shows ::E
some actual listings of AM in action. gl
f.': \ ‘:"L
o (ii) The reader should be skeptical of the generality of the program; is the knowledge base &
“just right” (ie., finely tuned to elicit this one chain of behaviors)? The answer is =
- "No". The whole point of this project is to show that a relatively small set of general 3
r heuristics can guide a nontrivial discovery process. Each activity, each task, was o
proposed by some heuristic rule (like "look for extreme cases of X") which was used
s time and time again, in many situations. It was not considered fair to insert heuristic -
guidanze which could only "guide” in a single situation. b
‘ o
This kind of generality can’t be shown convincingly in one example. Nevertheless, &
o even within this small excerpt, the same line of development which leads to ..
e decomposing numbers (using TIMES™') and thereby discovering unique factorization,
R also leads to decomposing numbers (using ADD™') and thereby discovering Goldbach's
con jecture. The same heuristic which caused AM to expect that unique factorization .o
] will be useful, also caused AM ‘o suspect that Goldbach's con jecture will be useless. -
&
- Let me reemphasize that the “point™ of this example is not the specific mathematical &
‘ concepts, nor the particular chains of plausible reasoning AM produces, nor the few flashy >,
’ con jectures AM spouts, but rather an illustration of the kinds of things AM does. R
g . 2,3, Deciphering the Example &
v
: Recall that in general, each task on the agenda will have several reasons attached to it. In %
e the example excerpt, the reasons for each task are printed just after the task is chosen, and Ry
before it's executed. o

o
[AM numbers its activities sequentially. Each time a new task is chosen, a counter is ?L
incremented. The first task in the example excerpt is labelled %% TASK 65 %%, meaning that b
e the example skips the first 64 tasks which AM selects and carries out. The reason simply is B
= that the development of simple concepts related to divisibility will probably be more b
ks intelligible and palatable to the reader, than AM’s early ramblings in finite set theory. 1
g x
!E; ¢ The design of AM was finely tuned so that the antwer to this question weuld be "No™. Ponder that one! E_
'
~
l""_

"-'. l—"!!

[
P . R e R
EE o S

3 S0 T T W I G S A A i) L g S el g B A e A Bl ISR TR TS ST GG oGl Pk TR SRR RS SRy gt LA Yt gs e S vl e R 0 R L M M |
T

a"n'_.u

¢ "\ .a

et

-

SO

il

e

E‘- Chapter 2 AM: Duscovery in Mathematics as Heuristic Search -19-

Y
.

In the example itself, several irrelevant tasks have been excised’. About half of those
omitted tasks were interesting in themselves, but all of them were tangential or unrelated to
the development shown. The reader can tell by the global task numbering how many were
skipped. For example, notice that the excerpt jumps from Task 67 to Task 79.

To help gauge AM’s abilities, the reader may be interested to know that AM defined
"Natural Numbers” during Task 44, and "TIMES" was defined during Task 57. AM
started with no knowledge of numbers, and only scanty knowledge of sets and set-operations.
Task 3, e.g., was to fill in examples of Sets.

The concepts that AM talks about are self-explanatory — by and large. Below are discussed
some nornistandard ones.

BAG is a kind of list structure, a bunch of elements which are unordered, but one in which
multiple copies of the same element are permitted. One may visualize a paper bag filled
with cardboard letters. Technically, we shall say that a set is not considered to be a bag. A
bag is denoted by enclosure within parentheses, just as sets are within braces. So the bag
containing X and four Y’s might be written (X Y Y Y Y), and would be considered
indistinguishable from the bag (Y Y Y X Y).

Number will mean (typically) a positive integer.

TIMES"! is a particular relation. For any number x, TIMES !(x) is a set of bags. Each
bag contains some numbers which, when multiplied together, equal x. For example,

TIMES-'(18) = { (18) (2 9) (2 3 3) (3 6) }. Checking, we see that multiplying, eg. the

numbers in the bag (2 3 3) together, we do get 2x2x3=18. TIMES™}(x) contains all possible
such bags (containing natural numbers >1).

ADD"! is a relation analogous to TIMES™!. For any number x, ADD"}(x) is also a set of
bags. Each bag contains a bunch of numbers which, when added together, equal x. For

example, ADD"'(4) = { (4)(1 11 1)(1 12)(13)(22) }. ADD"¥(x) contains all possible such
bags (containing numbers >0); it finds all possible partitions of x.

Divisors-of is a more standard relation. For any number x, Divisors-of(x) is the set of all
positive numbers which divide evenly into x. For example, Divisors-of(18) « {1 2 36 9 18}.

The definitions for most of the mathematical terms used in the excerpt can be found in the
Glossary (Appendix 1.1). Whenever there is a conflict between “computer science jargon”
and "math jargon", I have opted for the latter. So, eg., all "functions” are necessarily single-
valued for each member of their domain.

AM is an interactive computer program. It prints out phrases indicating what it is doing at
each moment, and a human being, referred to as the User, watches AM’s activities. At any
moment, the user can interrupt AM to ask questions or re-direct its energies. In the excerpt,
the user never re-directs AM, although he does occasionally ask AM to rename some
concept and to explain its behavior (e.g, just after xx _TASK 106 #%). For the benefit of the
reader, I have bold-faced all the user's comments.

7 This is fair, despite the resuits of Experiment 2 (see Section 6.22) because the remaining tasks clump together in
twos, threes, stc; they ire uninterrupted lines of resesrch (eg, Tasks 65-67), separated by very large
gaps (s g, the ump from Task 67 to 79).

Lo

PRS0 T

foyae

“-NR

[A 254

g

Clapter 2 AM: Discovery in Mathematics as Heuristic Search

My personal notes and comments occur right- justified, in italics.

2.4, The Example Itself

%% Task 65: xx
Filling in examples of the following concept: "Divisors-of".

3 Reasons: (1) No known examples for Divisors-of so far.

(2) TIMES, which is related to Divisors-of, is now very interesting.

(3) Focus of attention: AM recently defined Divisors-of.

26 examples found, in 9.2 seconds. e.g.: Divisors-of(6)={1 2 3 6}.

[et 5 I f e

T
H

-
s

L
PP

il

PRl T |

»

P

PAESEARS il W

RARAP s 123, LM

2

~ wE e
CARDE RS NS

‘Yoot

SRPOF

s
3 T

i

“T(7y '.A,',*,'.“‘.l:. [f:

Yy ¥ v y wv.on
BRSS!

l"
>

T

'l

.
P

E-i‘ e B R R AN SR e RV YA RVA YA REgia Bt TR e o A R R A e o P e e LR e Rkt E R SRS e R SR R T N s Y g S R U A ST vt R R R LNk ST bR M D R R e |

Chapter 2 AM: Discovery in Mathematics as Heuristic Search -21-

%% Tagk 66: %%
Considering numbers which have very small sets of Divisors-of (i.e.,, very few divisors).

2 Reasons: (1) Worthwhile to look for extreme cases.
(2) Focus of attention: AM recently worked on Divisors-of.

Filling in examples of numbers with O divisors.
0 examples found, in 4.0 seconds.
Conjecture: no numbers have O divisors.

Filling in examples of numbers with 1 divisors,
1 examples found, in 4.0 seconds. e.g.: Divisors-of(1)={1}.
Conjecture: 1 is the only number with | divisor.

Filling in examples of numbers with 2 divisors.
24 examples found, in 4.0 seconds. e.g.: Divisors-of(13)={1 13}.
No obvious conjecture. This kind of number merits more study.
Creating a new concept: "Numbers-with-2-divisors",

AM had previously derived the notion of singleton,
doubleton, etc. Above, AM was actually defining, e.g., the
set of numbers which gets mapped into a doubleton of
numbers, by the operation Divisors-of. I took the liberty
of translating this into the above form, whick uses, e.g.,
the number "2",

Filling in examples of numbers with 3 divisors.
11 examples found, in 4.0 seconds. e.g.: Divisors-of(49)={1 7 49},
All numbers with 3 divisors are also Squares. This kind of number merits more study.
Creating a new concept: "Numbers-with-3-divisors".

How did AM notice that confecture? It took a random
example of Numbers-with-3-divisiors, say 49. Then it
asked what other known concepts "49" was an example
of. The two answers were: Odd-numbers and Perfect-
squares. AM then tested these confectures on the other
ten examples just found. The only surviving conjecture
was that all numbers-with-3-divisors are also perfect-

squares.

.........
......

AGiEtte s a0 IR JFL S sl atucuii A S AN S e L = A R P R ANCIA A WAGS LA LRI ERL B E R R SN i Gt KR R0 N A RN S I e ni

108
k

N
ey ey g g

Chapter 2 AM: Discovary in Mathematics as Heuristic Search -22-
Py *% Task 67: %% it
E Considering the square-roots ¢f Numbers-with-3-divisors.

2 Reasons: (1} Numbers-with-3-divisors are unexpectedly also perfect Squares.
(2) Focus of attention: AM recently worked on Numbers-with-3-divisors.

.

i All square-roots of Numbers-with-3-divisors seem to be Numbers-with-2-divisors. :-
a e.g., Divisors-of(Square-root(169)) = Divisors-of(13) = {1 13}. -
e Formulating the converse to this statement. Empirically, it seems to be true. f
The square of each Number-with-2-divisors seems to be a Number-with-3-divisors. ¥

(- This is very unusual. It is not plausibly a coincidence. (Chance of coincidence is < .001) !
E- Boosting interestingness factor of the concepts involved: 4
Interestingness factor of "Divisors-of" raised from 300 to 400. 5

- Interestingness factor of "Numbers-with-2-divisors" raised from 100 to 600. k
it Interestingness factor of "Numbers-with-3-divisors” raised from 200 to 700. "
o USER: Call the set of numbers with 2 divisors "Primes". L
e £
%% Task 68: %% ;'
N Considering the squares of Numbers-with-3-divisors. Ny
. 2 Reasons: (1) Squares of Numbers-with-2-divisors were interesting. "
A (2) Focus of attention: AM recently worked on Numbers-with-3-divisors. N
N This gap in the sequencing — from task 67 to task 79 — N
eliminates some tangential and boring tasks. See page iy

E 19 for an explanation. .
L . . E:'-
_ . >

3
A
»
=]

<
-
.
[
e
e =]
T -
l-- =
P e,
' x
-
.
[
At
LS
H
{a
s
=
-, _':
oy .,
- »
fa
~F
A
l‘b
H: e
7
~
‘.
o N
. L
A, »
. !
Lo .
LI fa
I'd

P e e e R A e R e e e A e e e e N A DR LR A M R S A S A
ad]
» L3

Chapter 2 A’ Discovery in Mathematics as Heuristic Search

%% Task 79: xx

Examining TIMES"(x), looking for patterns involving its values.

2 Reasons: (1) TIMES"! is related to the newly-interesting concept "Divisors-of".
(2) Many examples of TIMES™! are known, to induce from.

Looking specifically at TIMES™}(12), which is { (12) (2 6) (22 3) (3 4) }.
13 conjectures proposed, after 2.0 seconds.

2.8, *TIMES™!(x) always contains a bag containing only even numbers",
Testing the conjectures on other examples of TIMES™,

5 false conjectures deal with even numbers,
AM will sometime consider the restriction of TIMES™ to even numbers.

Only 2 out of the 13 conjectures are verified for all 26 known examples of TIMES™:

Conjecture 1: TIMES™ (x) always contains a singleton bag.
e.g, TIMES™}(12), which is { (12) (2 6) (2 2 3) (3 4) }, contains (12).
eg., TIMES™(13), which is { (13) }, contains (13).

Creating a new concept, 'Single-times".
Single-times is a relation from Numbers to Bags-of-numbers.
Single-times(x) is all bags in TIMES™Y(x) which are singletons.
e.g., Single-times(12)={ (12) }. '
e.g., Single-times(13)={ (13) }.

Conjecture 2: TIMES™!(x) always contains 8 bag containing only primes.
e.g., TIMES !(12), which is { (12) (2 6) (2 2 3) (3 4) }, contains (2 2 3).
e.g, TIMES™}(13), which is { (13) }, contains (13).

Creating a new concept, "Prime-times”.
Prime-times is & relation from Numbers to Bags-of-numbers.
Prime-times(x) is all bags in TIMES™}(x) which contain only primes.
. e.g., Prime-times(12)={ (2 3 3) }.
L e.g., Prime-times(13)={ (i3) }.

PR M
------- .-

L R S N U RPN T ST R R TR S N 1 ;
A et Pl SN W oY At TS A X !
- ‘7‘¢,‘E~d.‘lh.‘.‘.- ".\{‘! ».--?~~“- *, i v

AR T A NSRS a2 |

 Agiatien Pa drt bl 16 P P I, St gaFis S P N g i SVl gL BN SRS, G A el At Lt R R i da R AC R G S it N M S gt i Lt JEANAHIE LT af gty
:)J"

A;:sf

ot

A

o

e Chepter 2 AM: Discovary in Mathematics as Heuristic Search -24-
E L

E *x Task 80: %%

Considering the concept "Prime-times".

I 2 Reasons: (1) Conjecs about Prime-times will tell much about Primes and TIMES™!.
*t:: (2) Focus of attention: AM recently defined Prime-times.

Looking specifically at Prime-times(48), whichis { (2222 3) }.
4 conjectures proposed, after .6 seconds.
o e.g, "x Is never inside any member of Prime-times(x)".
Testing them on other examples of Prime-times.

“i Only 1 out of the 4 conjectures are verified for ali 23 known examples of Prime-times:
:h Conjecture 1: Prime-times(x) is always a singleton set.
4 That is, Prime-times is a function, not just a relation.
g e.g., Prime-times(48), which is { (2 2 2 2 3) }, is a singleton set.
R4 e.g., Prime-times(47), which is { (47) }, is a singleton set.
This holds for all 17 known examples of Prime-times. (Chance of coincidence is .0001)
- This fails for 2 of the boundary cases (extreme numbers): 0 and 1.
&:-; Conjecture is amended: Each number >1 is the product of a unique bag of primes.
N | suspect that this conjecture may be very useful.®
= USER: Call this conjecture "Unique factorization con jecture”.
s .
’i []
Ej To show that AM isn’t really always right on the mark,

the next sequence of tasks includes a crime of omission
(ignoring the concept of Partitions) and a false start
(worrying about numbers whick can be represented as the

N

sum of two primes in precisely one way). Notice the
- skip here; 3 tasks have been omitted.
1Y
b
N
Ly
- s How did AM know this? One of the (unfortunately few!) meta-heuristics in AM said the following: "When using the ook
o at the inverse of exireme items under the operation f' ruls, Tack the following note onto the
:-: Interest facet of the new concapt which s crested- ‘Conjectures involving this concept and f (or
LI ') are natural, interesting, and probably useful? ~ Now the concept PRIMES was defined
uging the 'sxtrema’ heuristic (uh, with f-Dwi:or_s-of, When PRIMES was first crested, the metn-rule we just
. presented {acked the following note onto Primesinterest cConj“mru involving Primes and
o diviston (or multiplication) are natural, interesting, and probably useful.’ Twe the
vnique fectorizetion conjecture triggers this festure, wheress Goldbach's conjecture wouldn't,
h‘l
Ao
6_']

............

[
e prEpepRald

TR TN e ot 2u i ru Attt Ll iy e

’

e
-

S AL SR

P T B N 5

S I P

whe

JL pig SC A gy gt

FVOT AT AT A

B RN

L 1 nsaradtah il
oAy o

Y

.
u
-

.
0
»

x
Y
’

"L PR I S L S e T i it S BT S Sadh e T RV T A S S S B A VN TR W L LT
WO \or T ‘_‘~".'-'_",. LSRR R T s-,"*.')' S RN b A WA, R LN O <

Chapter 2 AM: Discovery in Mathematics as Heuristic Search

%% Tack 84: xx
Examining ADD" ! (x), looking for patterns involving its values.

(114)(123)(15)(222)(24)(33)(6)).
17 conjectures proposed, after 3.9 seconds.

e.g. *ADD"(x) always contains a bag of primes”.
Testing them on other examples of ADD™,

3 out of the 11 conjectures were false until amended.

Conjecture 1: ADD™!(x) never contains a singleton bag.

e.g., ADD!(6) contains (1 5), (2 4), and (3 3).
e.g., ADD"(4) contains (1 3), and (2 2).

Creating a new concept, "Pair-add",
Pair-add is a relation from Numbers to Pairs-of-numbers.

e.g, Pair-add(12)={ (1 11)(2 10)(39)(48)(57) (6 6) }.
e.g., Pair-add(4)={ (1 3) (2 2) }.

Conjacture 3: ADD™(x) always contains a bag containing only 1’s.

Conjecture 10: ADD™!(x) always contains a pair of primes.
This conjecture is false. Conjecture is amended:

"ADD(x} usually (but not always) contains a pair of primes.”
e.g., ADD"1(10) contains {3 7), and (5 5).

e.g., ADD"1(4) contains (2 2).

e.g, ADD"1(11) does not contain a pair of primes.

Creating a new concept, "Prime-add".
Prime-add is a relation from Numbers to Pairs-of-numbers.

Prime-add(x) is all bags in ADD"!(x) which are pairs of primes.
e.g., Prime-add(12)={ (5 7) }.

e.g., Prime-add(10)={ (3 7) (5 5) }.

e.g, Prime-add(11) = { }

AR S RTINS RN AN S Yl Lo L S P it Sl S]
[DePE oL W il I S Ay L e . Sy 7 P
A \-,A__ﬂ LRl X R _‘v,,"v/’-.’y,p- A PAE O S S S P A

- r]

Pair-add(x) is all bags in ADD"(x) which are doubletons (i.e., of size 2).

LTl Pl ¥ Jiat S S IR
a 'i—‘:"\-'{.‘““-‘-q; K ‘u“ Pis _,.' Yoa,

2 Reasons: (1) ADD"! is analogous to the newly-interasting concept "TIMES™!".
(2) Many examples of ADD™! are known, to induce from.

Only 11 out of the 17 conjectures are verified for all 19 known examples of ADD!:

Looking specifically at ADD™}(6), whichis {(111111)(11112)(1113)(1122)

Conjecture 2: ADD™!(x) always contains a bag of size 2 (also called a "pair”® or a "doubleton”).

Chapter 2 AM: Discovery in Mathematics as Heuristic Search . -26-

xx Task 106: xx
Considering the set of numbers for which Prime-add is defined (has non-empty value).

1 Reason: (1) Prime-add often has non-empty value. Worth isolating that case.
Warning: no task on the agenda has an interestingness value above 200!

Creating a new concept "Prime-addable”.
Prime-addable is a kind of Number. x is Prime-addable if Prime-add(x) is non-empty.
Will spend 5.0 seconds filling in examples of Prime-addable.
18 examples found. Here are some of them: 456789 1012131417 16 18.
Empirically, all even numbers are also in this set (ignoring boundary cases: 0 2 4 6).
So conjectured. Danger: must examine boundary cases: the numbers 0, 2, 4, and 6.
Two exceptions noticed. The only exceplions are the smaiiest boundsry cases: 0, 2.
Conjecture is emended: All even numbers >2 are the sum of two primes,

Warning: | expect this conjecture will be cute but useless.
USER: Why?

Because the concept of "Primes" originally arose as extreme cases of Divisors-of. The more
closely an operation X is related to the concept Divisors-of, the more natural will be any
conjecture involving both that operation X and Primes. E.g., conjectures involving both
Primes and Times will be natural and useful. But this conjecture, which involves Primes and

ADD", will be cute but useless, since the relation "ADD"!* is unrelated to the relation
"Divisors-of".
End of explanation.

USER: Call this con jecture "Goldbach's con jecture”.

%% Task 197: 2%
Considering the set of numbers for which the relation Prime-add is single-valued.

3 Reassons: (1) Prime-add often has singleton value. Worth isolating that case.
(2) Restricted to this set, Prime-add would be a function,
(3) Focus of attention: AM recently worked on Prime-add.

Creating a new concept "Uniquely-prime-addable”.
"Uniquely-prime-addable” is a kind of Number.
x is Uniquely-prime-addable if Prime-add(x) is a singleton.
Will spend 10.0 seconds filling in examples of Uniquely-prime-addable.
11 examples found. Here are some of them: 457 8 9 12 13.
No obvious conjecture derived empirically.

Will forget "Uniquely-prime-addable numbers®, if no Ties found in near future.

Rt h =TT TR T e TR Te e T T TR AR TR T A CGE T TS SR TR AE TLUE O TR TE AN ELRTLR S AR T SO AT AN TR SRR W et D W DAt L W T W D

L

Bk [l e,

S

WOl A

R s il Do P AR A PN e st N MR A

B ACPLCAMOM i ST

MR

“r" ,; .i_ R I\"’;!

| SERTOIELE R

b P et gl

v

Al Reienss

LRGN

AR
o
.\‘l -.l'l -

sk g

322

:r"'rj -,

€ ¥,
>

[y
o

L e b]
wh 0 et

LA AV A AT RS W Bl L S & O T 2N S Vi o W A PRl e M S S S AN S el B i S R R |

Chapter 2 AM: Discovery in Mathematics as Heuristic Search -27-

2.5, Recapping the Example

Let’s once again eavesdrop on a mathematician, as he describes to a colleague what AM
did.

This example was preceded by the momentous discoveries of multiplication and division.
Several interesting properites of these operations were noticed. The first task which was
illustrated (xx Yask 65 ##%) involves exploring the concept of "divisors of a number”
(meaning all positive integers which divide evenly into the given number). After tiring of
finding examples of this relation, AM investigates extreme cases: that is, it wonders which
numbers have very few or very many divisors.

AM thus discovers Primes in a curious way. Numbers with 0 or 1 divisor are essentially
nonexistent, so they're not found to be interesting. AM notices that numbers with 3 divisors
always seern to be squares of numbers with 2 divisors (primes). This raises the
interestingness of several concepts, including primes. Soon (%% TASK 79 xx), another
conjecture involving primes is noticed: Many numbers seem to factor into primes. This
causes 2 new relation to be defined, which associates to a number x, all prime factorizations
of x. The first question AM asks about this relation is "is it a function?”. This question is
the fuil statement of the unique factorization conjecture: the fundamental theorem of
arithmetic. AM recognized the vaiue of this relationship, and assigned it a high
interestingness rating.

In a similar manner, though with lower hopes, it noticed some more relationships involving
primes, inciuding Goldbach's conjecture. AM quite correctly predicted that this would turn
out to be cute but of no future use mathematically.

The last activity mentioned (x% TASK 107 %x) shows AM examining a rather nonstandard
concept: "numbers which can be written as the sum of a pair of primes, in only one way".
These are termed “uniquely-prime-addable” numbers. It was mildly unfortunate that AM
gave up on this concept before noticing that z+2 is uniquely-prime-addable, for any prime
number p, and that in fact these are the enly odd uniquely-prime-addable numbers. The
session was repeated once, with a human user telling AM explicitly to continue studying this
concept. AM did in fact construct "Uniquely-prime-addable-odd-numbers”, and then notice
this relationship. Here we see an example of unstable equilibrium: if pushed slightly this
way, AM will get very interested and spend a lot of time working on this kind of number.
Since it doesn’t have all the sophistication (i.e, compiled hindsight) that we have, it can't
know instantly whether what it's doing will be fruitless.

sy

=

"y

FFamiad

Ty My B

P Pt 14 |

L3
i

[Fasdaca! |

YT

g g

oo vl 11

Ve ey eTA L Vg R

e

FRte, Y

,

it Bl B i el i e i R R e e T e e e N e A e R A A AR AP AR A A LR AN A NS L e Rl e i

R

L

L.

A

-28- 2]

1

S

L%

o

iy

Chapter 3, Control Structure N

3

‘Objectively’ given, ‘important’ problems may arise [in math]. But esen then the ‘|
mathematician is essentially free to take it or leave it and turn to something else, "
while an ‘important’ problem in [any other science] is usually a conflict, a L
contradiction, which ‘must’ be resolved. The mathematician has a wide choice of o,

which way to turn, and he enjoys a very considerable freedom in what ke does.

g
)y

B s SO

== yon Neumann

L

AM is one of those awkward programs whose representations only make sense if you
already understand how they will be operated on. A discussion of AM’s control structure
(this chapter and the next) must thus precede a discussion of concepts and how they are
represented (Chapter 5). Section 2.1 gave the reader a sufficient knowledge of AM’s

e

Y

~ e
. 7 .

"anatomy"” to follow these chapters. Thus armed with a cursory knowledge of the “statics” of ;:-
AM, we shall proceed to describe in detail its "dynamics”. B
Section 3.1 will give the reader a feeling for the immensity of AM’s search space. This is ‘.
the "problem”. The next section will give the top-level “solution™: the flow of control is n
governed by a job-list, an agenda of plausible tasks. Section 3.3 will present some details of o
this global control scheme. -
Chapter 4 deals with the way AM’s heuristics operate; this could be viewed as the "low- b
level” or local control structure of AM. Chapter 5 contains some detailed information bz
about the actual concepts (and heuristics) AM starts with, and a little more about their ~
design and representation. The reader is also directed to Appendix 5, which presents Y
several detailed examples of AM "in action”. s
&

-

3.1, AM's Search o

o

o

To develop mathematics, one must always labor to substitute ideas for calculations. il

== Dirichlet ::;I

'.)‘:

e

Let’s first spend a paragraph reviewing how concepts are stored. AM contains a collection -
- N
o o)
o

ey
TJ

x|

e TR TR T AT e NS e T T e TR T e e ! et CATLE TN TR ST TOATE TR TR TRl E A AT DLW W NI VY L TR R RIS AT W W e] e
- T -~ Pt Wt W . -

Chapter 3 AM: Ducovary in Mathematics as Hsuristic Search -29-

of data structures, called conceprs. Each concept is meant to coincide intuitively with one
mathematical idea (eg., Sets, Union, Trichotomy). As such, a concept has several aspects or
parts, called facets (eg., Examples, Definitions, Domain/range, Worth). If you wish to think
of a concept as a "frame”, then its facets are "slots" to be filled in. Each facet of a concept
will either be totally blank, or else will contain a bunch of entries. For example, the
Algorithms facet of the concept Union may point to several equivalent LISP functions, each
of which can be used to form the union of two sets'. Even the "heuristic rules” are merely
entries on the appropriate kind of racet (eg., the entries on the Interest facet of the

Structure concept are rules for judging the interestingness of Structures?).

At any moment, AM contains a couple hundred concspts, each of which has only some of its
facets filled in. AM starts with 115 concepts, and grows to about 300 concepts before
running out of time/space. Most facets of most concepts are totally blank. AM’s basic
activity is to select some facet of some concept, and then try to fill in some entries for that
slot®. Thus the primitive kind of "task”™ for AM is to deal with a particular facet/concept
pair. A iypical task looks like this:

Check the entries on the "Domain/range"” facet of the "Bag-Insert” concept

If the average concept has ten or twenty blank facets, and there are a couple hundred
concepts, then clearly there will be about 20x200=4000 “fill-in" type tasks for AM to work
on, at any given moment. If several hundred facets have recently been filled in, there wiil
be that many "check-entries” type tasks available. Executing a task happens to take around
ten or twenty cpu seconds, so over the course of a few hours only a small percentage of these

tasks can ever be executed.?

Since most of these tasks will never be explored, what will make AM appear smart — or

stupid — are its choices of which task to pick at each moment. So it's viorth AM's spending
a nontrivial amount of time deciding which task to execute next. On the other hand, it had

better not be too much time, since a task does take only a dozen seconds.®

One question that must be answered is: What percentage of AM’s legal moves (at any

! The reasons for having multiple algorithms is that sometimes AM will want one that is fast, sometimes AM will be more
concerned with economizing on storsge, sometimes AM will want to "snslyze” an algorithm, and for that
purpose it must be s very un-optimized function, etc.

2 A typical such rule 1s: "A Lructure is very interesting if all its slements are mildly interesting in pracisely the same way."

3 This is not quite complete In addition to filling in entries for a gwven facet/concept pair, AM may wish to check it, split it
up, reorganize it, stc

L

4 The preciss “18 seconds sverage” figure is not important. All heuristic-search programs suffer this same handicap: As the
, depth to which they've sesrched increases, the percentage of nodes (st or sbove that level) which have
y besn examined decreases exponentislly (assuming the branching factor b is strictly lerger than unity),

5 This is true of all heuristic search programs The branchier the search, the more it applies.

¢ The snswer is that AM spends this "deciding” time not just before a task is picked. but rather esch time » task is added
to the agenda A little under | cpu second is spent, on the sverage, to place the task properly on the
sgends, to sesign it a meaningful numeric priority value. So "sction time” ie roughly one order of magnituds
larger than "decding time”.

A g)
St
l"
.

i
o
|

= L7 P
P L LA

(DAY
Ly

pet
1

” prignt
¢ 'r_':c

,7 T
LR

: % ‘v"’:\

c
H
L)

0

v
r
r

e
oK
o
.

Chapter 3 AM: Discovary in Mathematics as Heuristic Search -30-

typical moment) would be considered intelligent choices, and what percentage would be
irrational? The answer comes from empirical results. The percentages vary wildly
depending on the previous few tasks. Sometimes, AM will be obviously "in the middie" of
a sequence of tasks, and only one or two of the legal tasks would seem plausible. Other
times, AM has just completed an investigation by running into dead-ends, and there may be
hundreds of tasks it could choose and not be criticized. The median case would perhaps
permit about 6 of the legal tasks to be judged reasonable.

It is important for AM to locate one of these currently-plausible tasks, but it's not worth
spending much time deciding which of them to work on next. AM still faces a huge search:
find one of the 6 winners out of a few thousand candidates.

Its choice of tasks is made even more important due to the 10-second "cycle time" — the time
to investigate/execute one task. A human user is watching, and ten seconds is a nontrivial
amount of time to him. Hea can therefore observe, perceive, and analyze each and every
task that AM selects. Even just a few bizarre choices will greatly lower his opinion of AM’s
intelligence. The trace of AM’s actions is what counts, not its final results. So AM can’t
draw much of its apparent intelligence from the speed of the computer.

Chess-playing programs have had to face the dilemma of the trade-off between "intelligence”
(roresight, inference, processing,..) and total number of board situations examined. In chess,
the characteristics of current-day machines, language power vs. speed, and (to some extent)
the limitaticns of our understanding of how to be sophisticated, have to date unfortunately

still favored fast, nearly-blind’ search. Although machine speed and LISP slowness may
allow blind search to win over symbolic inference for shallow searches, it can’t provide any
more than a constant speed-up factor for an exponential search. Inference is slowly gaining

on brute force,® and must someday triumph.

Since the number of "legal moves” for AM at any moment is in the thousands, it is

unrealistic to consider "systematically"® walking through the entire space that AM can reach.
In’AM’s problem domain, there is so much “freedom” that symbolic inference finally can

win over the "simple but fast” exploration strategy'®.

3.2, Constraining AM's Search

7 te, using a very simple static svaluation function.

E¢, eoz [Berliner 74]. There, searching is used mainly to verify plavsible moves (s convergent process), not to discover
them (a bushier search),

9 e g, sxheustively, or using o8 minimaxing, etc

10 This is the author’s opinion, partiaily supported by the results of AM Paul Cohen disagress, fesling that mechine speed
should be the key to an automated mathematicien's success

LA I A N N i e
« Fum . Tx » - .
AN I ST

(T A

a2 TN,
LI I SN

o

i N

’I

P

Ty

g g n! N et Y
et yinBye ¥ by ¥y ’_‘n PAuyt it

ml- '

o

-,_ ﬁf

o~
iy W

)
» AI;'

o "
o F Ko A
-ttt =¥

‘s

YT,

W

T

'y =

L
RS

T
ety

¥

"ot Bt ¥
A
-"1'I

Chapter 3 AM: Discovery in Mathematics as Heuristic Search .3]-

T here exist too many combinations to consider all combinations of existing entities;
the creative mind must only propese those of potential interest.

== Poincare’

A great deal of heuristic knowledge is required to constrain the necessary processing
effectively, to zero in on a good task to tackle next. This is done in two stages.

1. A list of plausible facet/concept pairs is maintained. Nothing can get onto this list
unless there is some reason why filling in (or checking) that facet of that concept
would be worthwhile.

2. All the plausible tasks on this "job list” are ranked by the number and strength of
the different reasons supporting them. Thus the facet/concept pairs near the top of
the list will all be very promising tasks to work on.

The first of these constraints is akin to replacing a /egal move generator by a plausible
move generator. The second kind of constraint is akin to using a heuristic evaluation

function to select the best move from among the plausible ones.'!

The job-iist or agenda is a data structure which is a natural way to store the resuits of these
procedures. jt is (1) a list of all the plausible tasks which have been generated, and (2) it is
kept ordered by the numeric estimate of how worthwhile each task is. A typical entry on
the agenda might look like this:

Fill in the EXAMPLES face! of the PRIMES concept .

Reasons for filling in this facet

1. No examples of primes are known so far,
2. Focus of attention: AM just defined Primes.

Overall value of these reasons

" Past Al programs (eg, [Samus! 67)) have indicated that constraining generation (1) is more importunt than sophisticated
ordering of the resultant candidates (2). This was confirmed by the expsriments performed on AM.

[y

 gregm
{F '
P

Foeoa .

K v "
s i"?A‘
[N) o ta by

A,

Lrlaccy

ZARREIEMRA PRV b te S L B Lal Tl vo i PN o s aua g i b Ca o teth Se L W aa B vl Call Sa B Epll it Ve B i f i I Go UL AR O U

Chapter 3 AM: Discovery in Mathamatics s Heuristic Search -32-

The actual top-level control structure is simply to pluck the top task from the agenda and
execute it. That is, select the facet/concept pair having the best supporting reasons, and try
to fill in that facet of that concept.

While a task is being executed, some new tasks might get proposed and merged into the
agenda. Also, some new concepts might get created, and this, too, would generate a flurry of
new tasks.

After AM stops filling in entries for the facet specified in the chosen task, it removes that
task from the agenda, and moves on to work on whichever task is the highest-rated at that
time.

The reader probably has a dozen good questions in mind at this point (e.g, How do the
reasons get rated?, How do the tasks get proposed?, What happens after a task is
selected?,..). The next section should answer most of these. Some more judgmental ones
(How dare you propnse a numeric calculus of plausible reasoning? If you slightly de-tune

all those numbers, does the system's performance fall apart?..) will be answered in Chapter
2

33. The Agenda

Creative energy is used mainly to ask the right question.

== Halmos

3.3.1. Why an Agenda?

This subsection provides motivation for the following one, by arguing that a job-list scheme
is a natural mechanism to use to manage the task-selection problem AM faces. If that seems
obvious to you, feel free to skip ahead to section 3.3.2, page 33.

Recall that AM must zero in on one of the best few tasks to perform next, and it repeatedly
makes this choice. At each moment, there might be thousands of directions to explore
(plausible tasks to consider).

If all the legal tasks were written out, and reasons were thought up to support each one,
then perhaps we could order them by the strength of those reasons, and thereby settle on
the "best” task to work on next. In order to appear "smart" to the human user, AM should
never execute a task having no reasons attached.

Some magical function will be assumed to exist, which provides a numeric rating, a priority
value, for any given task. The function looks at a given facet/concept pair, examines all the
associated reasons supporting that task, and computes an estimate of how worthwhile it
would be for AM to spend some time now working on that facet of that concept.

d ;|.
be
W
5 .'
¥
L
5. .|
i

"

ey e
AR |

»
Pl

weoi T

r

T

gt R T Y
‘if } f o vdond

ol e s
- 1
r"rr Xy fr

LI5S Lt Ko
T r‘

smsms e e ey
PR ol
RN PSSt Ty

I:

Ly

e e am

R BN R

ERI A N

NREE

Try D e
e S0 DAE)

s R A

» %]
doat s
ate'ata

=0 e T T

I
h

X

UL EERES T pebtoorss D alh at su el abi oCit 46 0 S Sr Sl S L 0l IS 6N KWl e Bt Al S PRI E vad Se b 0y gt S AR I R bnd v i R RIS A D VE Lt a il FAIVARAP A ESR R AR SR R g BR Uavy KT

+
Chapter 3 AM: Discovary in Mathamatics as Heuristc Search -33- b=
So AM will maintain a list of those legal tasks which have some gwod reasons tacked onto &
them, which justify wk: each task should be executed, why it is plausible. At least &
implicitly, AM has a numeric rating for each iask. The obvious control algorithm is to
choose the task v ith the highest rating, and work. on that one next. =
Assuming the tasks on this list are kept ordersd by this numeric rating, then AM can just i
repeatedly pluck the highest task and execute it. While it's executing, some new tasks might A
get proposed and added to the list of tasks. Reasons are kept tacked onto each task on this &
list, and form the basis for the numeric priority rating. RN
Give or take a few features, this notion of a "job-list” is the one which AM uses. It is also "j;
called an agenda.'? "A task on the agenda” is the same as "a job on the job-list" is the same £
as "a facet/concept pair which has been proposed” is the same as "an active node in the
search space”. Henceforth, I'll use the following ali interchangeably: task, facet/concept pair, %
node, job. This should break up the monotony '3, Z
The flavor of agenda-list used here is similar tc the control structure of HEARSAY-II 3
[Lesser/Fennell/Erman/Reddy 75]. Vast numbers of tasks are proposed and added to the g@
job-list. Occasionally, when some new data arrives, some task is repositioned =
$.3.2. Details of the Agenda scheme N
At each moment, AM has many plausible tasks (hundreds or even thousands) which have £3
been suggested for some good reason or other, but haven't been carried out yet. Each task =
is at the level of working on a certain facet of a certain concept: filling it in, checking it, etc. :
Recall that each task also has tacked onto it a list of symbolic reasons explaining why the -
5

task is worth doing.

K4
Thia

Ir. addition, a number (between 0 and 1000) is attached to each reason, representing some
absolute measure of the value of that reason (at the moment). One global formula'®

¥
3

-4
combines all the reasons’ values into a single priority value for the task as a whole. This vl
overall rating is taken to indicate how worthwhile it would be for AM to bother executing
that task, how interesting the task would probably turn out to be. The "intelligence” of W
AM'’s selection of task is thus seen to depend on this one formula. Yet experiments show g:g
that its precise form is not important. We conclude that the "intelligence” has been pushed)
down into the careful assigning of reasons (and their values) for each proposed task. -
33
12 Borrowed from Kaplan's term for the job-list prasent in KRL (see [Bobrow & Winograd 77]). For an earlier general -
N discussion of agendas, see [Knuth 68)
- 13 snd cover my sloppinass. Ssriously, thanks to English, sach of thess terms will conjure up » slightly different image: # %i
; "job" is something to do, s "node” is an item in » search space, "facet/concapt pair" reminds you of the 5
. format of » task -

g 1 Hars is that formula: Worth(J) « [ISQRT(SUM R.]| x [0.2xWorth(A) + 0.3xWorth(F) + 0.5xWorth(C)}, where J « job to be

:}: judged = (Act A, Facet F, Concept C), and {R;} are the ratings of the reasons supporting J. For the sample :?j

’i& job pictured in the box below, AsFillin, FsExamples, CeSets, {R.J»(100,100,200}. The formuls will be o

:,“:" repested -- and sxpluned —- in Section 4.2, on pags 40.

_-g",;s o
“)
=)
|

T T T L T R T T ST T T OO R T AN T T I VY I N IV I ST N T I T

Lol
Ay
-

na
E
E:.

(3

.
g

)
x

I

i;JJ'i

I YT T,

.
P

Chepter 3 AM: Discovery in Matheratics as Heuristic Search -34-

A typical entry on the agenda might look like this:

TASK: Fill-in examples of Sais

PRIORITY: 300

REASONS:
100: No known examples for Sets so far.
100: Failed to fillin examples of Set-union, for lack of examples of Setls
200: Focus of attention: AM recently workad on the concept of Set-union

Notice the similarity of this to the initial few lines wvhich AM types just after it selects a job
to work on.

The flow of control is simple: AM picks the task with the highest priority value, and tries to
execute it. As a side effect, new jobs occasionally get added to the agenda while the task is
being executed.

The global priority value of the task also indicates how much time and space this task
deserves. The sample task above might rate 20 cpu seconds, and 200 list cells. When either
of these resources is used up, AM terminates work on the task, and proceeds to pick a new
one. These two limits will be referred to in the sequel as “time/space quanta” which are
allccated to the chosen task. Whenever several techniques exist for satisfying some task, the
remaining time/space quanta are divided evenly among those alternatives; i.e, each method
is tried for a small time. This policy of parceling out time and space quanta is called
"activation energy” in [Hewitt 76] and called "resource-limited processes” in [(Norman &
Bobrow 75). In the case of filling in examples of sets, the space quantum (200 cells) will be
used up quickly (long before the 20 seconds expire).

There are two big questions now:

1. Exactly how is a task proposed and ranked?
How is a plausible new task first formulated?
How do the supporting reasons for the task get assigned?
How does each reason get assigned an absolute numeric rating?
Does a task’s priority value change? When and how?

2. How does AM execute a task, once it's cliosen?
Exactly what can be done during a task’s execution?

The next chapter will deal with both of these questions. A detailed discussion of difficulties
and limitations of these ideas can be found in Section 7.2, on page 156.

.
w
‘‘‘‘‘‘‘‘

B
R
»|
H
o
by
5.
‘
>
g
'
i
'
.
»
;
D
=
4
\
Iy
W
\
i
4
€
9]
-
i
f
{
7]
H
{
N
¥
H
i
s
L
]
i
£
!
R
»
b
a
J

g

AR !

gy

PR
»

N R TG

-~ %y

T A

R L

-

L v

ERNE W

—
H
y

‘i
* ”'A

A

-~
- LA

-
] .
¥y 4

Py——
O
i3

—e

.

3

7,

s
L g

~
i

O

b ——
Chapter 4 Heuristic Rules
e]

Assume that comehow AM has selected a particular task from the agenda — say "Fill=in
Examples of Primes”. What precisely does AM do, in order tu execute the task? How are
examples of primes filled in?

The answer can be compactly stated as follows:
"AM selects relevant heuristics, and executes them."

This really just splits our original question into two new ones: (i) How are the relevant
heuristizs selected, and (ii) What does it mean for heuristics to be executed (e.g., how does
executing a heuristic rule help to fill in examples of primes?).

These two topics (in reverse order) are the two major subjects of this chapter. Although
several examples of heuristics will be given, the complete list is relegated to Appendix 3. !

The first section explains what heuristic rules look like (their "syntax”, as it were). The next
three sections illustrate how they can be exescuted to achieve their desired results (their
"semantics”).

Section 4.5 explains where the rules are stored and how they are accessed at the appropriate
times.

Finally, the initial body of heuristics is analyzed. The informal know.edge they contain is

categorized and described. Unintentionally, the distribution of heuristics among the
concepts is quite nonhomogeneous; this too is described in Section 4.6.

4.1, Syntax of the Heurisiic

Let’s start by seeing what a heuristic rule looks like. In general (see [Davis & King 75) for
historical references to production rules), it will have the form

If <situational fluent>
Then <actions>

As an illustration, here is a heuristic rule, relevant when checking examples of anything:

! There they are condensed and phrased in English. The reader wishing to see examples of the heuristics ss they sctuslly
were coded in LISP should glance at Appendix 2.3.

o Y e

P

PRI T AR et Ao ot e ek o o i 0 0 08 B AR A S PIAR VAR A2 Al SRR R AR N AL S RA AR R LR L R RN A Rk
J

Chepter 4 AM: Diecovery in Mathematics as Heuristic Ssarch -36-

if the current task is fo Checi: Examples of any concept X,
and (Forsome Y) Y ic a genoralization of X,
and Y has at least 10 examples,
and all examples of Y are »'so examples of X,
Then print the following conjeclure: X is really no more specialized than Y,
and add it to the Examples facet of the concept named "Conjectures”,
and add the following task to the agenda: "Check examples of Y", for the reason: "Just
a8 Y was no more general than X, one-of Generalizations(Y) may turn out to
be no more general than Y", with a rating for that reason computed as the
average of: |[Examples(Generalizations(Y))|l, ||[Examples(Y)], and
Priority(Current task).

As with production rules, and fc¢ 3l grammatical rules, #~.h of AM’s heuristic rules has a
left-hand-side and a right-hand-side. On the left is a test to see whether the rule is
applicable, and on the right is a list of actions to take if the rule applies. The left-hand-side
will also be called the IF-part, the predicate, the preconditions, ieft side, or the situationai
fluent of the rule. The right-hand-side will sometimes be referred to as the THEN-part, the
response, the right side, or the actions part of the rule.

4.1.1 Syntax of the Left-hand Side

The situational fluent is a LISP predicate, a function which always returns True or False
(in LISP, it actually returns either the atom T or the atom NIL). This predicate may
investigate facets of any concept (often merely to see whether they are empty or not), use the
results of recent tests and behaviors (eg., to see how much cpu time AM spent trying to
work on a certain task), etc.

The left side is a conjunction of the form P1 A P2 A.. All the conjuncts, except the very
first one, are arbitrary LISP predicates. They are only constrained to obey two
commandments:
1. Be quick! (return either True or False in under 0.1 cpu seconds)
2. Have no side effects! (destroying or creating list structures or Lisp functions, resetting
variables)

Here are some sample conjuncts that might appear inside a left-hand side (but not as the
very first con junct):

* More than haif of the current task’s time quantum is already exhsusted,..

There are some known examples of Structures,..

* Some generalization of the current concept (the concept mentioned as part of the

3 current task) has an empty Examples facet,..

':_:-: * The space quantum of the current task is gone, but its time allocation is less than 10%
f::_.xj, used up,...

.;:%:j:‘ * A task recently selected had the form "Resiructure facet F of concept X", where F is
iﬂ any facet, and X is the current concept,...

o

.

.

1N

?_'_Fp:'--,‘

E®

........ LI Y'-"""""‘- r,wrr '-nv'{,r,r,zr N‘h”,'_,'_r"',', ‘.."J‘ u"‘_,".'

e AL A TR AT AR AT TR TRT N T R T e T e LT TR e e LW e e LT e e e e T . ek S bt el i

e R

I a0l 1%

']

Chepter 4 AM: Discovery m Mathematics as Heuristic Search -37- :
o

L‘-

* The yser has used this system at least once before,.. H

* It's Tuesday,.. 1

The very first conjunct of each left-hand side is special. Its syntax is highly constrained. It ;
specifies the domain of applicability of the rule, by naming a particular facet of a particular N
concept to which this rule is relevant. =
b

AM uses this first conjunct as a fast "pre-precondition”, so that the only rules whose left-)
hand sides get evaluated are already known to be somewhat relevant o the task at hand. In -
fact, AM physically attaches each rule to the facet and concept mentioned in its first 4
conjunct? This will be discussed in more detail in Section 4.5, "Gathering relevant g
heuristics”, This first conjunct will always be written out as follows, in this document 4
(where A, F, and C are specified explicitly): A
R

The current task (the one just selected from the agenda) is o' the form "Do action A ('

to the F facet of concept C" .

5.

This can be viewed as the "syntax” of the very first con junct on each rule’s left-hand side. N
Here are two typical examples of allowable first con juncts: 4
* The current task (the one last selected from the agenda) is of the form "Check the i‘
Domain/range facet of concept X", where X is any operation ,

* The current task is of the form "Fillin the examples facet of the Primes concept” g_
These are the only guidelines which the left-hand side of a heuristic rule must satisfy. Any 7
LISP predicate which satisfies these constraints is a syntactically valid left-hand side for a b

heuristic rule. It turned out later that this excessive freedom made it difficult for AM to
inspect and analyze and synthesize its own heuristics; such a need was not foreseen at the g
time AM was designed. L

s

Because of this freedom, there is not much more to say about the left-hand sides of rules.
As the reader encounters heuristics in the next few sections, he should notice the

.
«

(unfortunate) variety of conjuncts which may occur as part of their left-hand sides. g\

4.1.2. Syntax of the Right-hand Side £
"Running” the left-hand-side means evaluating the series of con joined little predicates there, \'
to see if they all return True. If so, we say that the rule "triggers”. In that case, the right- e
hand-side is “run”, which means executing all the actions specified there. A single heuristic .
rule may have a list of several actions as its right-hand-side. The actions are executed in "

order, and we then say the rule has finished running.

Only the right-hand-side of a heuristic rule is permitted to have side effects. The right side
of a rule is a series of little LISP functions, each of which is called an action.

2 Sometimes, | will mention where a certain rule is sttached; in that case, | can omit explicit mention of the first conjunct.
Converssly, if | inchude thet conjunct, | needn't tell you wher« the rule is stored. ’ ;

S ym A e AR TR R RL WL NL WL T I ST T e e W T e M T S R A TR TS AT T UNT TR LD U AT WA W S R T TR TR T
e Y W
Y

Chapter 4 AM: Discovary in Mathematics as Heuristic Search -38-

Semantically, each action performs some processing which is appropriate in some way to the
kinds of situations in which the left-hand-side would have triggered. The final value that
the action function returns is irrelevant.

Syntactically, there is only one constraint which each function or “action” must satisfy: Each
action has one of the following 3 side-effects, and no other side-effects:

1. It suggests a new task for the agenda.

2. It causes a new concept to be created.

3. It adds (or deletes) a certain entry to a particular facet of a particular concept.

To repeat: the right side of a rule contains a list of actions, each of which is one of the
above three types. A single rule might thus result in the creation of several new concepts,
the addition of many new tasks to the agenda, and the filling ia of some facets of some
already-existing concepts.

These three kinds of actions will now be discussed in the foilowing ihree sections.

4.2, Heuristics Suggest New Tasks
Thils section discusses the “croposing a new task” kind of action. {

Here is the basic idea in a nutshell: The left-hand-side of 2 rule triggers. Scattered among
the "thinge to do” in its right-hand-side are some sugyestions for future tasks.' These new
tasks are then simply added to the agenda list.

4.2.1. An Illustration: “Fill in Generalizations of Equality”

If a new task is suggested by a henristic rule, ther that rule reust specify how to assemble
the new task, how to get reusons fcr it, and how to 2valuate those reasons. For example, 1
here is a typical heuristic rule which progoses a new task to add ‘o the agenda. It says to s

generalize a predicate if it is very rarely® satisfied:

If the current fask was {Fili=in axsmples of X), t
and X is a pradicate, 9
end more than 106 iteme are known in the domain of X,
and st laast 10 cpu seconds were spant trying to randomly instantiate X,
and the ratio of successes/failures is both >0 and less than .05
Then add the foliowing task to the sgenda: (Fill-in generalizations of X), for the following
reason:

Gy g

[T

3 The most suspicious part of the situationa! fluent (the IF-part) is the number "05". Where did it come from? Hint: if all
humans had ¢ fingers, this would probably be 005 in base f. Seriously, one can change this value (to .01 or
to 25) with virtually no change irn AM's behsvior. This is the conclusion of experiment 3 (see Section
623A)M50ch empiricsl justification is one important resson for actually writing and running large programs
tike

L
T e

2o

-

S
AT NN

i

_e

P |

LI

- cw AN A N T R A B -
N T e T e A S
) 5 o

mﬁ-vrmwvwv‘--— A o PR M S R RS e A S S Sl

Chapter 4 AM: Discovary in Mathematics as Heuristic Search -39-

™Y is rarely sstisfied; o slightly less restrictive concept might be more interesting”.
This roasor's rating is computed as three times the ratio of nonexamples/examples
found.

Evep this is one full step above the actual LISP implementation, where "X is a predicate™
would be coded as "(MEMBER X (EXAMPLES PREDICATE))". The function EXAMPLES(X)
rummages about looking for already-existing examples of X. Also, the LISP code contains
information for normalizing all the numbers produced, so that they will lie in the range 0-
1G00.

Let’s examine an instance of where this rule was used. At some point, AM chese the task
"Fillin examples of List-equality”. One of the ways it filled in examples of this predicate was
to run it on pairs of randomly-chosen lists, and observe whether the result was True or

False®. Say that 244 random pairs of lists were tried, and only twice was this predicate
satisfied. Sometime Iater, the IF part of the above heuristic is examined. All the conditions
are met, so it "triggers". For example, the "ratio of successes to failures” is just 2/242, which
is clearly greater than zero and less than 0.05. So the right-hand-side (THEN-part) .of the
above rule is executed. The right-hand side initiates only one action: the task "Fillin
generalizations of List-equality” is added to the agenda, tagged with the reason "List-equality
is rarely satisfied; a slightly less restrictive concept might be more interesting”, and that
reason is assigned a numeric rating of 3x(242/2) = 363.

Notice that the heuristic rule above supplied a little function to compute the value of the

reason. That formula was: "three times the ratio of examples/nonexamples found".
Functions of this type, to compute the rating for a reason, satisfy the same constraints as the
left-hand-side did: the function must be very fast and it must have no side effects. The
"intelligence” that AM exhibits in selecting which task to work on ultimately depends on the
accuracy of these local rule evaluation formulae. Each one is so specialized that it is "easy”
for it to give a valid result; the range of situations it must ju.ge is quite narrow. Note that
these little formulae were hand-written, individually, by the author. AM wasn’t able to
create new little reason-rating formulae.

The reason-rating function is evaluated at the moment the job is suggested, and only the
numeric result is remembered, not the original function. In other words, we tack on a list of
reasons and associated numbers, for each job on the agenda. The agenda doesn’t maintain
copies of the reason-rating functions which gave those numbers. This simplification is used
merely to save the system some space and time.

Let's turn now from the reason-rating formulae to the reasons themselves. Each reason
supperting a newly-suggested job is simply an English sentence (an opaque string, a token).
AM cannot do much intelligent processing on these reasons. AM is not allowed to inspect
parts of it, parse it, transform it, etc. The most AM can do is compare two such tokens for
equality. Of course, it is riot to hard to imagine this capability extended to permit AM to

4 The True ones becams exsmples of List-equality, snd the pairs of lists which didn't satisfy this predicate became known as
non-sxsmples (faikures, fodles,.). A hauristic similer to this “random instantiation” ome is illustrated in
Section 4 4, on page 48

5 sctuality, this would be checked to ensure thet the result lies betwsen O and 1000.

PRI I B

" . . al -
Lt Dl e

-

" i

L W e 2t 5 el

oy

PRRLE Ll 1 e

R AT

e -

P AT T T T Y

Ta T

N S

| S S

Do

ty

I R N O

12

Sl RLeTal eIy RaTataTats”

1]
.

<1

x .
r‘l

P
.k,(-u:\‘“

RS Bl A D R R AR AR AT AL R DR Ve e L G LR L L e T U L MU e Ry P A R Tx T T R AT LW R T SR e T L TR e o TN TR e e

Chapter 4 AM: Discovary in Mathematics as Heuristic Search -40-

syntactically analyze such strings, or to trivially compute some sort of "difference” between

two given reasons.® Each reason is assumed to hive some semantic impact on the user, and
is kept around partly for that purpose.

Each reason will have a numeric rating (a number between 0 and 1000) assigned to it
locally, by the heuristic rule which proposed the task for that reason. One global formula
will then combine all the reasons’ ratings into one single priority value for the task.

4.2.2 The Ratings Game

In general, a task on the agenda list will have several reasons in support of it. Each reason
consists of an English phrase and a numeric rating. How can a task have more than one
reason? There are two contributing factors: (1) A single heuristic rule can have several
reasons in support of a job it suggests, and (ii) When a rule suggests a "new" task, that very
same task may already exist on the agenda, with quite distinct reasons tacked on there. In
that case, the new reason(s) are added to the already-known ones.

One globa! formula looks at all the ratings for the reasons, and combines them into a single
priority value for the task as a whole. Below is that formula, in all its gory detail:

Worth(J) = ||SQRT(SUM Riz)ll x [.2xWorth(A) + .3xWorth(F) +» 5xWorth(C)]

Where J = job to be judged = (Act A, Facel F, Concept C)
and {R;} are the ratings of the reasons supporting J.

For example, consider the job] = (Check examples of Primes). The act A would be
"Check", which has a numeric worth of 100. The facet F would be "Examples”, which has
a numeric worth of 700. The concept C would be "Primes”, which at the moment might
have Worth of 800. Say there were jour reasons, having values 200, 300, 200, and 500.
The double lines "||..I" indicate norinalization, which means that the final value of the
square-root must be between 0 and 1, which is done by dividing the result of the Square-
root by 1000 and then truncating to 1.0 if the result exceeds unity.

In this case, we first compute Sqrt(2002 + 3002 + 2002 4 5002) = Sqrt(420,000), which is
about 648. After normalization, this becomes 0.648. The expression in square brackets in

the formula’ is actually computed as the dot-product of two vectors®; in this case it is the
dot-product of (100 700 800) and (2 .3 .5), which yields 630. This is multiplied by the
normalized Square-root value, 0.648, and we end up with a final priority rating of 408.

The four reasons each have a fairly low priority, and the total priority of the task is

6 It is in fact trivial to IMAGINE it. Of course DOING it is quite 8 bit less trivial. In fact, it probably is the toughest of all the
"open ressarch problems” {'ll propose.

7 Namely, [0.2xWorth(A) « 0.3xWorth(F) + 0.5xWorth(C) }.

s Namely, <Worth(A), Worth(F), Worth(C)> and < .2, 3, .5 >. The dot-preduct of <al 82 #3.> and <bl b2 b3..> is defined
os (al xbl)+ (82 xb2)+ (a3 x b3)s..

oy P 4N Gl 7 | va ol

hos it |

o o s0)

phirtec ¢]

e

Tre rreneity

eI

I £ v

[ioadt t)

v

v

ro e as
Had e

-

Chapter 4 AM: Discovery in Mathematics as Heuristic Search -4]-

therefore not great. It is, however, higher than any single reason multiplied by 0.648. This
is because there are many distinct reasons supporting it. The global formula uniting these
reasons’ values does not simply take the largest of them (ignoring the rest), nor does it
simply add them up.

The above formula was intended originally as a first pass, an ad hoc guess, which I expected
I'd have to modify later. Since it has worked successfully, I have not messed with it. There
is no reason behind it, no justification for taking dot-products of vectors, etc. I concluded,
and recent experiments tend to confirm, that the particular form of the formula is
unimportant; only some general characteristics need be present:

1. The priority value of a task is a monotone increasing function of each of its reasons’
ratings. If a new supporting reason is found, the task's value is increased. The
better that new reason, the bigger the increase.

2. If an already-known supporting reason is re-proposed, the value of the task is not
increased (at least, it's not increased very much). Like humans, AM is fooled
whenever the same reason reappears in disguised form.

3. The priority of a task involving concept C should be a monotone increasing
function of the overall worth of C. Two similar tasks dealing with two different
concepts, each supported by the same list of reasons and reason ratings, should be
ordered by the worth of those two concepts.

I believe that all of these criteria are absolutely essential to good behavior of the system.
Several of the experiments discussed later bear on this question (See Section 6.2, page
125). Note that the messy formula given on the last page does incorporate all 3 of these
constraints. In addition, there are a few features of that formula which, while probably not
necessary or even desirable, the reader should be informed of explicitly:

1. The task’s value does not depend on the order in which the reasons were discovered.
This is not true psychologicelly of people, but it is a feature of the particular
priority-estimating formula initally selected.

2. Two reasons are either considered identical or unrelated. No attempt is made to
reduce the priority value because several of the reasons are overlapping
semantically or even just syntacticaly. This, too, is no doubt a mistake.

3. There is no need to keep around all the individual reasons’ rating numbers. The
addition of a new reason will demand only the knowledge of the number of other
reasons, and the old priority value of the task.

4. A task with no reasons gets an absolute zero rating. As new reasons are added, the
priority <!ywly increases toward an absolute maximum which is dependent upon
the overall worth of the concept and facet involved.

There is one topic of passing interest which should be covered here. Each possible Act A
(eg. Fillin, Check, Apply) and each possible facet F (e.g,, Examples, Definition, Name(s)) is
assigned a fixed numeric value (by hand, by the author). These values are used inside the
formula on the last page, where it says ‘Worth(A)' and ‘Worth(F)'. They are fairly resistant
to change, but certain orderings should be maintained for best results. E.g., "Examples”
should be rated higher than "Specializations”, or else AM may whirl away on a cycle of
specialization long after the concept has been constrained into vacuousness. As for the Acts,
their precise vaiues turned out to be even less important than the Facets'.

Now that we've seen how to compute this priority value for any given task, let’s not forget
what it's used for. The overall rating has two functions:

T T e T ML R E S e Atw oA " P e Ly -\A”v.v_'.-..vhi . LT ST S -

N e \'-'-“"'n"-':-.~ L N e ..,‘&_ . AR RN " A ~ %

T A ~..«\‘. L S [1 A S
N

\."v_,.,,-(‘[‘d v P

o

| AP

g
4

- P
LT o i & | AR

LY il RN

g
L

PR

T b Y

s

i LTI S (MO

N

h
<

Pl
:’0".

T

Y r o

LA

’f‘ r’.’-"‘xf 4‘

SRR

\ 'xj '-:‘.n,)

OIS

¥,
x

| Aol

e .
.
. >

L e e RO S I W R AL

oL N L e W N E e wtem oGt W TR T RRF ORI AT AT I R R AN R W AT R AAUR WX LW UW W

Chapter 4 AM: Discovery in Mathematics as Heuristic Search -42-

(i) The tasks on the agenda list are ordered by their ratings, and AM always chooses
the top task. Thus this rating determines which task to execute next. This is not an
ironclad policy: In reality, AM prints out the top few tasks, and the user has the
option of interrupting and directing AM to work on one of those other tasks
instead of the very top one.

(i3} Once a task is chosen, its overall rating determines how much time and space AM
will expend on it before quitting and moving on to a new task. The precise
formulae are unimportant. Roughly, the 0-1000 rating is divided by ten to
determine how much time to allow, in cpu seconds. The rating is divided by two to
determine how much space to allow, in list cells.

4.3, Heuristics Create New Concepts

Recall that a heuristic rule’s actions are of three types:
1. Suggest new tasks and add them to the agenda.
2. Create a new concept.
3. Fill in some entries for a facet of a concept.

This subsection discusses the second activity.

Here is the basic idea in a nutshell: Scattered among the "things to do" in the right-hand-
side of a rule are some requests to create specific new concepts. For each such request, the
heuristic rule must specify how to construct it. At least, the rule must specify ways of
assembling enough facets of the new concept to disambiguate it from all the other known
concepts. Typically, the rule will explain how to fill in the Definition of — or an Algorithm
for — the new concept. After executing these instructions, the new concept will "exist”, and
a few of its facets will be filled in, and a few new jobs will probably exist on the agenda,
indicating that AM might want to fill in certain other facets of this new concept in the near
future.

4.3.1. An Hlustration: Discovering Primes

Here is a heuristic rule that results in a new concept being created:

If the current task was {Fill-in examples of F),
and F is an operation from domain space A info range space B,
and more than 100 items are known examples of A (in the domain of F),
and more than 10 range items (in B) were found by applying F to theso domain items,

3 and at least | of these range items ic & distinguished member (esp: extremum)® of B,

o Then (for each such distinguished member 'b'¢B) create the following new concept:
o
! ._i

,"j [
E""}: 9 This s handled as follows: AM takes the given list of range rtems It eliminates any which are not interesting (according to
SO Interests(B)) or extreme (an entry on B.Exs-Bdy, the boundary exsmples of B). Finally, all those extreme
;.*{;‘-;‘I-, range items are moved to the front of this list. AM begins waking down this list, creating new concepts
n‘\;»:ﬂ, according to the rule Sooner or later, s timer (or a storage-space-waicher) will terminate this costly
{“.--‘,i, activity. Only the frontmost faw range items on the list will have generated new concepts. So "especic'ly”
::’L H reslly asst means priority consideration.

BERR N LA i R L AR N Fa R UL I RO TS N A it L e R VR T Ul i A R R R " S 2 S R TR N L VRV B Vg e MR AR L Ve LSl Gal o 6 W i R Shil Aa B Sk, dn f Fo i B 2s i |
!

[l

Chapter 4 AM: Discovery in Mathematics ss Heuristic Search -43- ;

Name: F-Inverse-of-b ;
Definition: X\ (x) (F(x)is b) X
Generalization: A

Worth: Average(Worth(A), Worth(F), Worth(B), Worth(b), |[Examples(B)|})
Interest: Any conjecture involving both this concept and either F or Inverse(F)

',,;A et

In case the user asks, the reason for doing this is: "Worthwhile investigating those A's which
have an unusual F-value, namely, those whose F-vaiue is b"
- The total amount of time to spend right now on all of these new concepls is computed as:
2-} Half the remaining cpu time in the current task's time quantum.
The total amount of space 1o spend right now on each of these new concepts is computed as:
The remaining space quantum for the current task.

[
«
my o e ey gy - -

v, l'_'(‘,‘»l
> e g

Dt

Although some examples of F-inverse-of-b might be easily obtained (or already known) at
the moment of its creation, the above rule doesn’t specifically tell AM how to fill in that
facet. The very last line of the heuristic indicates that a few cpu seconds may be spent on
just this sort of activity: filling in facets of the new concept which, though not explicitly
mentioned in the rule, are easy to fill in now. Any facet X which didn’t get filled in “right
now" wili probably cause a new task to be added to the agenda, of the form: "Fillin facet X of
concept F-inverse-of-b™. Eventually, AM would choose that task, and spend a large

Ty,
{.f"’ -t

e e g s g e\

o
3

Lo
P

1y

." quantum of time working on that single facet.
. Heuristics for the new concept are quite hard to fill in. This was one of AM’s most serious r
E:-Z limitations, in fact (see Chapter 7). Above, we see a trivial kind of "heuristic schema” or i
> template, which gets instantiated to provide one new, specialized heuristic about the new i
concept. That new heuristic tells how to judge the interestingness of any con jecture which }
= crops up involving this new concept. Whenever such conjectures get proposed, they are 5
; evaluated by calling on just such heuristics. 5
{
£ Now let's look at an instance of when this heuristic was used. At one point, AM was ¢
{- working on the task "Fill-in examples of Divisors-of". {
This heuristic’s IF-part was triggered because: Divisors-of is an operation (from Numbers to e
[! Sets of numbers), and far mor2 than 100 different numbers are known, and more than 10 5
L different sets of factors were found altogether, and some of them were distinguished by A
being extreme kinds of sets: empty-sets, singletons, doubietons and tripletons. f
I
i::j After its left side triggered, the right e of the heuristic rule was executed. Namely, four If:
new concepts were created immediately. Here is one of them: v

N o
L Db
1

o~

RMEGLR S TR EL LU S 0 bl B At R C L T B A o e VO R i A RN

N

It

Chapter 4 AM: Discovery in Mathematica as Heuristic Search -44-
] (]
Name: Divisors-of-Inverse=-of-Doubleton = |
Definition: X (x) (Divisors-of(x) is a Doubleton)
Generalization: Numbers £
Worth: 100 E
Interest: Any conjecture involving both this concept and either Divisors-of or Times
;‘é
i
This is a concept representing a certain class of numbers, in fact the numbers we call
primes. The heuristic resets a certain variable, so that in case the user interrupts and asks

Why?, AM informs him:

L e

"This concept was created because it’s worthwhile investigating those numbers which
have an extreme divisors-of value; in this case, numbers which have only two divisors".

o |

AM was willing to spend half the remaining quantum of time allotted to “Fillin examples of {
Divisors-of" on these four new concepts'®. 4
The heuristic rule is applicable to any operation, not just numeric ones. For example, when 7
AM was filling in examples of Set-Intersection, it was noticed that some pairs of sets were b
mapped into the extreme kind of set Empty-set. The above rule then had AM define the l
concept of Disjointness: pairs of sets having empty intersection. i
3
e
L=
4.3.2. The Theory of Creating New Concepts
All the heuristic rule must do is to fill in enough facets so that the new concept is 3y
disambiguated from all the others, so that it is "defined” clearly. Should AM pause and fill
in lots of facets at that time? After all, several pieces of information are trivial to obtain at .
this moment, but may be hard to reconstruct later (eg., the reason why C was created). On 4
the other hand, filling in anything without a good reason is a bad idea (it uses up time and £
space, and it won’t dazzle the user as a brilliant choice of activity).
\Q
i
So the universal motto of 4 M is to fill in facets of a new concept if — and only if — that g
filling-in activity will be miich easier at that moment than later on.
§
In almost all cases, the following facets'! will be specified explicitly in the heuristic rule, and 5
thus will get filled in rigit away: Definitions, Algorithms, Domain/range, Worth, plus a tie to
N
10 Some trivis! details. One-eighth of the remaining time is spent on sach of these 4 concepts: Numbers-with-O-divisors, u
Numbers-with- | -divisor, Numbers-with-2-divisors, Numbers-with-3-divisors. The original time/space limts
were in reality about 25 cpu seconds and 800 fist cells, and st the moment this heuristic was called, only {
about 10 seconds and 600 cells remsined, so e ¢. the concept Primes was allotted only 1.2 cpu seconds to »}
“get off the ground”. This wae no problem, se it used fer lese then thet. The hauristic ruls states that each =
of the four new concepts may use up the full remaining space asllocation (600 cells), and, e.g., Primes
neaded only s fraction of that initially. .
n The reader may wish to glance shead to Section 5.2, page 67 1o note the full range of facsts that sny concept may y
possess: what their names are, and the kind of information that is stored in each. E
g(:,
>
-

)

AL UL DA A R A S AR o

)

&

!\N'

&\‘
Chapter 4 AM: Discovary in Mathematics as Heuristic Search -45-
some related concept (e.g., if the new concept is a generallzatlon of Equality, then we can S
trivially fill in an entry on its Specializations facet: "Equality”) el
On the other hand, the following facets will not be trivial to fill in: Con jectures, Examples,]
Generalizations, Specializations, and Interestingness. For example, filling in the N
Specializations facet of a new concept may involve creating some new concepts; finding some o
entries for its Con jectures facet may involve a great deal of experimenting; finding some 24
Examples of it may involve twisting its definition around or searching. None of these is b
easier to do at time of creation than any other time, so it's deferred until some reason for '
doing it exists. r
For each such "time-consuming” facet F, of the new concept C, one new task gets added to “"
the agenda, of the form "Fill in eniries for facet F of concept C", with reasons of the form o
"Because C was just created,” and also "No entries exist so far on C.F"'2. Most of the tasks L
generated this way will have low priority rating. and may stay near the bottom of the b

A

agenda until/unless they are re-suggested for a new reason.

AT
.

...
—.”R"

Using the Primes example from the last subsection, we see that a new task like "Fillin
specializations of Primes” was suggested with a low rating, and "Fillin examples of Primes” was

e
2y

Ty
suggested with a mediocre'd rating. The ratings of these tasks increase later on, when the E]
same tasks are re-proposed for new reasons. Ry
-'\
&

4.3.3. Another llustration: Squaring a number o
hAY

ford

Let's take another simple (but not atypical) illustration of how new concepts get created. ~
(The reader may skip this subsection; it contains more details about how AM actually sets
up new concepts.) <
Assume that AM has recently discovered the concept of multiplication, which it calls “
"TIMES,” and AM decides that it is very interesting. A heuristic rule exists which says:** -
=
If a newly-interesting operation F(x,y) takes a pair of N's as arguments, L’B

Then create a new concept, a specialization of F, called F-itself, taking just one N as %
argumaent, defined as F(x,x), with initial worth Werth(F), ."

: -l

"1 the case of F « TIMES, we see that F takes a pair of numbers as its arguments, so the bl
heuristic rule would have AM create a new concept called TIMES.Itself, defined as TIMES- —
12 C.F is an abbrevistion for facet F of concept C ::
13 Not ss low 8 rating as the task just mentioned Why? Each possible facet has » worth rating which is fixed once and for -\
all As an illustration, we mention that the facet Examples is rated much higher than Specializations. Why is)

this? Because looking for exsmples of s concept is often & good expenditure of timse, producing the raw

data on which empiricsl induction thrives. On the other hand, sach specistization of the new concept C would e
iself be a brand new concept. So filling in entries for the Spacializations facet would be & very explosive N

process. Lo

14 By glancing back st the Primes example, two subsections ago, page 42, you cen imagine what this rule actually looked ':
like There s nothing to be gained by stretching it out in sli its glory, hence Pve taken the liberty At)

condensing it, inserting pronouns, eic. i

v
i

1

3

e
T S
“Pl ’l"'.! l' ’I ALY

T

0N

Chapter 4 AM: Discovery in Mathematics as Heuristic Search -46-

Itself(x) * TIMES(x,x). That is, create the new concept which is the operation of squaring a
number.

What would AM do in this situation? The global list of concepts would be enlarged to
include the new atom "TIMES-Itself”, and the facets of this new concept would begin to be
filled in. The following facets would get filled in almost instantly:

NAME: TIMES-Itseif

DEFINITIONS:
ORIGIN: Alx,y) [TIMES.DEFN(x,x,y)]

ALGORITHMS: A(x) {TIMES.ALG{x,x)]
DOMAIN/RANGE: Number - Number
GENERALIZATIONS: TIMES

WORTH: 600

The name, definition, domain/range, generalizations, and worth are specified explicitly by
the heuristic rule.

The fambda expression stored under the definition facet is an executable LISP predicate,
which accepts two arguments and then tests them to see whether the second one is equal to
TIMES-Itself of the first argument. It performs this test by calling upon the predicate
stored under the definition facet of the TIMES concept. Thus TIM ES.Itself.Defn(4,16) will
call on TIMES.Defn(4,4,16), and return whatever value that predicate returns (in this case,
it returns True, since 4x4 does equal 16).

A trivial transformation of this definition provides an algorithm for computing this
operation. The algorithm says to call on the Algorithms facet of the concept TIMES. Thus
TIMES-Itself.Alg(4) is computed by calling on TIMES.Alg(4,4) and returning that value
(namely, 16).

The worth of TIMES was 600 at the moment TIMES-Itself was created, and this becomes
the worth of TIMES-Itself.

TIMES-Itself is by definition a specialization of TIMES, so the SPECIALIZATIONS facet
of TIMES is incremented to point to this new concept. Likewise, the
GENERALIZATIONS facet of TIMES-Itself points to TIMES.

Note how easy it was to fill in these facets now, but how difficult it might be later on, "out of
context”. By way of contrast, the task of, eg, filling in Specializations of TIMES-Itself will
be no harder later on than it is right now, so we may as well defer it until there’s a good

''''''''''''''''''

SR m e ec e e W R A VAT R AT AT R N TR a N N NN oA W O ks e e Wy wt o ar e SRE RTY AR Cha SRt =i

L R

i 40} 1y

T X AN

Mo Mg d

Chepter 4 AM: Discovary in Mathematics as Heuristic Search -47.

reason for it. This task will probably be added to the agenda with so low a priority that
AM will never get around to it, unless some new reasons for it emerge.

The task "Fill=in examples of TIMES-liself" is probably worthwhile doing soon, but again it
won't be any harder to do at a later time than it is right now. So it is not done at the
moment; rather, it is added to the agenda (with a fairly high priority).

Incidentally, the reader may be interested to know that the r.ext few tasks AM selected (in
reality) were to create the inverse of this operation (ie, integer square-root), and then to
create a new kind of number, the ones which can be produced by squaring (i.e, perfect
squares). Perfect squares were deemed worth having around because Integer-square-root is
defined preciseiy on that set of integers.

4.4. Heuristics Fill in Entries for a Specific Facet

The last two subsections dealt with how a heuristic rule is able to propose new tasks and
create new concepts. This section will illustrate how a rule can find some entries for a given
facet of a specific concept.

Typically, the facet/concept involved will be the one mentioned in the current task which
was chosen from the agenda. If the task "Fillin Examples of Set-union” were plucked from the
agenda, then the “relevant” heuristics would be those useful for filling in entries for the
Examples facet of the Set-union concept.

There is an important class of exceptions to this, however: conjectures. Some rules will
specify plausible relationships to look for; if found, they constitute a new con jecture. For
example, the reader will see in Section 4.4.4, on page 52, that the unique factorization
theorem is proposed merely as an observation of the form "“The range of operation F is not
just B but rather the more specialized concept BB". The particular case of the unique
factorization theorem leads to this statement: "The range of Prime-factorings'® is not just
‘Sets’ but rather ‘Singletons’.” In fact, this whole con jecture is recorded by merely replacing
<Number-Set> by <Number-Singleton> as an entry on the Domain/range facet of the
concept Prime-factorings.

The reader may be surprised to learn that the only kind of conjecture AM can make is of

that form (add a new entry to some facet of some concept)'®. Apparently, this is sufficient to
plausibly notice and state most interesting con jectures. Good definition,s make the sta'ements

of theorems short and simple.'”

15 Prime-factorings(x), siso called Prime-times(x), is the set of all bags-of-primes whose product is x; ie, all ways of
factoring x into primes.

16 That's why "conjecturing” s classified under the "sdd-an-entry” type of heuristic rulas action.

i Exercise for the doubting reader: State the unique factorization theorem in purely set-theoretic terms. Suriously, one
important way that definitions are invented is to see what buky construct in & theorem can be collapsed into
» single term. Typically one hopes that the term will be used sisewhers, of course.

R AN e e A va i Mk Ny |

T
‘l.o'

AL

.,

X,

y

LA i rc s

b

.._H_,

AT .“‘r
)

P s W ||

<

oy
e

s T
U

ALy

&

«
7
*5

g

ey 4 T
YK

At T, T ‘n’
PRSP

T

[Y L o
Tl
RN i

¥
L.
PR3P

_—y
oA,
2

f
A

TR

iy

.

™
B
‘! .

I _r-e
)‘ } .l l‘
'L # .D

T
A

...
]
B ri
4 % 1

»
o« s

e e s
Dt
. €,

E Y
o

Chapter 4 AM: Discovery in Mathematics as Heuristic Search -48-

We'll take these two kinds of “filling in entries” one at a time: first the standard "find an
entry for the facet of the concept mentioned in the current task”, followed by the interesting
but rarer activity of "locking for a con jecture”.

4.4.1. An Illustration: "Fill in Examples of Set-union"

Recall that a task is typically of the form "Fill in facet F of concept C". How can exzcuting
relevant heuristic rules satisfy such a task? This subsection illustrates how a heuristic rule
might be executed to find some entries for the facet designated by the current task.

A typical heuristic, attached tn the concept Activity, says:

If the current task is o fill in examples of the activityl8 F,
One way to get them is to run F on randomly chosen examples of the domain of F.

Of course, in the LISP implementation, this situation-action rule is not coded quite so
neatly. it would be more faithfully translated as follows:

i CURRENT-TASK matches (FILLIN EXAMPLES F«anything)),
and F isa Activity,
Then carry out the following procedure:
1. Find the domain of F, and call it D;
2. Find examples of D, and call them E;
3. Find an algorithm to compute F, and call it A;
4. Repestediy:
4a. Choose any member of E, and call it EI.
4b. Run A on El, and call the result X,
4¢. Check whether <EI X> satisties the definition of F.
Ad. It so, then add <E1 ~ X> to the Examples facet of F.
4e. If not, then add <EI = X> {o the Non-examples facet of F.

Let's take a particular instance where this rule would be useful. Say the current task is "Fillin
examples of Set-union”. The left-hand-side of the rule is salsfied, so the right-hand-side is
run.

Step (1) says to locate the domain of Set-union. The facet labelled Domain/Range, on the
Set-union concept, contains the entry (SET SET - SET), which indicates that the domain is
a pair of sets. That is, Set-union is an operation which accepts (as its arguments) a pair of
sets, and returns (as its value) some new set.

Since the domain elements are sets, step (2) says to locate examples of sets. The facet
iabelled Examples, on t..e Sets concept, points to a list of about 30 different sets. This
includes {Z}, {A,B,C,D,E}, {}, {A.{{B}}}...

Step (3) involves nothing more than accessing some randomly-chosen entry on the
Algorithms facet of Set-union. One such entry is a recursive LISP function of two
arguments, which halts when the first argument is the empty set, and otherwise pulls an

18 "Activity” is 8 general concapt which inchuides operations, predicates, relations, functions, stc

:
V
T e T TS AR e

. . -
''''''

%

~
Lt

P2

bl 2 et

e

e |

g

Wy

Sa03

£

3

o

-y~
.

1

[

o

-
C3

T L L e L LT LA T T

Chapter 4 AM: Discovary in Mathematics as Heuristic Search -49-

element out of that set and SET-INSERT's it into the second argument, and then recurses
on the new values of the two sets. For convenience, we'll refer to this algorithm as UNION.

We then enter the loop of Step (4). Step (4a) has us choose one pair of our examples of
sets, say the first two {Z} and {A,B,C,D,E}. Step (4b) has us run UNION on these two sets.
The result is {A,B,CD,EZ}. Step (4c) has us grab an entry from the Definitions facet of
Set-union, and run it. A typical definition is this formal one:

(A (S1 52 83)
(AND
(For all x in S1, x is in $3)
(For all x in $2, x is in §3)
(For all x in $3, x is in S1 or x is in S$2)

)
))

It is run on the three arguments S1={Z}, S2={A,B,C,D,E}, $3={A ,B,C,D,E,Z}. Since it returns
"True", we proceed to Step (4d). The construct <{Z}, {A,B,C)D,E} » {A,B,C,D,E,Z}> is added
to the Examples facet of Set-union.

At this stage, control returns to the beginning of the Step (4) loop. A new pair of sets is
chosen, and so on.

But when would this loop stop? Recall that each task has a time and a space allotment
(based on its priority value). If there are many different rules all claiming to be relevant to
the current task, then each one is allocated a small fraction of those time/space quanta.
When either of these resources is exhausted, AM would break away at a "clean” point (just
after finishing a cycle of the Step (4) loop) and would m on to a new heuristic rule for
filling in examples of Set-union.

This concludes the demonstration that a heuristic rule really can be executed to produce the
kinds of entities requested by the current task.

4.4.2. Heurjstics Propose New Con jectures

We saw in the sample excerpt (Chapter 2) that AM occasionaliy notices some unexpected
relationship, and formulates it into a precise con jecture. Below is an example of how this is

done. As you might guess from the placement of this subsection,'® the mechanis 13 our
old friend the heuristic rule which fills in entries for certain facets.

In fact, a con jecture evolves through four stages:
1. A heuristic rule looks for a particular kind of relationship. This will typically be of
the form "X is a Generalization of Y™, or "X is an example of Y", or "X is the
same as Y", or "F1.Defn(X,Y)" where F1 is an active concept AM knows about, or

19

or recel from the onening remarks of Section 4.4

-

LXT LS ot < Y

S A

Pl eas’ L

¥ 3 e e

bl S S 4

| Rl e St

L I i Rt

T

| Gttt

(R N 1

L LIPS

R |

PP LYY e s

5

LA

Lat . T ? "4
! *
AN

Chapter 4 AM: Discovery iz Mathamatics as Heuristic Search -50-

"F 1.Defn(Y,X)"%.

2. Once found, the relationship is checked, using supporting contacts. A great deal of
empirical evidence must favor it, and any contradictory evidence must be
“explained away" somehow.

3. Now it is believed, and AM prints it out to the user. It is added as a new entry to
the Conjecs facet of both concepts X and Y. It is also added as an entry to the
Examples facet of the Con jecture concept.

4. Eventually, AM will get around to the task "Check Examples of Conjecture”, or to the
task "Check Conjecs of X". If AM had any concepts for proving con jectures, they
would then be invoked. In the current LISP implementation, these are absent.
Nevertheless, several "checks” are performed: (i) see if any new empirical evidence
(pro or con) has appeared recently; (ii) see if this conjecture can be strengthened;
(iit) check it for extreme cases, and modify it if necessary; (iv) Modify the worth
ratings of the concepts involved in the con jecture.

The left-hand-side of such a heuristic rule will be longer and more complex than most other
kinds, but the basic activities of the right-hand-side will still be filling in an entry for a
particular facet.

The entries filled in will include: (i) a new example of Con jectures, (if) a new entry for the
Con jec facet of each concept involved in the con jecture, (iii) if we're claiming that concept
X is a generalization of concept Y, then "X" would be added to the Generalizations facet of
Y, and "Y" added to the Specializations facet of X, (iv) if X is an Example of Y, "X" is
added to the Examples facet of Y, and "Y" is added to the ISA facet of X.

The right-hand-side may also involve adding new tasks to the agenda, creating new
concepts, and modifying entries of particular facets of particular concepts. As is true of all
heuristic rules, both sides of this type of conjecture-perceiving rule may run any little
functions they want to: any functions which are quick and have no side effects (e.g.,
FORALL tests, PRINT functions, accesses to a specified facet of some concept).

4.4.8. An Tiiustration: "All primes except 2 are odd”

As an illustration, here is a heuristic rule, relevant when checking examples of any concept:

20 hese lest two say that F1(X)sY, and that F 1 (Y)eX, respectively.

P R . S e R ET T Tt thT TR M TNk T ANt e

Lt Al AR R S A N e ab A A R A A £ el A ST ol ol B R Al N bl i b B S B i i B Sl ok 2l R Vol oSl S

4

i

Chapter 4 AM: Discovery in Mathematics s Heuristic Search -51- :
t

If the current task is to Check Examples of X, |

and (Forsome Y) Y is a generalization of X, ¢

and Y has at least 10 examples, \

and all examples of Y (ignoring boundary cases) sre also examples of X, .

Then print the following conjecture: X is really no more specialized than Y, :

and add it to the Examples facet of Conjectures, .

and if the user asks, inform him that the evidence for this was that all |[Examples(Y)]| Y's -

(ignoring boundary examples of Y's) turned out to be X's as well, b

ard Check the truth of this conjecture on boundary examples of Y,)

and add "X" to tha Generalizations facet of Y, "

and add "Y" to the Specializatinns facet of X, .

and (if there is an entry in the Generalizations facet of Y) add the following task to the '

agenda "Check examples of Y", for the reason: “Just as Y was no more)

general than X, one-of Generalizstions(Y) may turn out to be no more Iy

general than Y, with a rating for that reason computed as: ﬁ
0.4x||Examples(Generalizations(Y)))] + .

0.3x||Examples(Y)]] ¢ .

0.3xPriority(Current task). N

Let's take a particular instance where this rule would be useful. Say the current task is :
“Check examples of Odd-primes”. The left-hand-side of the rule is run, and is satisfied when E

the generalization Y is the concept "Primes”. Let’s see why this is satisfied.

One of entries of the Generalization facet of Odd-primes is "Primes”. AM grabs hold of
the 30 examples of primes (located on the Examples facet of Primes), and removes the ones
which are tagged as boundary examples ("2" and "3"). A definition of Odd-prime numbers
is obtained (Definitions facet of Odd-primes), and it is run on each remaining example of
primes (5, 7, 11, 13, 17, ..). Sure enough, they ail satisfy the definition. So all primes
(ignoring boundary cases) appear to be odd. The left-hand-side of the rule is satisfied.

N s

g .

At this point, the user sees a message of the form "Odd-primes is really no more specialized
than Primes”. If he interrupts and asks about it, he is told that the evidence for this was
that all 30 primes (ignoring boundary examples of primes) turned out to be Odd-primes.

P Y fimd Dok Py]

X ¥

Of the boundary e:.amples (the numbers 2 and 3), only the integer "2" fails to be an odd-
prime, so the the user is notified of the finalized con jecture: "All primes (other than 2') are
also odd-primes™. Thnis is added as an entry on the Examples facet of the concept named
‘Con jectures.’

Before beginning all this, the Generalizations facet of Odd-primes pointed to Primes. Now,
this rule has us add "Primes” as an entry on the Specializations facet of Odd-primes. Thus
Primes is both a generalization and a specialization of Odd-primes (to within a single stray
exception), and AM will be able to treat these two concepts as if they were merged together.
They are still kept separate, however, in case AM ever needs to know precisely what the

difference between them is, or in case later evidence shows the con jecture to be f alse?!.

SN TS S Ty ey vy

i L2 Taf i)

7.

2l When space is axhsusted, one emergency measure AM takes is to destructively coalesce a pair of concepts XY where X
is both a ganeralization of and & specishization of Y, even if there are 2 couple "boundary” exceptions

R I et

Es

x1

AT

RS |

Chapter 4 AM: Discovery in Mathematics as Heuristic Search -52-

The final action of the right-hand-side of this rule is to propose 2 new task (if there exist
some generalizations of the concept Y, which in our case is "Primes"). So AM accesses the
Generalizations facet of Primes, which is "(Numbers)". A new task is therefore added to the
agenda: “"Check examplies of Primes”, with an associated reason: " Just as Primes was no more
general than Odd-primes, so Numbers may turn out to be no more general than Primes"”.
The reason is rated according to the formula given in the rule; say it gets the value 500.

To make this example a little more interesting, let's suppose that the task "Check examples of
Primes” already existed on the agenda, but for the reason "Many examples of Primes have
been found, but never checked”, with a rating for the reason of 100, and for the task as a
whole of 200. The global task-rating formula then assigns the task a new overall priority of
600, because of the new, fairly good reason supporting it.

When that task is eventually chosen, the heuristic rule pictured above (at the beginning of
this subsection) will trigger and wili be run again, with XePrimes and Y=Numbers. That is,
AM wiil be considering whether (almost) all numbers are primes. The left-hand-side of the
heuristic rule wiii quickly fail, since, eg, "6" is an example of Numbers which does not
satisfy the definition of Primes.

4.4.4. Another illustration: Discovering Unique Factorization

Below is a heuristic rule which is a key agent in the process of “noticing” the fundamental

theorem of arithmetic?®. (The reader may skip this subsection; it contains more details
about how AM actually proposed con jectures).

If F(a) is unexpectedly a B,
Then maybe (Vx) F(x) is a B.

Below, the same rule is given in more detail. The first conjunct on the IF-par. of the
heuristic rule indicates that it's relevant to checking examples of any given operation F. A
typical example is selected at random, say F(x)=y. Then y is examined, to see if it satisfies
any more stringent properties than those specified in the Domain/range facet of F. That is,
the Domain/range facet of F contains an entry of the form A-B; so if x is an A, then all we
are guaranteed about y is that it is an example of a B. But now, this heuristic is asking if y
isn't really an example of a much more specializec: concept than B. If it is (say it’s an
example of a BB), then the rest of the examples of F are examined to see if they too satisfy
this same property. If all examples appear to map from domain set A into range set BB
(where BB is much more restricted than the set B specified originally in the Domain/range
facet of F), then a new con jecture is made: the domain/range of F is really A»BB, not A-B.
Here is that rule, in crisper notation:

22 The unique factorization conjecture any positive integer n can be represented as the product of prime numbers in
precisely one way (to within reorderings of those prime factors) Thue 28 « 2x2x7, and we don't
distinguish between the factorization (2 2 7) and (2 7 2).

o
\\:
[~

anw-

T
Hot

.

1

O,
Y
RS

,_
‘:’Yc'
s

| BN

e
e

LR 3]

\
v

T

LS

..,_
R

o A e -
EoL A LA S B R R) - . e = . .
- b — b I " . LI - e A% AT i

| S A N R N LR Sh S A a0 6 AP A L e I 40 ot S e it A

Chapter 4 AM: Discovery in Mathematics as Heuristic Search -63-

if the current task is to Chack Examples of the operation F,
and F is an operation from domain A into range B,
and F has at least 10 examplas,
and a typical one of these examples is "<x=y>" (so x¢A and y¢B),
and (Forsome Specializalion BB of B), y is a BB.
and all examples of F (ignoring boundary cases) turn out to be BB's,
Then print the following conjecture: “F(a) is always a BB, not simply a B",
and add it to the Examples facet of Conjectures concept,
and add "<AA = BB>" as a new eniry to the Domain/range facet of F, replacing
N(-’B>",
and if the user asks, inform him that the evidence for this was that all J|Examples(F)||
examples of F (ignoring boundary examples) turned out {2 be BB's,
and check the truth of this conjecture by running F on boundary examples of A,

Let’s see how this rule was used in one instance. In Task 79 in the sample excerpt in
Chapter 2, AM defined the concept Prime-times, which was a function transforming any
number n into the set of all factorizations of n into primes. For example, Prime-
times(12)={(2 2 3)}, Prime-times(13)={(13)}]. The domain of Fx=Prime-times was the concept
Numbers. The range was Sets. More piecisely, the range was Sets-of-Bags-of-Numbers, but
AM didn't know that concept at that time.

The above heuristic rule was applicable. F was Prime-times, A was Numbers, and B was
Sets. There were far more than 10 known examples of Prime-times in action. A typical
example was this one: <21 -+ {(3,7)}>. The rule now asked that {(3,7)} be fed to each
specialization of Sets, to see if it satisfied any of their definitions. The Specializations facet
of Sets was acccessed, and each concept pointed to was run (its definition was run) on the
argument "{(3,7)}". It turned out that Singleton and Set-of-doubletons were the only two
specializations of Sets satisfied by this example. At this moment, AM had narrowed down
the potential con jectures to these two:

1. Prime-times(x is always a singleton set.
2. Prime-times(x) is always a set of doubletons.

Each example of Prime-times was examined, until one was found to refute each con jecture
(for example, <8-{(2,2,2)}> destroys conjecture 2). But no example was able to disprove
con jecture 1. So the heuristic rule plunged forward, and printed out to the user "A new
con jecture: Prime-times(n) is always a singleton-set, not simply a set”. The entry
<Numbers-Singleton-sets> was added to the Domain/range facet of Prime-times, replacing
the old entry <Numbers-sSets>.

Let's digress for a moment to discuss the robustness of the system. What if this heuristic
were to be excised? Could AM still propose unique factorization? The answer is yes, there
are other ways to notice it. If AM has the concept of a Function?, then a heuristic rule like
the one in the previous subsection (page 50) will cause AM to ask if Prime-times is not
merely a relation, but also a Function.

s A single-valued relstion That is, for any domain element x, F(x) contains pr isely one mcmbor R is never empty (ie,
undefined), nor is it ever larger than a singleton (ie, multiple-valuved),

P B B I s

R..ﬂ"w; P
g
P VN '

R S T

TR TS
- 2 ;\a“

.
22

P
I

X

Ll o |
LI}
R

VTN

v
L

".'"}4.
' .
."‘[J

™
] l"‘"l’
' R
Vol e

T

Ak N
s
A

N

XA
r.ll'l'l
M B

LN

Chapter 4 AM: Discovery in Mathematics as Heuristic Search -54-

The past few sections should have convinced the reader that isolated heuristic rules really
can do all kinds of things: propose new tasks, create new concepts, fill in entries for specific
facets (goal-driven), and look for conjectures (data-driven emprrical induction). The rules
appear fairly general®® — though that must be later verified empirically. They are
redundant in a pleasing way: some of the most "important”, well-known, and interesting
con jectures can (apparently) be derived in many ways. Again, we'll have to check this
experimentally.

4.5, Gathering Relevant Heuristics

Each concept has facets which contain some heuristics. Some of these are for filling in,

some for checking, some for deciding interestingness2°, some for noticing new con jectures,
etc.

AM contains hundreds of these heuristics. In order to save time (and to make AM appear
more rational), each heuristic should only be tried in situations where it might apply, where
it makes sense.

How is AM able to zero in on the relevant heuristic rules, once a task has been selected
frorn the agenda?

4.5.1. Domain of Applicability

The secret is that each heuristic rule is stored somewhere a propos to its "domain of

applicability”. This "proper place” is determined by the first conjunct in the left-hand side
of the rule.

What does this mean? Consider this heuristic:

If the current task is to fill in examples of the operation F, <=

and some examples of the domain of F are known,
Then one way to get examples of F is to run F on randomly chosen examples of the domain
of F.

This is a reasonable thing to try — but only in certain situations. Should it be tried when
the current task is to check the Worth facet of the Sets concept? No, it would be irrational.
Of course, even if it were tried then, the left-hand-side would fail very quickly. Yet some
cpu time would have been used, and if the user were watching, his opinion of AM would

4 ie, applicable 1n many situstions It would be worse than useless if 8 rule existed which could lead to a single discovery
ke “Fibonacct series” but never lead to any other discoveries. The reasons for demanding generalily are
not oaly “fairness”, but the ‘nsights which occur when 1t is observed that several disparate concepts were
8!l motivated by the same genera! principle {(eg, "looking for the inverse image of extrems™)

2 The resder has already seen several hcuristics useful for filing in and checking facets; hers is one for judging
interastingness: an entry on the Interest facet of Compose says thit s composition AoB 1s more interesting
if the range of B squals the domain of A, than if if they only partially overlap.

m:".

'y

1

L

U
PRI

o
NN

w I RLT RO RS LR A A AT AL AT A PO AT AT R A AL I T AT T R R R A A S T AR T A T T R R T A R AR T R L s R R R A A AT R AT R R AR S AN YN

Chapter 4 AM: Discovery in Mathematics as Heuristic Search -55-

decrease.?®

That particular heuristic has a precise domain of applicability: AM should use it whenever
the current task is to fill in examples of an operation, and only in those kinds of situations.

The key observation is that a heuristic typically applies to all examples of a particular
concept C. In ‘he case we were considering, C=Operation. Intuitively, we'd like to tack that
heuristic onto the Examples facet of the concept Operation, so it would only "come to mind”
in appropriate situations. This is in fact precisely where the heuristic rule is stored.

Initially, the author identified the proper concept C and facet F for each heuristic H which

AM possessed, and tacked H onto C.F?7. This was all preparation, completed long before
AM started up. Each heuristic was tacked onto the facet which uniquely indicates its
domain of applicability. The first conjunct of the IF-part of each heuristic indicates where
it is stored and where it is applicable. Notice the little arrow (<=) pointing to that con junct

above.28,

While AM is running, it will choose a task dealing with, say, facet F of concept C. AM
must quickly locate the heuristic rules which are relevant to satisfying that chosen task.
AM simply locates all concepts which claim C as an example. If the current task were
"Check the Domain/range of UnionoUnion"?%, then C would be UnionoUnion. Which concepts
claim C as an example? They include Compose-with-Self, Composition, Operation, Active,
Any-concept, and Anything. AM then collects the heuristics tacked onto facet F (in this
case, F is Domain/range) of each of those concepts. All such heuristics will be relevant. In
the current case, some relevant heuristics might be garnered from the Domain/range facet of
the concept Operation. Any heuristic which can deal with the Domain/range facet of any
operation can certainly deal with UnionoUnion’s Domain/range. A typical rule on

Operation.Domain/range.Check® would be this one:

If a Dom/ran entry of F is of the form <D D D..D = R>, where R is a generalization of
Then test wi'w!hcr the range might not be simply D.

Suppose one entry on UnionoUnion.Dom/ran was ‘<Nonempty-sets Nonempty-sets
Nonempty-sets » Sets>’. Then this last heuristic rule would be relevant, and would have
AM ask the plausible question: Is the union of three nonempty sets always nonempty? The

26 This nofion of worrying sbout 3 human user w0 is observing AM run in real time may appear to be quite language- and
machine-dependent An increass in speed of a couple orders of magnitude would radically slter the
qualitative appearance of AM. In Chapter 7, however, the reader will grasp how difficult it 1s to
objectively rate a system Ike AM For that reason, all measures of judgment must be respected. Also, to
the actual human being using the system this reslly is one of the most important measures.

a Recall that C.F is an sbbreviation for facet F of concept C

28 In the LISP implementation, these first conjuncts are omitted, since the placement of a heuristic serves the same
purposs ae if it had some “pre-preconditions™ (ke thess first conjuncts) to determine relevance quickly.

22 This operation is defined a3 UnionoUnion(y,z) « (x U y) Uz. it accepts 3 sats as arguments, and returns a new
set as its value.
30

the ‘Check’ subfacut of the '‘Domain/range’ facet of the 'Operation’ concept.

S VR S

P

~yw

A 2 T SR

¥z 3}

3 SN, TR U YA

- -

iy
! P

T'
i
:

w

]

At
"

“ l. " ’

A

T
" 5y

P S

7

AxX,
F R
v .

L

i e el ara g ',\-ll.'u'
i
a4 . ,l
‘F_ L. 14

i
T
-

o

bee

o
oo

Rt by 4y

G TR

Chapter 4 AM: Discovery in Mathematics as Heuristic Search -56-

answer is affirmative, empirically, so AM modifies that Domain/range entry for
UnionoUnion. AM would ask the same question for Intersectolntersect. Although the
answer then would be ‘No¢', it's still a rational inquiry. If AM called on this heuristic rule
when the current task was "Fillin spacializations of Bags", it would clearly be an irrational act.
The domain of applicability of the rule is clear, and is precisely fitted to the slot where the
rule is stored (tacked onto Operation.Demain/range).

To recap the basic idea: when dealing with a task "Do act A on facet F of concept C", AM
must locaie aii the concepts X claiming C as an example. AM then gathers the heuristics
tacked onto X.F.A, for each such general concept X. All of them — and only they — are
relevant to satisfying that task.

So the whole problem of locating relevant heuristics has been reduced to the problem of
efficiently finding all concepts of which C is an example (for a given concept C). This
process is called "rippling away from C in the ISA direction”, and forms the sub ject of the
next subsection.

4.5.2. Ripplin
Given a concept C, how can AM find all the concepts which claim C as an example?

The most obvious scheme is to store this information explicitly. So the Examples facet of C
would point to all known examples of C, and the Isa facet of C would point to all known
concepts claiming C as one of their examples. Why not just do this? Because one can
substitute a modest amount of processing time (via chasing links around) for the vast
amount of storage space that would be needed to have "everything point to everything”.

Each facet contains only enough pointers so that the entire graph of Exs/Isa and Spec/Genl
links could be reconstructed if needed. Since "Genl"®! is a transitive relation, AM can
compute that Numbers is a generalization of Mersenne-primes, if the facet Mersenne-
primes.Genl contains the entry "Odd-primes”, and Odd-primes.Gen! contains a pointer to
"Primes", and Primes.Genl points to "Numbers". This kind of "rippling” activity is used to
efficiently locate all concepts related to a given one X. In particular, AM knows how to

"ripple upward in the Isa direction”, and quickly®? locate all concepts which claim X as one
of their examples.

It turns out that AM cannot simp'y call for X.Isa, then the Isa facets of those concepts, etc.,

31 "Genl" is an sbbrevistion for the Generalizations facet of a concept. simisrly, "Spec™ means Specializations, Exs means

Examples, stc. "lsa” is the converse facst to Exs;ie, A € BExs iff B € Alsa. Saying "Genl! is transitive” just
means the following- if A 1s a generalization of B, and B of C, then A 13 also 3 generalization of C.

32 With sbout 200 known concepts, with each lsa facet and each Genl facet painting to about 3 other concepts, about 25
hinks will be traced along in order to locate about s dozer final concepts, sach of which claims the given one
as an example This whole rippling process, traci~, 25 linkages, uses less than Ol cpu seconds, in
compiled Interlisp, on 8 Ki-10 typs PDP-10.

: - oo o o ark e P TR T TS R g4
,\:'-',"E-"\(x:\L'\:‘;’\.T\;\\’\\l\‘,‘V\';‘"."".'\""‘Z‘A‘\‘\“":K.(‘\-T“‘.\"_ DA AS R & Pt G T CARUE SR S A S ESA ST RIS LKk Eath ot Eah S eV kot Lol {Slgh s 45

- tTpgeEme .

e e L G Sl e & Bt Bk o ke £ e 1" e g Set o S WL i SO VIR SR S AP AL S R S S L ot B S U oG Gt s GU et BTN SO MR A e A o I “""."T-""‘W
"

&.

o

Chapter 4 AM: Discovery in Mathematics as Heuristic Seerch -57- &

ht

because Isa is not transitive®®. For the interested reader, the algorithm AM uses to collect =

Isa’s of X is given below.34 &

l‘\

\“‘L

1. All generalizations of the given concept X are located. AM accesses X.Genl, then A

the Genl facets of those concepts, etc. 2

2. The "Isa" facet of each of those concepts is accessed. N

3. AM locates all generalizations of these newly-found higher-level concepts. This is N

the list of all known concepts which claim X as one of their examples. 3

» In regular form, one might express this rippling recipe more compactly as: X
Genl*(lsa(Genl™®(X))). There is not much need for a detailed understanding of this process, -
3 hence it will not be delved into further in this thesis. This section probably already
contains more than anyone would want to know about rippling.34 L

a:'. :t:
4.5.3. Ordering the Relevant Heuristics b

-

4 i
M Now that all these relevant heuristics have been assembled, in what order should AM Ry
execute them?®® It is important to note that the heuristics tacked onto very general concepts 5;

will be applicable frequently, yet will not be very powerful. For example, here is a typical

heuristic rule which is tacked onto the Examples facet of the very general concept Any- N

concept: 1‘

15

Al

If the current task is to fill in examples of any concept X, L

Then one way to get them is to symbolically instantiste®® a definition of X. o

=

It takes a tremendous amount of inference to squeeze a couple awkward examples of ,,‘
Intersectolntersect out that concept’s definition. Much time could be wasted doing so®”. Ny

£

%

<

o

33 f x isa 'y, and y isa z, then x is (generally) NOT a 2. This is due to the intransitivity of "member-of". Generalization is ’-:

transitive, on the other hand, becsuse "subsel-of" is transitive. o
34 For the vary interested readsr, it is explained in grest detail in file RIPPLE[disdbl) at SAIL This file hes been <

permanently srchived st SAIL. }

35 The discussion below assumes that the heuristics don't interact with esch other; ie, that each one may act independently o7

of all others. The validity of this simplification is tested empirically (see Chapter 6) and discussed o]
theoretica'ly (sse Chapter 7) later. N
36 "Symbolic instantistion” is a suphemism for a bag of tricks which transform a declarstive definition of a concept into \‘-:’
particular entities satisfying thet definition. The only constrzint on the tricks is that they not actually run =

the definition One such trick might be: if the definition is recursive, merely find some entity that satisfies

= the base step. AM's symbolic instantiation tricks sre too hand-crafted to be of great interest, hence this will :"1
- not be covered any more desply hers. The interested reader is directed to the pionesring work by N
e {Lombardi & Raphasi 64], or the more recent literature on these techniques appled to sutomatic program o
verification (a.g,, [Moors 75)). Ny

37

»
r
)

incidentally, this Hiustrates why no single heuristic should be sllowed to monopolize the processing of any one task.

ey .
P’
N

g
SIS

o
-.‘
8! .
k& il
% »
" <.
A -
.
i
- .
I"
=
b=~ [
E"]
=1
-
E ~
‘--
.,
a

T
7

AW s T e R T s e e R TR AT R A T AT AR TR PO AT AN A ST ST G T AL TG R R T RS N IS U N G Y UG A U ARG RS R ¥ 0 900 GG

Chapter 4 AM: Discovery in Mathematics as Heuristic Search -58-

Just as general heuristics are weak but often relevant, specific heuristics are powerful but
rarely relevant. Consider this heuristic rule, which is attached to the very specific concept
Compose-with-Self:

[

[Sl it 31

If the current task is to fill in examples of the composition FoF,
Then include any fixed=-points of F.

ol o

For example, since Intersect(phi,X) equals phi, so must lntersectolntersect(phi,X,Y).”.

Assuming that such examples exist already on Intersect, this heuristic will fill in a few §
examples of Intersectolntersect with essentially no prucessing required. Of course the :
domain of applicability of this heuristic is minuscule. '

As we expected, the narrower its domain of applicability, the more powerful and efficient a
heuristic is, and the less frequently it's useful. Thus in any given situation, where AM has
gathered many heuristic rules, it will probably be best to execute the most specific ones first,
and execute the most general ones last.

TRTeh

ey

Below are summarized the three main points that make up AM’s scheme for finding
relevant heuristics in a "natural” way and then using them:

§ vy

1. Each heuristic is tacked orto the most general concept for which it applies: it is
given as large a domain of applicability as possible. This will maximize its
generality, but leave its power untouched. This brings it closer to the "ideal”
tradeoff point between these two quantities.

RS e ob)

f{:._. 2. When the current task deals with concept C, AM ripples away from C and quickly

I locates all the concepts of which C is an example. Each of them will contain {
< heuristics relevant to dealing with C. L
3. AM then applies those heuristics in order of increasing generaiity. You may wonder -

how AM orders the heuristics by generality. It turns out that the rippling process ¥
automatically gathers heuristics 1n order of increasing generality. In the LISP
system, each rule is therefore executed as soon as it’s found. So AM nevers wastes
time gathering heuristics it won't have time to execute.

A

e
ol s

[o §

4,6, AM's Starting Heuristics !

This section will briefly characterize the collection of 242 heuristic rules which AM was .

originally given. A complete listing of those rules is found in Appendix 3; the rule

numbers below refer to the numbering given in that appendix. Y

§

0‘ -

: ‘.:: 3e ﬂhi is snothsr name for the empty set, also written {} This last sentence thus says that since {} A X {}, then ({} N ;

X) N Y must also equal {}

Ay
.

LA

Chepter 4 AM: Discovery in Mathematics as Heuristic Search -59-

4.6.1. Heuristics Grouped by the Knowledge They Embody

Many heuristics embody the belief that mathematics is an empirical inquiry. That is, one
approach to discovery is simply to perform experiments, observe the results, thereby gather
statistically significant amounts of data, induce from that data some new con jectures or new
concepts worth isolating, and then repeat this whole process again. Some of the rules which
capture this spirit are numbers 21, 43-57, 91, 136-139, 146-148, 153-154, 212-216, 225,
and 241. As one might expect, most of these are "Suggest" type rules. They indicate
plausible moves for AM to make, promising new tasks to try, new concepts worth studying.
Almost all the rest are "Fillin" type rules, providing empirical methods to find entries for a
specified facet.

Ancther large set of heuristics is used to embody ~ or to modify — what can be called
"focus of attention". When should AM keep on the same track, and when not? The first
rules expressing varying nuances of this idea are numbers 1-5. The last such rules are
numbers 209-216. Some of these rules are akin to goal-setting mechanisms (e.g., rule 141).
In addition, many of the "Interest” type rules have some relation to keeping AM interested
in recently-chosen concepts (or: in concepts related to them, e.g. by Analogy, by Genl/Spec,
by Isa/Exs,...).

The remaining "Interest” rules are generally some re-echoing of the following notion: X is
interesting if F(X) has an unexpected (interesting) value. For example, in rule 26, "F(X)"
is just "Generalizations of X". In slightly more detail, the principle characteristics of
interestingness are:

* symmetry {e.g, in an expanding analogy)

» coincidence (e, in a concept being re-discovered often)
appropriateness (e.g., in choosing an operation H so that GoH will have nicer

Domain/Range characteristics than G itself did)

recency (see the previous paragraph on focus of attention)
individuality (e.g. the first entity observed which satisfies some property)
usefulness (e.g., there are many con jectures involving it)
association (i.e,, the given concept is related to an interesting one)

L)

One group of heuristic rules embeds syntactic tricks for generalizing definitions (Lisp
predicates), specializing them, instantiating them, symbolically evaluating them, inverting
them, rudimentarily analyzing them, etc. For example, see rules 31 and 89. Some rules
serve other syntactic functions, like ensuring that various limits aren’t exceeded (e.g., rule
15), that the format for each facet is adhered to (e.g., rule 16), that the entries on each
facet are used as they are meant to be (eg, rules 9 and 59), etc. Many of the "Check”
type heuristics fall into this category.

Finally, AM possesses a mass of miscellaneous rules which evade categorization. See, eg.,
rules 185 and 236. These range from genuine math heuristics {rules which lead to discovery
frequently) to simple data management hacks.

No detailed analysis has been performed on the set of heuristics AM possesses, as of the
time of writing of this thesis.

3

»

RN AR Tl N XN, 2 BRI

MRS 1ors A it at et N A 1y G AN et - Al T T T

| AR R]

R WEE Ty

[et S el Nl |

LSRN S i

s

folhRE N A B S T B %t ihe el il S ol S L e e A o e R e e e e e e N S A S R LR L S AL B A A AN ARG § CE L A T D C O A)

Chapter 4 AM: Discovery in Mathamatics as Heuristic Sesrch -60-

4.6.2. Heuristics Grouped by How Specific They Are

Another dimension of distribution of heuristics, aside from the above functional one, is
simply that of how high up in the Genl/Spec tree they are located. The table below
summarizes how the rules were distributed in that tree:

LEVEL eg sCon's sw/Heur aHeurs Avg Avg w/Heur s Filin » Supg ® Check & Int
0 Anything 1 1 10 100 100 0 5 0 5
g 1 Any-Concept 1 1 110 1100 1100 39 30 20 21
- 2 Active 2 2 24 120 120 7 10 4 3
. 3 Operation 6 3 31 52 103 11 3 3 14
¥ 24 Union 100 11 63 06 57 26 15 8 16
B
. Here is a key to the column headings:
3 LEVEL: How far down the Genl/Spec tree of concepts we are looking.
.- e.g.: A sample concept at that level.
» Con's: The total number of concepts at that level.
3 ¢ w/Heur: How many of them have some heuristics.
« Heurs: The total number of heuristics attached to concepts at that level.
3 Avg: (s Heurs) / (s Concepts); ie, the mean number of heuristics per concept, at that
level.

Avg w/Heur: (s Heurs) / (¢« w. Heurs)

s Fillin: Total number of "Fillin" type heuristics at that level.

s Sugg: Total number of "Suggest” type heuristics at that level.

» Check: Total number of "Check” type heuristics at that level.

= Int: Total number of "Interestingness” type heuristics at that level.

The heuristic rules are seen not to be distributed uniformly, homogeneously among all the
initial concepts. The extent of this skewing was not realized by the author until the above
table was constructed. A surprising proportion of rules are attached to the very general
concepts. The top 10% of the concepts contain 73% of all the heuristics. One notable
exception is the “Interest” type heuristics: they seem more evenly distributed throughout the
tree of initial concepts. This tends to suggest that future work on providing "meta-
heuristics" should concentrate on how to automatically synthesize those Interest heuristics for
newly-created concepts.

vaids Pz 52T s 5 om0

R RS p g R e Gk

>

F"‘wv SR T A e T e T T e Wy R T T e T T T AT s T AT LT L U LR AERT A G T T LY T WL s e WAV VR T e

s

-61- -

]

\"‘

_————————————=———————————— N
Chapter 5. AM's Concepts

= =

b

This chapter contains material about AM’s anatomy. After a brief overview, we'll look in x
detail at the way concepts are represented (Section 5.2). This includes a discussion of each

kind of facet a concept may possess. Wedged in among the implementation details and N
formats are a horde of tiny ideas; they should be useful to anyone contemplating working _

on a system similar in design to AM.]

The chapter closes by sketching all the knowledge AM starts with. The concepts will be -
diagrammed, and will also have a brief description, sufficient for the reader to follow later -
chapters without trouble. Instead of using up a large number of pages for an unreadable e

listing of all of the specific information initially supplied re each concept, such compiete i

coverage is relegated to Appendix 2.1. !
The next chapter starts on page 114.? K

. . . ';:;

5.1, Motivation and Qverview %)

Each concept consists merely of a bundle of facets. The facets represent the different aspects :Z:j
of each concept, the kinds of questions one might want to ask about the concept: ot

How valuable is this concept? e

What is its definition? &

If it's an operation, what is legally in its domain? o
What are some generalizations of this concept? ,e
How can you separate the interesting instances of this concept from the dull ones? o

etc. b

Ea_:

Since each concept is a mathemati 1l entity, the kinds of questions one might ask are fairly e

constant from concept to concept. This set of questions might change significantly for a new s

domain of concept. 7]

One "natural” representation for a concept in LISP is therefore as a set of attribute/value :‘-;

Y

=

! That appendix lists sach concept, giving 8 condensed listing of the facts initially given (by the suthor) to AM about sach A

facet of that concept. This material is translated from LISP into English and standard math notation. The s

appendix ™ preceded by an aiphabsticel index of ihe concepts and the page number on which they are e

] :rnonud That index is on page 173. Some unmodified "concepts” -- still in LISP -~ are displayed in 3":'

p ppendix 23 -

i 2 Though devoid of theoretical significance, that sentence has alas proved of high empirical valus.

. .,,l
- . « T
l'-'ll

PN
AN

(]
RN
P
’
»

Chapter 5 AM: Discovary in Mathamatics as Heuristic Search -62-

pairs. That is, each concept is maintained as an atom with a property list. The names of the
properties (Worth, Definitions, Domain/Range, Generalizations, Interestingness, etc.)
correspond to the questions above, and the value stored under property F of atom C is
simply the value of the F.facet of the C-concept. This value can also be viewed as the

answer which expert C would give, if asked question F. Or, it can be viewed as the contents
of slot F of frame C.

5.1.1. A Glimpse of a2 Typical Concept

As an example, here is a stylized rendition of the SETS concept. This is a concept which is
meant to correspond to the notion of a set of elements. The format P: vy,vo,.. is used to

indicate th~t the vaiue of property P is the list v|,vo,.. That is, the concept Sets has entries
V{.Vo,.. for its facet P. For example. according to the box below, "Singleton" is one entry on
the Specializations facet of Sets.

I shall not digress here to explain each of these entries — and what are apparently

omissions. Such things will be done later in this chapter®. For now, just glance at it to get
the flavor of what a concept is like.

3 The individual facets will bs discusseo ore at s time. This particular concapt is shown at an intermediste stats of being
fillad in. Although sevaral facets are blank, many are filled in which were initislly empty (e g., Examples). The
reader wishing 10 see what this concept was bke st the time thst AM started up should turn ahesd to page
211 (inside Appendix 2).

S R R A AT AT R IR Al SR S SR LS A T S I TP S B I A B S I 4

P, Pr oy ey - ey Pl LD arerse g g g

I

o iy

Sy

[T &)

PR ol bl ol 2

»
Pl

Chapter 5 AM: Discovary in Mathematics as Heuristic Search -63-

Name(s): Set, Class, Collection
Definitions:

Recursive: X (S) [S={} or Set.Definition (Remove(Any-member(S),S))]

Recursive quick: A (S) [S={} or Set.Definition (CDR(S))]

Quick: A (S) [Malch S with {...}]

Specializations: Emply=sel, Nonempty=set, Set-of-siructures, Singleton
Generalizations: Unordersd-Structure, No-multipie-elements=Structure
Examples:

Typical: {{}}, {A}, {AB}, {3}

Barely: {}, {A, B, {C, {{{ A, C, (3,3,3,9), <4,1,A,{B},A>}}}}}

Not-quite: {A,A}, (), {B,A}

Foible: <4,1,A,1>
C:njec's: All unordered-structures are sets.

Intu's:

Geometric: Vann diagram. {See [Venn 89], or [Skemp 71].}
Analogs: bag, list, oset
Worth: 600
View:

Predicate: A (P) {x¢Domain(P) | P(x)}

Structure: A (S) Enclose-in~braces(Sort(Remove-muitiple~eiements(S)))
Suggest: if P is an interesting predicate over X, consider {x¢X | P(x)}.
In-domain=-of: Union, Intersaction, Set-difference, Set-equality, Subset, Member
In=range-of: Union, Intersection, Set-difference, Satistying

To decipher the Definitions facet, there are a few things you must know. An expression of

the form "(x (x) E)" is called a Lambda expression after Church?, and may be considered
an executable procedure. it accepts one argument, binds the variable "x" to the value of
that argument, and then evaluates "E” (which is probably some expression invelving the
variable x). For example, "(x (x) (x+5))" is a function which adds 5 to any number; if given
the argument 3, this lambda expression will return the value 8.

The second thing you must know is that facet F of concept C will occasionally be
abbreviated as CF. In those cases where F is "executable”, the notation C.F will refer to
applying the corresponding function. So the first entry in the Definitions facet is recursive
because it contains an embedded call on the function Set.Definition. Notice that we are
implying that the name of that lambda expression itself is "Set.Definition".

There are some bizarre implications of this: since there are three separate but equivalent
definitions, AM may choose whichever one it wants when it recurs. AM can choose one via
a random selection scheme, or always try to recur into the same definition as it was just in,
or perhaps suit its chuice to the form of the argument at the moment.

For exampie, one definition might be great for arguments of size 10 or less, but slow for
bigger ones, and another definition might be mediocre for all size arguments; then AM

4 Before and during Church, it's called 8 function. See [Church 41}

PR T b T AT A YN Ty T T [T

rcd T

g

M Ciisl PR)

VA ATAIEIO W T

v,

P

1RO Y WY TN Y

'3 -
LI NN

R

TR NANTNT Tt

S 0 T " VAN T T G oA Wt o RO R Rt £ A A0 i AN = ICTal AT AN Al e W)
L

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -64-

should use the mediocre definition over and over again, until the argument becomes smail
enough, and from then on recur only into the fast definition. Although AM embodies this
"smart” scheme, the little comments necessary to see how it does so have be excised from the
version shown above in the box. This will be explained later in this chapter, on page 90.

All concepts possess executable definitions, though not necessarily effective ones. They each
have a LISP predicate, but that predicate is not guaranteed to terminate. Notice that the

definitions for Sets are all definitions of finite sets.

5.1.2. The main constraint: Fixed set of facets

One important constraint on the representation is that the set of facets be fixed for all the
concepts. An additional constraint is that this set of facets not grow, that it be fixed once
and for all. So there is one fixed, unversal list of two dozer: types of facets. Any facet of
any concept must have one of those standard names. All concepts which have some
examples must store them as entries on a facet called Examples; they can’t call them

Instances, or Cases, or G00037’s. This constraint is known as the "Beings constraint™®, and
has three important consequences:

1. OUTLINE: First, it provides a nice, distributed, universal framework on which to
display all that is known about a given concept. For example, when AM creates a
new concept like "Square-root”, the user can judge how well AM understands that
concept by examining Square-root’s property-list (the list of entries for each of its
facets). Similarly, AM can instantly tell what facets are not yet filled in for any
given concept, and this will in turn suggest new tasks to perform. In other words,
this constraint helps define the "space” which AM must explore, and makes it
obvious what parts of each concept have and have not yet been investigated.

2. STRUCTURE: The constraint specifies that there be a set of facets, not just one.
This set was made large enough that all the efficiency advantages of a “structured”
representation are preserved (unlike totally uniform representations, e.g. pure
production systems with simple memories as data structures, or predicate calculus).

3. UNIFORMITY: The most important benefit of the Beings constraint arises when

AM?7 wants to get a particular question answered — especially if the information
pertains to related concepts. The advantage is that it'll have a very limited
repertoire of questions it may ask, hence there will be no long searching, no
misunderstandings. This is the same advantage that always arises when everyone
uses a common language.

We shall illustrate the last two advantages by using the Sets concept pictured in the box a
couple pages ago. How does AM handle a task of this form: "Check examples of Sets"> AM
accesses the examples facet of the Sets concept, and obtains a bunch of items which are all

5 The third definition, "{ }", may not look tinite, but consider that ellipsis notation 1s not permitted within any specific set.
s See {Lerat 75b]) Historically, sach concept module was called 8 "BEING".

7 Acluaily, the requsstor 18 not "AM" in toto, but rather simply a clasuse which 18 2 part of a heurictic rule, or a8 bit of code
embedded within an entry on sn executable fecet, such as Algorithms

L - - o TE et m T m e =~ - - - - car - P - a - -
| 2R S Gt e S G P A WL S- - . . . e

X
-

R
-

-t

T

1B
-'-

g
‘) "l

5y
B

g
v
I}

.“ ;

T
pres

o
;

g
e 1
e

"

S ataR T L Y I A Kt IS T P ERCLAS R R SR Rk B ¥ oL S A8 S LI S i W R R o ki bt bl R o YR I Aol RS TR Y B i S iasia A AL SR ia R a M A RA I Ao

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -65-

probably sets. If any isn't a set, AM would like to make it one, if that involves nothing

difficult. AM locates all the generalizations of Sets®, and comes up with the list <Sets,
Unordered-Structures, No-multiple-elements-Structures, 'Structures, Ob jects, Any-concept,
Anything>. Next, the "Check” facet of each of these is examined, and all its heuristics are
collected. For example, the Check facet of the No-multiple-elements-Structures concept
contains the following entry: "Eliminate multiple occurrences of each element” (of course this
is present not as an English sentence but rather as a little LISP function). So even though
Sets has no entries for its Check facet, several little functions will be gathered up by the
rippling process. Each potential set would be subjected to all those checks, and might be
modified or discarded as a result.

There it enough "structure” around to keep the heuristic rules relevant to this task isolated
from very irrelevant rules, and there is enough “uniformity” to make finding those rules
very easy.

The same rippling would be done to find predicates which tell whether a set is interesting
or dull. For example, one entry on the Interestingness facet of the Structure concept says
that a structure is interesting if all pairs of members satisfy the same rare predicate P(x,y)
[for any such P). So a set, all pairs of whose members satisfy “"Equality,” would be
considered interesting. In fact, every Singleton is an interesting Structure for just that
reason. A singleton might be an interesting Anything because it takes only a few characters
to type it out (thereby satisfying a criterion on Anything.Interest).

To locate all the specializations of Sets, the rippling would go in the opposite direction. For
example, one of the entries on the Specializations facet of Sets is Set-of-structures; one if its
Specialization entries is Set-of-sets. So this latter concept will be caught in the net when
rippling away from Sets in the Specializations direction.

If AM wants lots of examples of sets, it has only to ripple in the Specializations direction,
gathering Examples of each concept it encounters. Examples of Sets-of-sets (like this one:
{{A}.{C.D}}}) will be caught in this way, as will examples of Sets-of-numbers (like this one:

{1,4,5)), because two specializations of Sets are Sets-of-Sets and Sets-of-Numbers®.

In addition to the three main reasons for keeping the set of facets the same for all the
concepts (see previous page), we claimed there were also reasons for keeping that set fixed
once and for all. Why not dynamically enlarge it? To add a new facet, its value has to be
filled in for lots of concepts. How could AM develop the huge body of heuristics needed to
guide such filling-in and checking activities? Also, the number of facets is small to begin
with because people don't seem to use more than a few tens of such “properties” in
classifying knowledge about a concept'®. If the viability of AM seemed to depend on this
ability, I would have worked on it. AM got along fine without being able to enlarge its set

of facets, so no time was ever spent on that problem. I leave it as a challenging, ambitious
"open research problem”.

s by “rippling™ upward from Sets, in the Genl direction
[}
© We sre assuming that AM has run for some time, and already discovered Numbers, and slready defined Sets-of-Numbers.

fo This dats 18 gathered from introspection by myself and s few others, and should probably be tested by performing some
psychologicsl experiments.

P L A T T T N L S S S 2 T Sl T Wl it Sl St e R

awi

g s e w eimppeee g g ¢

a e ey -y g

g i T P T

o e Tttt Rekn-are s i v} 2

e

T A

L e st et et 3

ey

L S Wos S e s

G WmLTLm s TeT TS

k Pl

S ey

ANV G RN TR SO R MRS VAR TR G AA

Chapter 5 AM: Discovary in Mathematics as Heuristic Search -66-

5.1.3. BEINGs Representation of Knowledge

Before discussing each facet in detail, let’s inter ject a brief historic digression, to explain the
origins of this modular representation scheme.

The ideas arose in an automatic programming context, while working out a solution to the
problem of constructing a computer system capable of synthesizing a simple concept-
discrimination program (similar te [Winson 70]). The scenario envisioned was one of
mutual conperation among a group of a hundred or so experts, each a specialist in some
minute detail of coding, concept formation, debugging, communicating, etc. Each expert was
modelled by one module, one BEING. Each BEING had the same number of slots (parts,
facets), and each slot was interpreted as a question which that BEING could answer. The
community of experts carried on a round-table discussion of a programming task which was
specified by a human user. Eventually, by cooperating and answering each other’s
questions, they hammered out the program he desired. See [Lenat 75b] for details.

The final system, called PUPS6, did actually synthesize several large LISP programs,
including many variants of the concept-learning program. This is described fully in [Lenat
75a). Unfortunately, PUP6 had virtually no natural language ability and was therefore
unusable by an untrained human. Its modal output was "EA?".

The search for a new problem domain where this communication difficulty wouldn't be so
severe led to consideration of elementary mathematics.

The other main defect of PUP6 was its narrowness, the small range of ‘target’ programs
which could be synthesized. PUP6 had been designed with just one target in mind, and
almost all it could do was to hit that target. The second constraint on the new task domain
was then one of having a non-specific target, a very broad or diffuse goal. This pointed to
an automated researcher, rather than a problem-solver.

These two constraints then were (i) elementary math, because of communication ease, and
(ii) self-guided exploration, because of the danger of too specific a goal. Together, they
directed the author to an investigation which ultimately resulted in the AM project.

52, Facets

How is each concept represented? Without c!ziming that this is the "best” or preferred
scheme, this section will treat in detail AM's representation of this knowledge.

We Lave seen that the representation of a concept can loosely be described as a collection of
facet/value pairs, where the facets are drawn from a fixed set of about 25 total possible
facets.

The facets break down into three categories:
1. Facets which relate this concept C to some other one(s): Generalizations,
Specializations, Examples, Isa’s, In-domain-of, In-range-of, Views, Intu’s, Analogies,
Con jec's
2. Facets which contain information intensive to this concept C: Definitions,
Algorithms, Domain/Range, Worth, Interest

S

e

Chapter 5 AM: Discovery in Mathamatics as Heuristi Search -67-

3. Sub-facets, containing heuristics, which can be tacked onto facets 'frcm either group
above. These include: Suggest, Fillin, Check

Some facets come in several flavors (eg., there are really four separate facets — not just one
— which point to Examples: boundary, typical, just-barely-failing, foibles).

This section will cover each facei in turn. Let’s begin by listing each of them. For a chan e
of pace, we'll show a typical question that each ene might answer about concept C:'?

Name: What shall we call C when communicating with the user?

Generalizations: Which other concepts have less restrictive definitions than C?
Specializations: Which concepts satisfy C's definition plus some additional constraints?
Examples: What are some things that satisfy C's definition?

Isa’s: Which concepts’ definitions does C itself satisfy?'2

In-domain-of: Which operations can be performed on C's?

In-range-of: Which operations result in values which are C’s?

Views: How can we view some other kind of entity as if it were a C?

Intu’s: What is an abstract, analogic representation for C?

Analogies: Are there similar (though formally unrelated) concepts?

Conjec’s: What are some potential theorems involving C?

Definitions: How can we tell if x is an example of C?

Algorithms: How can we execute the operation C on a given argument?

Domain/Range: What kinds of arguments can operation C be executed on? What
kinds of values will it return?

Worth: How valuable is C? (overall, aesthetic, utility, etc.)

Interestingness: What special features make a C especially interesting?

In addition, each facet F of concept C can possess a few little subfacets which contain
heuristics for dealing with that facet of C's:

F Fillin: How can entries on C.F be filled in? These heuristics get called on when the
current task is "Fillin facet F of concept X", where X is a C.

F.Check: How can potential entries on C.F be checked and patched up?

F.Suggest: If AM gets bogged down, what are some new tasks (related to C.F) it might
consider?

We'll now begin delving into the syntax and semantics of each facet, one by one. Future

chapters will not depend on this material. The reader may wish to skip to Section 5.3 (page
105). .

5.2.1. Generalizations/Specializations

" In this discussion, "C" represents the name of the concept whose facet is being discuseed, and may be read "the given
concept”.

12 Notice that C will therefore be an example of each member of hsa's(C).

L FEIRIRT A T T T et et e Rt T AT T e T A S T S SRt T

'
£
x
1
»
H
\
-
3
H
i
L
3
?
N
’.
-

LT |l

e, =,

et U1

il I B dul ST ot §

2 1T

Ml LY, MR AL R

PR B R T

L e e e e s i I ¥

LM o

X

WO

S

LN S

|

1\

3 L PR R

2

r

e g% o ot ut'ed
b) f

g

SLRES N |
y "

Ra e e MM e L Y L et N Vet et N L Y N L L RO LN oL T e LT T Al T S ST A VN R ER T TN R T S PO T R

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -68

Generalization makes possible conscious, controlled, and accurate accomodation of
one’s existing schemas, not only in response to the demands for assimilation of
new situations as they are encountered, but ahead of these demands, seeking or
creating new examples to fit the enlarged concept.

== Skemp

We say concept A "is a generalization of" concept B iff every example of B is an exainple of
A. Equivalently, this is true iff the definition of B can be phrased as "A (x) [A.Defn(x) and
P(x)])"; that is, for x to satisfy B’s definition, it must satisfy A's definition plus some
additional predicate P. The Generalizations facet of concept C will be abbreviated as
C.Genl.

C.Gen! does not contain all generalizations of C; rather, just the “immediate” ones. More
formally, if A is a generalization of B, and B of C, then C.Genl will not contain a pointer to

A. Instead, C will point to B'3,

Here are the recursive equations which permit a search process to quickly find all
generalizations or specializations of a given concept X:

Generalizations(X) = GenI*(X) = {X} U Generalizations(X.Genl)
Speciatizations(X) = Spec*(X) = {X} U Specializations(X.Spec)

For the reader’s convenience, here are the similar equations, presented elsewhere in the text,
for finding all examples of — and Isa’s of — X:

Examples(X) = Spec*(Exs(Spec*(X)))
Isa's(X) = Genl*(Isa(Geni*(X)))

The format of the Generalizations facet is quite simple: it is a list of concept names. The
Generalizations facet for Odd-primes might be:

(Odd=numbers Primes)

0y
T

x

e 13 !n genersl, C.Genl will contain an entry X1; X1.Genl will contain an antry X2; .; Xn.Genl will contain B as one entry; B Genl

will contain Y1..: Yn Gen! will contain A.

Rt
‘..-4"‘ l. 4
]

M
_N
2P

o
s

b
»

=

T uio Vap Seg Gl Tl i e Vet dalh Sk S & Sl SH S ST N A L SRR Pl T A

Chapter AM: Discovery in Mathematics as Heuristic Search . -69-

Here is a small diagram representing generalization relationships. The only lines drawn
represent the pointers found in the Genl facets of these concepts:

Object

Number

/\

Odd-numbers Primes

VA

Odd-primes Even-primes

Mersenne-primes

Each of those lines represents an arrow which slants upwards, indicating a Genl link. For
example, we see that the Generalizations facet of Odd-primes contains pointers to both
Odd-numbers and to Primes. There is no pointer from Odd-primes upward to Number,
because there is an “intermediate” concept (namely, Primes). There is no pointer from
Mersenne-primes to Ob ject, since a chain of intermediate concepts links them.

The reason for these strange constraints is so that the total number of links can be
minimized. There is no harm if a few redundant ones sneak in. In fact, frequently-used
paths are granted the status of single links, as we shall soon see.

We've been talking about both Specializations and Generalizations as if they were very
similar to each other. It's time to make that more explicit:

- e e x ¥

g gy oy gy

P ——

Rt Sl s T e T S

W T TRV Y R e e ey

Sl Junn' sk Sutis Sann e 8 |

. >

PLE Pl ual ol |

W~

MOty e Ny TR Y Ty ™)

D TR

Ty TE

LORATRES PRI TR S PRSI PR NIV Ea et Ban L oSGt aND (f E1E S 44 p R NaT A v, Gatdiye oS RO AT A4 It T voiaio et it Rat S ¥ e L Nat el AT MR M

Chapter 5 AM: Discovary in Mathematics as Heuristic Search -70-

Specializations are the converse of Generalizations. The format is the same, and (hopefully)
A is an entry on B’s Specializations facet iff B is an entry on A’s Generalizations facet.

The uses of these two facets are many:

1. AM can sometimes establish independently that A is both a generalization and a
specialization of B; in that case, AM would like to recognize that fact easily, so it
can conjecture that A and B specify equivalent concepts. Such coincidences are
easily detected as cycles in the Genl (or Spec) graph. In these cases, AM may
physically merge A and B (and all the other concepts in the cycle) into one corcep.

2. Sometimes, AM wants to assemble a list of all specializations (or generalizations) of
X, so that it can test whether some statement which is just barely true (or false) for
X will hold for any of those specializations of X.

3. Sometimes, the list of generalizations is used to assemble a list of isa’s; the list of

specializations helps assemble a list of examples.'?

4. A common and crucial use of the list of generalizations is to locate all the heuristic
rules which are relevant to a given concept. Typically, the relevant rules are those
tacked onto Isa's of that concept, and the list of Isa’s is built up from the list of
generalizations of that concept. This was also mentioned on page 56.

5. To incorporate new knowledge. If AM learns, conjectures, etc. that A is a
specialization of B, then all the machinery (all the theorems, algorithms, etc.) for B
become available for working with A.

Here is a hittle trick that deserves a couple paragraphs of its own. AM stores the answers to
common questions (like "What are all the specializations of Operation") explicitly, by
intentionally permitting redundant links to be maintained. If two requests arrive closely in
time, to test whether A is a generalization of B, then the result is stored by adding "A" as
an entry on the Generalizations facet of B, and adding "B" as a new entry on the
Specializations facet of A. The slight extra space is more than recompensed in cpu time
saved.

If the result were False (A turned out not to be a generalization of B) then the links would
specify that finding explicitly, so that the next request would not generate a long search
again. Such failures are recorded on two additional facets: Genl-not and Spec-not. Since
most concept pairs A/B are related by Spec-not and by Genl-not, the only entries which get
recorded here are the ones which were frequently called for by AM. If space ever gets tight,
all such facets can be wiped clean with no permanent damage done.

These two "shadow™ facets (Genl-not and Spec-not) are not useful or interesting in their own
right. If AM ever wished to know all the concepts which are not generalizations of C, the
fastest way would be to take the set-difference of all concepts and Generalizations(C). Since
they are quite incomplete, Genl-not and Spec-not are used more like a cache memory: they
save time whenever they are applicable, and don't really cost much when they aren’t
applicable. Because of their superfluity, these two facets will hot be mentioned again. I only
mentioned them above because they do greatly speed up AM’s execution time, and because
they may have some psychological analog.

14 This process was cslied RIPPLING, and was described in Chapter 4. See also footnote 34 in that chapter,

»

PR o T Ty Tt e (T T (e

FETEE N vt T T T T T

3T,

¥ el
» LI

A W

W s, e |

A Yy

ALE % e

pru

v Rav e o]

e

'«

e

L

L

A A S L L

oL A A AL A E A AN A A AN R T e L M e AR R T DR = ot el o R AN AN R S S RS R L i Vs 1
! >
L
5
-]

k]

L

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -71-

5.2.2. Examples/Isa's

Usually, to show that a definition implies no contradiction, we proceed by example,
we try to make an example of a thing satisfying the definition. We wish to define
a notion A, and we say that, by definition, an A is anything for whick certain
postulates are true. If we can demonstrate directly that all these postulates are
true of a certain obfect B, the definition will be fustified; the object B will be an

example of an A

== Poincare’

Following Poincare’, we say "concept A is an example of concept B" iff A satisfies B's

definition.'® Equivalently, we say that "4 isa B". It would be legal (in that situation) for A"
to be an entry on B.Exs (the Examples facet of concept B) and for "B" o be an entry on

AT IS il S8 Sl M R it SR st ek o v B | S VO

3
A lsa (the Isa’s facet of concept A). Some earlier mention of the Examples and Isa's facets]
can be seen in Chapter 4, page 57. 4
E

The Examples facet of C does not contain all examples of C; rather, just the “immediate” "'
ones. The examples facet of Numbers will not contain "11" since it is contained in the L
examples facet of Odd-primes. A "rippling” procedure is used o acquire a list of all -
examples of a given concept. The basic equation is: N
Examples(x) = Specializations(Exs(Spacializations(x))) "

=

where Exs(x) is the contents of the examples facet of x. Examples(x) represents the final list f:
of all known items which satisfy the definition of X. Examples(x) thus must include Exs(x).
Specializations(x) might be more regularly written Spec*(x). That is, all members of x.Spec, b
all members of their Spec facet, etc. Note the similarity of this to the formula for Isa’s(x), X
given on page 57. We could also write the above equation as follows: i
Examples(x) = Spec®(Exs(Spec¥*(x))) ?}

As an illustration, we shall show how AM would recognize that "3" is an example of F‘
Ob ject: s

15 What does this mesn? B.Dsfn is # Lisp predicate, s Lambda expression. If it is fed A as its argument, and it returns True,
we say that A is 3 B, or that A satisfies B's dafinitron if B.Defn returns NIL, we say that A is not » B, or
that A fails B's definition. If B.Defn runs cut of time before returning o T/NIL valus, there is no definite
statement of this form we can make In that case, AM might check to ses whether A satisfis the definition
of some specislization of B, or whether A fails the definition of some generalization of 8.

ki TR ME SRR thte |

S MR O P I I I B R R L R R et wats elen Cya U R LN L A I S Y R R T T I S I i

Wi‘& Babatoray Pak vagic oo me fove ool velt b e P Y il Vb (ARl ST Tl SA L Wl SEE L Nl s & P g B A P S S N SR S PRI AW S
‘)
z"fl)

3

o and e §

Chapter 5 AM: Drscovary in Mathematics as Heuristic Search -72-

Object

[T e)

g mtm

~ g g

Number

/\ f

Odd-numbers Primes

\/

vy

kil & i G
’ ’n’t?u?} i

PR SR R
LS P 2

e, b

f‘.;j'u
SRR
PU——

{

Odd-primes 5l
L

{é

L

1

Mersenne-primes i

-
H

TR o

As the graph above shows, AM would ripple in the Spec direction 4 times, moving from
Ob ject all the way to Mersenne-primes; then descend once in the Exs direction, to reach "3";
then ripple 0 more times in the Spec direction. Thus "3" is seen to be an example of
Ob ject, according to the above formula. Similarly, we see that "3" is also an example of
Number, of Primes, of Qdd-number, of Odd-primes, and of course an example of
Mersenne-primes.

ikt L

1 T
Lo

. .
1

. r
% As with Generalizations/Specializations, the reasons behind the incomplete pointer structure
e is simply to save space, and to minimize the difficulty of updating the graph structure
., {
t
T 3
R
¢
¢

AR AL e R R L A A S R S A T

7
g
1
3

L e

PN

»
o

2

s T v)

P

Chapter 5 AM: Discovery in Mathamatics as Heuristic Search -73-

R INSCRNICILINY [KPR

whenever new links are found. Suppose a new Mersenne prime'® is computed. Wouldn't it
PP P P

be nice simply to add a single entry to the Exs facet of Mersenne-primes, rather than to
have to update the Exs pointers from a dozen concepts?

There is no harm if a few redundant links sneak in. In fact, frequently-used paths are
granted the status of single links. If two requests arrive closely in time, to test whether A
isa B, then the result is stored as an entry on the Isa facet of A, and the Exs facet of B. If
the result were False, then the links would specify that, so that the next request would not
generate a long search. In fact, there is a separate facet called Exs-not, and one called Isa-
not. These two shadowy facets are quite analogous to the unmentionable facets "Genl-not"
and "Spec-not”, discussed in the previous subsection.

X

A

-
A

3

e,

o’ r

"Isa’s" is the converse of "Examples”. The format is the same, and (if A and B are both
concepts) A is an entry on B.sa iff B is an entry on A.Exs. In other words, A is a member
of Examples(B) iff B is a member of Isa’s(A). Due to an ugly lack of standardization, non-
concepts are allowed to exist. Thus, "3" is an example of Primes, but is not itself a concept.
Examples of X sometimes are concepts, of course: “Intersectolntersect” is an example of
Compose-with-self. And Isa’s(x) are always concepts. The highest level concept is called
"Anything", Its definition is the atom T. That is, "A(x) T". This high-level concept can claim
everything as its examples.

Y2

..m,,,,-.,_m,-,.,.,
ALLS eI il
._1,.;] m_.‘: T b,

The uses of the Exs/Isa’s facets are similar to those for Genl/Spec (see previous subsection).

Their formats are quite a bit more complicated than the Genl/Spec facets’ formats, when we
finally get to the implementation level, however. There are really a cluster of different facets
all related to Examples:

: 1. TYPICAL: This is a list of average examples. Care must be taken to include a wide
2 spectrum of allowable kinds of examples. For "Sets", these would include sets of
varying size, nesting, complexity, type of elements, eic.

2. BOUNDARY: Items which just barely nass the definition of this concept. This
might include items which satisfy the base step of a recursive definition, or items
which were intuitively believed to be non-examples of the concept. For "Sets", this
might include the empty set.

3. BOUNDARY-NOT: Items which just barely fail the definition. This might include
an item which had to be slightly modified during checking, like {A,B,A} becoming

) R
by Aprd Aoty Sy

1522 M

AF ety

0 map

.‘
e

gt

{A,B}. . i
4. FOIBLES: Total failures. Items which are completely against the grain of this =
concept. For "Sets", this might include the operation "Compose”. xr]

PR A

5. NOT: This is the "cache” trick used to store the answers to frequently-asked
questions. If AM frequently wants to know whether X is an example of Y, and the
answer is No, then much time can be saved by adding X as an entry to the Exs-not
facet of Y.

e
AR

il
An individual item on these facets may just be a concept name, or it may be more e
complicated. In the case of an operation, it is an item of the form <ajag..sv>; le, actual W
16 "Mersenne prime”, without a hyphen, rafers to a number satisfying certain properties [ses glossary] "Mersenne-primes”, il
with a hyphen, refers to one specific AM concept, a data structure with facets. Each Mersenne prime 1 an -
v, exampld of the concept Mersenne-primes. o
S
.n:;‘{
LS
R?
;".Q-i:-?’ .:n:ﬁ:';" ,‘:»(',:":..’:-P PN i s Y '\'.‘-‘A:J-'h T e A T L LA L e T . . R e A

'R =1

".l' 'r' ’l:"v N
PP I

P

T

Ta

X,

) 1

>
£y

i T”"?“"K"‘
B 5 ety 5 B

¥
|'®

Clall a1
<N
.

4
e N
PR S

i
F I T

o ‘i e

a2

.?
%
&
A
4
A
wl
7
4,
“
4
P
A’i ‘
.
A
A
A
:
‘%
":'1
, 1
4
<
K
J
g
A
-
.
i
p
i
l',1
4

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -74-

arguments and the value returned. In the case of objects, it is an object of that form. An
Exs facet of the concept Sets might contain {a} as one entry.

Here is a more detailed illustration. Consider the Examples facet of Set-union. It might
appear thus:

TYPICAL: {A}U{A,B}->{A,B};
{A,BJU{A,B}-{A,B};
{A<3,4,3>,{AB}}U{3,A}2{A3,4,3>,{A,B},3}.
BOUNDARY: {Jux-»x !7
BOUNDARY=NOT: {A,BJU{A,C}-{A,B,AC};
{A,B,C,DIV{EF,GH,\,J}={A,B,C,EF,GH,J}
FOIBLES: <2,A,2>
NOT: no entries

The format for Isa’s are much simpler: there are only two kinds of links, and they're each
merely a list of concept names. Here is the Isa facet of Set-union:

ISA: (Operation'® DomainzRange-op)
ISA-NOT: (Structure Composilion Predicate)

At some time, some rule asked whether Set-union isa Composition. As a result, the negative
response was recorded by adding "Composition” to the Isa-not facet of Set-union, and
adding "Set-union” to the Exs-not subfacet of the Examples facet of the concept
Composition (indicating that Set-union was definitely not an example of Composition, yet
there was no reason to consider it a foible).

5.2.3. In-Domain-of/In-Range-of

We shall say that A is in the domain of B (written "A In-dom-of B") iff
1. A and B are concepts
2. B isa Operation
3. A is equal to (or at least a specialization of) one of the domain components of the
operation B. That is, B can be executed using any example of A as one of its

arguments.'®

For example, Odd-perfect-squares is In-dom-of Add, since Odd-perfect-squares is a
specialization of Numbers, and Numbers is one compenent of the following entry which is

7 Actually, AM s not quite smart enough to use the varisble X as shown in the boundary examples. it would simply store a
few instances of this general ruls, plus have an entry of the form <Equivalent. Identity(X) and Set-
union(X,{})> on the Exs facet of Conjectures. Notice that because of the asymmetric way Set-union was
defined, only one lopsided boundery example was found. if another definition were supplied, the converse
kind of boundary examples would be found.

18 This entry is redundant.

19 More formally, we can say that this occurs whenever some entry on the Domain/range facet of B hes the form <D| 02 .
D' -+ R> with some D,- » member of Generalizations(A). Then A is 8 specislizetion of some domain component
of some entry on B Domain/rangs.

......

gy
[l

i PR

'y

=t

T4

e my
L)

il |

| k]

Fhdrit et LI vew =

5.3

oia

s e 2t
Y

it 11

el
P

-

14 P

iy

-
W7

FIT i LI AR DY R R R T TS TR E e [aRC el S pe P N SRR RS Wi I Al R M TS e 3 Ran RS S A Rl A PRSI S S SR e iV i ~"2N~’-§_‘<:J‘
N
- &
o ke
2 .
i Chapter 5 AM: Discovery in Mathematics as Heuristic Search -75- v‘
. located on Add.Domain/range: <Numbers Numbers -+ Numbers>. Since Odd-perfect-squares T
E is a specialization of Numbers, the operation ‘Add’ can be executed using any example of £
Odd-perfect-squares as its argument. -
- As another example, Odd-perfect-squates is also In-dom-of Set-insert, one of whose -
o Domain/range entries is <Anything Sets - Sets>. This is because Odd-perfect-squares is a kD
specialization of Anything. So Set-insert is executed on two arguments, and the first o
E argument can be any example of Odd-perfect-squares (the second argument must be an S
S example of Sets).2° -
X Although it can be recomputed very easily, we may wish to record the fact that A In-dom-of T_:I'»
§ B by adding the entry "B" to the In-dom-of facet of A. AM may even wish to add this new -
entry to the Domain/range facet of B (where A is a specialization of the P domain .
- component of B): b
X < D} Do Dj.y A Dj,p-- Dj » R>. The two examples given above would produce new o
domain/range entries of <Odd-perfect-squares Numbers -» Numbers> for Add, and <Odd- -'_::»
- perfect-squares Sets » Sets> for Set-insert. o
” The semantic content of "In-dom-of” is: what can be done to any example of a given P
- concept C? Given an example of concept C, what operations can be run on that thing? 3
Here are some illustrations: -
» "Odd-perfect-squares In-dom-of Set-insert” tells us that Set-insert can be run on any &
particular Odd-perfect-square we can grab hold of. R
"Operation In-dom-of Compose” tells us that Compose can be run on any operation we 5;_
want. ‘
"Dom=Range-operation In-dom-of Compose” tells us that Compose can be run on any X
operation which has its range equal to one of its domain components. -
"Primes In-dom-of Squaring” tells us that we can apply the operation Squaring to any ol
particular prime number we wish. ¥
el
e
Let us now turn from In-dom-of to the related facet In-ran-of.
i
We say that concept A is in the range of B iff B is an Activity?! and A is a specialization :::-:
% of the range of B. More precisely, we can say that "A In-ran-of B" iff A
2 1. A and B are concepts ey
2. B isa Operation (ie, B is an example of the concept "Operation”) b
- 3. Some entry on the Domain/range facet of B has the form <D| Dy... Dj » R> with R .
! 5
" a generalization of A. L
3 For example, Odd-perfect-squares is In-ran-of Squaring, since (1) both of those are concepts, '.)'-;
- (2) Squaring is an operation, (3) one of its Domain/range entries is <Numbers-Perf- -
o 20 Since Odd-perfect-squares is more closely related to Numbers than 1. the concept Anything (half as many Genl links e
.(_ away), AM expects that restricting Add to Odd-perfect-squares will probably yield s mors promising new L
Z, operatian than restricting Set-insert to only insert odd perfect squares into sets. -
2 le, iff B ez Activs, iff BExamples{Active), iff Activa.Defn(B)=True. Actually, since the range of Predicates is merely _‘
{T,F}, we may as well sssume thet B is an operation, not a predicate. This is in fact sssumed, in the text and
) in the actusl AM system.
: 2=
== P
% -
LT T R o o S T e R T T I R CIE GO | .":.",’-:':‘:

- m re o,
A Wn L am,
e -li“‘-)- e

Chapter 5 AM: Disccvery in Mathematics as Heuristic Search -76-

squares>, and Perf-squares is a generalization of Odd-perfect-squares?2,

Here is what the In-ran-of facet of Odd-perfect-squares might look like:

(Squaring Add TIMES Maximum Minimum Cubing)

Each of these operations will — at least sometimes — produce an odd perfect square as its
result.

Semantically, the In-ran-of relation between A and B means that one might be able to
produce exampies of A by running operation B. Aha! This is a potential mechanism for
finding examples of a concept A. All you need do is get hold of In-ran-of(A), and run each
of those operations. Even more expeditious is to examine the Examples facets of each of
those operations, for aiready-run examples whose values should be tested using A.Defn, to
see if they are examples of A's. AM relies on this in times of high motivation; it is too
"blind" a method to use heavily all the time.

This facet is also useful for generating situations to investigate. Suppose that the
Domain/rarge facet of Doubling contains only one entry: < Numbers + Numbers >. Then
syntactically, Odd-rumbers is in the range of Doubling. Eventually a heuristic rule may
have AM spend some time looking for an example of Doubling, where the result was an
odd number. If none is quickly found, AM con jectr'res that it never will be found. Since
sne definition of Odd-ramber(x) is "Number(x) and Not(Even-number(x))", the only non-
odd numbers are even numbers. So AM will increment the Domain/range facet of
Doubling with the entry <Numbers-Even-numbers>, and remove the old entry. Thus Odd-
numbers will no longer be In-dom-of Doubling. AM can of course chance upon this
con jecture in a more positive way, by noticing that all known examples of Doubling have

results which are examples of Even-numbers.?3,

A more productive result is suggesied by examining the cases where Odd-perfect-squares
are the result of cubing. The smallest such odd numbers are 1, 729, and 15625. In general,

these numbers are all those of the form (2n+1)6. How could AM notice such an awkward
relationship?

The general question to ask, when A In-ran-of B, is "What 1s the set of domain items whose
values (under the operation B) are A's?" In case the answer is "All" or "None", some special
modifications can be made to the Domain/range facets and In-dom-of, In-ran-of facets of
various concepts, and a new con jecture can be printed. In other cases, a new concept might
get created, representing precisely the set of all arguments o B which yield values in A. If
you will, this is the inverse image of A, under operation B. In the case of B a predicate,
this might be the set of all arguments which satisfy the predicate.

22 Why? Because Genersl:zstions(Odd-perfect-squares) s the set of concepts {Odd-numbers Parf-squares Numbers
Obiects Any-concept Anything}, hence contains Perf-squares. So Perf-squares is a generalization of Odd-
perfect-squares.

a2 This positive spproach is in fact the way AM noticed this particular relationship.
6 Wrong That wat an exponent, not a footnote!

A AN A A A T e o A T T ;

AERE A S R TR S R LA A e A S DR B Ry
e e I A e e e

oo

v

Rl

X R

agptns]

s W]

i

[N Wl w.

13! AW

>

L

fi%e

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -77-

In the case of B=Cubing and A=Odd-perfect-squares, the heuristic mentioned above will
have AM create a new concept: the inverse image of Odd-perfect-squares under the
operation of Cubing. That is, find numbers whose cubes are Odd-perfect-squares. It is
quickly noticed that such numbers are precisely the set of Odd-perfect-squares themselves!
So The Domain/range facet of Cubing might get this new entry: <Odd-perfect-squares -
Odd-perfect-squares>. But not all squares can be reached by cubing, only a few of them
can. AM will notice this, and the new range would then be isolated and might be reiiamed
by the user "Perfect-:. - pawers”. Note that ali this was brought on by examining the In-
ran-of facet of Odd-f ct-squares. "Cubing" was Just one of the seven entries there.
There are six more :torics to tell in this tiny nook of AM's activities.

How exactly doe: -. o about gathering tk: In-ran-v. and In-dom-of lists? Given a
concept C, AM can s.an "down the lobal tree of operations (the Exs and Spec links below
the concept ‘Active’). For if € -s nat In-dom i F, it certainly won't be In-dom-of any
specialization of F. Similarly, - it can't be produced by F, it wont be produced by any
specialization of F. I/ you can't ¢ - using Doubling you'll never get it by Quadrupling. So
AM simply ripples around, as usual. The precise code for this algorithm is of little interest.
There are not that many operations, and it is cheap to tell whether X is a specialization of
a given concept, so even an exhaustive search wouldn't be prohibitive. Finally, recall that
such a search is not done z!l the time. Jt will be done initially, pevhaps, but after that the
In-dom-of and In-ran-of networks will oriy need slight updating now and then.

5.2.4. Views

Often, two concepts A and B will be inequivalent, yet there will be a "natural” bi jection
between one and {a subset of) the other. For example, consider a firite set S of atoms, and

consider the set of all its subsets, 25. also called the power set of S. Now S is a member of,

but not a subset of, 25 (eg. if S={x.y,..}, then x is not a member of 25). On the other hand,
we can identify or view S as a subset by the mapping v-{v}. Then S is associated with the

following subset of g5, { {x}, {y} }. Why would we want to do this? Well, it shows that S is

identified with a proper subset of 25, and indicates that S has a lower cardinality
(remember: all sets are finite).

As another example, most of us would agree that the set {x, {y}, 2} can be associated with
the following bag: (x, {y}, z). Each of them can be viewed as the other. Sometimes such a
viewing is not perfectly natural, or 1snt really a bijection: how could the bag (2, 2, 3) be
viewed as a set? Is {2,3} better or worse than {2,{2},3)?

The View facet of a concept C describes how to view instances of another concept D as if
they were C's. For example, this entry on the View facet of Sets explains how to view any
given structure as if it were a Set:

Structure: \ (x) Enclose~in-braces(Sort(Remove-multiple-alements(x)))

If given the list <zacas, this hittle program would remove muitip!e elements (leaving
<2,a,c>), sort the structure (making it <ac,z>), and replace >" by "{..}", leaving the

final value as {a.,z}. Note that this transformation 1s not l H the list <ac,z> would get
transformed into this same set. On the cther hand, it may be more useful than

P sl DA A e s T TN Y R [P ad e fj

Y

A7 bl 54

v £ v
» 5x

I ARAPAF Ll PR

-5
P

.
x" .
w

+

TR ¢~

P
v

LS LIRS

s x s
FRV IRy N

MR SNLANAY

BT Y N R T R W T R N T e LY S Y Y R T T R T E TN T Vo e e R L e P TR T RN A R R R R A A e AR L e g

| PORPE
Sty

s . .
Lot 1!

Y
L}
.

e LM

Chapter 5 AM: Discovary in Mathematics as Heuristic Search -78-

»

N

,
;,/ "l .

r

Pkt

transforming the original list into {2,{a,{c,{a}}}} which retains the ordering and multiple
element information. Both of those transformations may be present as entries on the View 4
facet of Sets.

s
‘ﬂ'

:}"
P
e Sy

WY
P
- -’b

s

A

As it turns out, the View facet of Sets actually contains only the following information:

x

A
T

<&

Structure: A (x) Enclose=in=braces(x)

Thus the Viewing will produce entities which are not quite sets. Eventually, AM will get
around to executing a task of the form "Check Examples of Sets", and at that time the error
will be corrected. One generalization of Sets is No-multiple-elements-Structures, and one of
its entries under Examples.Check says to remove all multiple elements. Similarly,
Unordered-structures is a generalization of Sets, and one of its Examples.Check subfacet
entries says to sort the structure. If either of these alters the structure, the old structure is
added to the Boundary-not subfacet (the ‘Just-barely-miss’ kind) of Examples facet of Sets.

The syntax of the View facet of a concept C is a list of entries; each entry specifies the name
of a concept, X, and a little program P. If it is desired to view an instance of X as if it were
a C, then program P is run on that X; the result is (hopefully) a C. The programs P are
opaque to AM; they must have no side effects and Le quick.

Here is an entry on the View facet of Singleton:
Anything: A (x) Set-insert(x, PHI)

In other words, to view anything as a singleton set, just insert it into the empty set. Note
that this is also one way to view anything as a set. As you've no doubt guessed, there is a
genera! formula explaining this:

Views(X) = View(Specializations(X))

Thus, to find all the ways of viewing something as a C, AM ripples away from C in the
Spec direction, gathering all the View facets along the way. All of their entries are valid
entries for C.View as well.

In addition to these built-in ways of using the Views facets, some special uses are made in
individual heuristic rules. Here is a heuristic rule which employs the Viewing facets of
relevant concepts in order to find some examples of a given concept C:

IF the current task is to Fill-in Examples of C,
- and C has some entries on its View facet,
I and one of those entries <X,P> indicates a concept X which has some known Examples,

L THEN run the associated program P on each member of Examples(X),

and add the following task to the agenda: "Check Examples of C", for the followir.g
‘.’ reason: "Some very risky techniques were used to find examples of C", and
Lol that reason’s rating is computed as: A’ srage(Worth(X), {ithe examples of C

found in this manner}).

Say the ' sk selected from the agenda was "Fill-in Exampies of Sets”. We saw that one
entry on ets.View was Structure: A(x) Enclose-in-braces(x). Thus it is of the form <X.,P>,

gl el A A A i A el i A R LA T i N A A A S e A A A S R AR
| Ly
| o
N

S

4

1:::

Chapter 5 AM: Discavary in Mathematics as Heuristic Search -79- N

with X=Structure. The above heuristic rule will trigger if any examples of Structures are e

known. The rule will then use the Yiew facet of Sets to find some examples of Sets. So AM -

will go off, gathering all the examples of structures. Since Lists is a Specialization of
Structure, the computation of Examiples(Structures) will eventually ripple downwards and
ask for Examples of Lists. If the Examples facet of Lists contains the entry <z,a,c,a,a>, then
this will be retrieved as one of the members of Examples(Structure). The heuristic rule takes
each such member in turn, and feeds it to Set.View's little program P. In this case, the :
program replaces the list brackets with set braces, thus converting <z,aca,a> to {2,322} .

B

In this manner, all the existing structures will be converted into sets, to provide examples of ;:::

sets. After all such conversions take place, a great number of potential examples of Sets will]

exist. The final action of the right side of the above heuristic rule is to add the new task -

"Check examples of Seis” to the agenda. When this gets selected, all the "slightly wrong”]

examples will be fixed up. Fuir example, {z,a,c,a,a} will be converted to {a,c,z}. o

If any reliance is made on those unchecked examples, there is the danger of incorrectly "(Z:’

rejecting a valid con jecture. This is not too serious, since the very first such reliance will "l

boost the priority of the task "Check examples of Sets”, and it would then probably »e the o

very next task chosen. n

E

5.2.5. Intuitions :;.Z

T he mathematician does not work like a machine; we cannot overemphacize the ;g&

fundamental role played in his research by a special intuition (frequently wron7), —

which is noi common-sense, but rather a divination of the regular behavior he Y

3 expects of mathematical beings. ~t
" == Bourbaki ~}

.
Dy

g~ g
I 1%

tyi
N
N

This facet turned out to be a "dud”, and was later excised from all the concepts. It will be
described below anyway, for the benefit of future researchers. Feel free to skip directly to

Nt
‘

v 2 -
5

El the next subsection. s

. The initial idea was to have a set of a few (3-10) large, global, opaque LISP functions. Each A

3 of these functions would be termed an “Intuition’ and would have some suggestive name e

- like "jigsaw-puzzle”, "see-saw”, "archery”, etc. Each function would somehow mo-:! the

particular activity implied by its name. There would be a multitude of parameter .’hich 3

- could be specified by the "caller” as if they were the arguments of the function. The 3

e function would then work to fill in values for any unspecified parameters. That’s all the "

furction does. The caller would also have to specify which parameters were to be =

5 considered as the "results” of the function. o
For the see-saw, the caller might provide the weight of the left-hand-side sitter, and the final ,'

position of the see-saw, and ask for the weight of the right-hand sitter. The function would -

X then compute that weight (as any random number greater/less-than the left-hand weight, !

.'"T".

.
T 3
PR e
LN

LRI
¥

iy

Y

>

REA Y BV VN AT N P E R i Rl T i T T D T T Al S RS T I P i B et R 0 T R £5 e i a2 R R Y R R e AT A R A R e R B B 2 |

—— .

P L]

Chapter 5 AM: Discovery in Msthematics as Heuristic Search -80-

depending on the desired tilt of the board). Or, the caller might specify the two weights
and ask for the final position.

ey oy

The See-saw function is an expert on this sub ject; it has efficient code for computing any
values which can be computed, and for randomly instantiating any variables which may
take on any value (e.g., the first names of the people doing the sitting). When an individual
call is made on this function, the caller is not told how the final values of the variables were
computed, only what those values end up as.

PTEEY

™ .

So the Intuitions were to be experimental laboratories for AM, wherein it could get some
(simulated) real-world empirical data. If the seesaw were the Intuition for ">", and weight
corresponded to Numbers, then several relationships might be visualized intuitively (like the
anti-symmetry of ">"). This is a nice idea, but in practice the only relationships derived in
this way were the cnes that were thought up while trying to encode the Intuition functions.
This shameful behavior led to the excision of the Intuitions facets completely from the
system.

iy

P g T

As another example, suppose AM is considering composing two relations R and S. If they i
have no common Intuition reference, then perhaps they're not meaningfully composable. If }
they do both tie into the same Intuition function, then perhaps that function can tell us

something about the composition. This is a nice idea, but in practice very few prunings :
were accomplished this way, and no unanticipated combinations were fused.

Each Intuition entry is like a "way in" to one of the few global scenarios. It can be
characterized as follows:
1. One of the salient features of these entries — and of the scenarios — is that AM is
absolutely forbidden to look inside them, to try to analyze them. They are gpaque.
Most Intuition functions use numbers and arithmetic, and it would be pointless to
say that AM discovered such concepts if it had access to those algorithms all along.
2. The second characteristic of an Intuition is that it be fallible. As with human
intuition, there is no guarantee that what is suggested will be verified even
empirically, let alone formally. Not only does this make the programming of
Intuition functions easier, it was meant to provide a degree of "fairness” to them.
AM wasn'’t cheating quite as much if the See-saw function was only antisymmetric
90% of the time.
3. Nevertheless, the intuitions are very suggestive. Many con jectures can be proposed
only via them. Some analogies (see the next subsection) can also be suggested via
common intuitions.

1‘7

3

3

s v":'/’
RS
PN

gty X
»

]

After they were coded and running, I decided tha: the intuition functions were unfair; they
contained some major discoveries "built-in” to them. They had the power to propose
otherwise-obscure new concepts and potential relationships. They contributed nothing other
than what was originaily programmed into them; they were not synergetic. Due to this
dubious character of the contributions by AM’s few Intuition functions, they were removed
from the system. All the examples and all the discoveries listed in this document were made !
without their assistance.

We shall now drop this de-implemented idea. T think there is some real opportunity for
research herz. For the benefit of any future researchers in this area, let me point to the ,
excellent discussion of analogic representations in [Sloman 71]. !

iR R VRN D, Bl A AR L L T A A N S S A N R A S R R A A R N D LA N b Pl o R A R R A G N RSAL S W U5 Sl B VR A e S St A lla® 4 %0 "W %Ey
K
1

AN p;
I\ W
& y
L
N 3
L Chapter & AM: Discovery in Mathematics as Heuristic Search -81- ’
~ 5.2.6. Analogies v
5
“ g
: . . . 5
-, The whole idea of unalogy is that ‘Effects’, viewed as a function of situation, is a £
L continuous function. 9
Fx’
=~ Poincare’ ¥
ﬁ\ i:‘?
r As with Views and Intuitions, this facet is useful for shifting between one part of the ;?
P‘ universe and another. Views dealt with transformations between two specific concepts; "
- Intuitions dealt with transformations between a bunch of concepts and a large standard -
scenario which was carefully hand-crafted in advance. In contrast, this facet deals with i
f transforming between a list of concepts and another list of concepts. &
-) .:)
Analogies operate on a much grander scale than Views. Rather than simply transforming a
0 few isolated items, they initiate the creation of many new concepts. Unlike Intuitions, they 5
< are not limited in scope beforehand, nor are they opaque. They are dynamically proposed.

The concept of "prime numbers” is analogous to the notion of "simple groups”. While not

KT TR

I—‘; isomorphic, you might guess at a few relationships involving simple groups just by my .
- telling ycu this fact: simple groups are to groups what primes are to numbers.2* i
e Let's take 3 elementary examples, involving very fundamental concepts. s
= =
k.
i 1. AM was told how to Yiew a set as if it were a bag. o
: :~:
) 2. AM was told it could Intuit the relation "2" as the predetermined "See-saw” function. X
g 3. AM, by ::self, once Analogized that these two lists correspond: %
- <Bags Same-length Operations-on-and-into Bags> E
<Bags-of-T's Equality Those operations restricted to Bags-of-T's> N
Iy]
e i
o The concept of a bag, all of whose elements are "T"s, is the unary representation of g
numbers discovered by AM. When the above analogy (#3) is first proposed, there are many N
» known Bag-operations?®, but there are as yet no numeric operations?®, This triggers one of N
AM’s heuristic rules, which spurs AM on to finding the analogues of specific Bag- 5
{ P P g Y
%‘ 24 If a group is not simple, it can be factored Unfortunately, the factorization of a group into simele graups is not unique.
o Another analogizing contact For each prime p, we can associate the cyclic group of order p, which i1s of >
course simple AM never came up with the concept of simple groups; this is just an illustratizn for the =
. sophisticated reader. =
t; 25 ie, sll entries on In-dom-of(Bag) and In-ran-of(Bag): s few of these are. Bag-insert, Bag-union, Bag-intersection
- 26 Examples of Operation whose domain/range contains "Number”, .
s:': :
.
L =
-

IPRPT I .
I S R R R

Waa T e e ws a we et e

e

o
+ ;
-8:‘;‘. Chapter 5 AM: Discovary in Mathematics s« Heuristic Search -82-
W, » -
\:’}* operations. That is, what special properties do the bag-operations have when their domains E
i and/or ranges are restricted from Bags to Bags-of-T’s (i.e, Numbers). In this way, in fact, &
o AM discovers Addition (by restricting Bag-union to the Domain/range <Bags-of-T’s Bags-
o of-T’s - Bags-of-T’s>), plus many other nice arithmetic functions. -
N ¥
! Well, if it leads to the discovery of Addition, that analogy is certainly worth having. How -
o would an analogy like that be proposed? As the reader might expect by now, the
L. mechanism is simply some heuristic rule adding it as an entry to the Analogies facet of a

xpmray

certain concept. For example:

IF the current task has just created a canonical specialization C2 of concept Cl, with respect
to operations F1 and F2, {i.e., two members of C2 satisfy F1 iff they satisfy
F2],
THEN add the following entr, to the Analogies facet of C2:

e

€l FI Operations-on-and-into(C1)> r
<C2 F2 Those opaerations restricied to C2's> ¢
After generalizing "Equality” into the operation "Same-length”, AM seeks to find a .
canonical?®’ representation for Bags. That is, AM seeks a canonizing function f, such that)
(for any two bags x,y) -
Same-length(x,y) iff Equal(f(x), fiy)). ':
Then the range of f would delineate the set of "canonical” Bags. AM finds such an f and A
N such a set of canonical bags: the operation f involves replacing each element of a bag by -
"T", and the canonical bags are thase whose elements are all T's. In this case, the above 2
{ rule triggers, with Cl=Bags, C2=Bags-of-T’s, F1=Same-length, F2=Equality, and the analogy -
oo which is produced is the one shown as example 3 above.
b R
i The Analogy facets are not implemented in full generalty in the existing LISP version of B
{‘}'* AM, and for that reason I shall refrain from delving deeper into their format. Since good
e research has already been done on reasoning by analogy?®, I did not view it as z central S
feature of my work. Very little space wiil be devoted te it in this document. r
An important type of analogy which was untapped by AM was that between heuristics. If o
two situations were similar, then conceivably the heuristics useful in one situation might be .
useful (or have useful analogues) in the new situation. Perhaps this is a viable way of ke
enlarging the known heuristics. Such "meta-level” activities were kept to a minimum
throughout AM, and this proved to be a serious limitation. ‘3
n Let me stress that the failure of the Intuitions facets to be nontrivial was due to the lack of
L spontaneity which they possessed. Analogies facets were useful and "fair” since their uses v
XK were not predetermined by the author. a
A_','.
L §:
:_: 27 A natursl, standard form All bags differing in only "unimportant™ waye should Ee transformed into the same canonical E
:-«g-:, form Two bags B1 and B2 which have the same length should get transformed mio the same canonical bag.
s 28 An excellent discussion of ressoning by analogy = found in [Polys 54} Some esrly work on emulsting this was reported e
b in {Evans 68), s more racent thsuis on this topic is [Kling 71} ;:
!~ >
4":)-:' ’:
=

¢

L A 2 S T A Ta kROl DI S e L A D" D e R W B B v B S S S, PR,

b b
& N
p? '
2 Chapter 5 AM: Discovery in Mathematics as Heuristic Search -83-)
i 5.2.7. Conjec’s s
N
Basically, facet Con jec of concept C is a list of relationships which involve C. We shall '
1_:. discuss its semantics (uses of this facet) before its syntax. "
N
) Perhaps the most obvious use for this facet would be to hold con jectures which could not ::.
be phrased simply. Yet it turns out that luckily (I think), all the conjectures "fell out" i
< naturally as trivial relationships, eg. simply as arcs in the Genl/Spec/Exs/Isas pointer P
N format. Specifically, the modal con jecture had the form "the range of F is not just C, but -
actually S". o
I For example, AM restricted TIMES to perfect squares, and noted that the result was not
merely a number but a perfect square each time. The unique factorization theorem was =
- noticed similarly (the range of Prime-factorings was always a singleton, not merely a set). i
o In all the cases encountered by AM, there was never any real need for a place to "park” an S
‘- awkwardly-phrased con jecture, because no awkward conjecture could ever possibly be noticed. .
F’ Why is this so? AM was constructed explicitly on the assumption that all (enough?) .
R (- important theorems could be discovered in quite natural ways, as very simple (already- L
; known) relationships on aiready-defined concepts. AM embodies several such assumptions E
e about math research; they are collected and packaged for display in Section 7.26, on
5 page 162. .
. What else might this facet be useful for, if not the storage of awkwardly-wcrded
0 con jectures? It might be a good place to store flimsy con jectures: those which were strong S
enough to get considered, yet for which not much empirical confirmation had been done. x
A This in fact was one important role of this facet. N
w 3
e £ For example, AM was initially told thal there are two specializations of Unordered- ‘{2
structures, namely Bags and Sets. But AM was not given any examples of any structures at X
- all. Early on, it chose the task "Fillin examples of Bags” from the agenda. After filling them 5
) g in, a heuristic 1ule had AM consider whether or not this concept of Bags was really any .
P more specialized than the concept of Unordered-structures. To test this empirically, AM ,}
. tried to verify whether or not there were any examples of Unordered-structures that were ({
}:—j not examples of Bags. Failure to find any led to proposing the conjecture "All Unordered- -
e structures are really Bags™. This could have been recorded quite easily: Bags was already i
known to be specialization of Unordered-structure, so all AM had to do was tag it as a 2
T generalization as well (add "Bags" to the Generalizations facet of the Unordered-structures <
n concept). But a heuristic rule which knows about sucl. equivalence con jectures first asked £
whether there were any specializations of Unordered-structures which had no known b
examples, and fur which AM had not (recently, at least) tried to fill in examples. In fact, -
E:\ such an entry was "Sets”. So the conjecture was stored on the Con jec facet of Unordered- ‘
- structures, and a new job was added to the agenda: "Fill in examples of Sets”. The reason -

was that such examples might disprove this fimsy conjecture. In fact, the job already
- existed on the agenda, so only the new reason was added, and its priority was boosted.
o When such examples were round, they did of course disprove that con jecture: each set was

T T I TR TR T S O O O
- A]

4)' - i /‘, BT,

- -

DR AT
PP Ao

ey
-

w."m

oS
‘.“f',z 4

H

1
%
'_l

x
.
4

-

L
4 Ly

-

i

v

v

P
y 'r i

Y

X

=

My "

1

L
At

a
3

A, A A,
T,

.
e

"
£

%y

NN

.
.l‘l

”

.
;‘_
"

sy

»

EREAS.

LS url:‘ ‘I 3
L2]
8

ey R
e

-
.

Y
]

Te

ey
L

£ r ¢
g Ry

2
M

Yatr
PRAPREPRN

'

o
L)

>
@

1 ¥ l‘
v -. t‘ . 3
ettt

¥

X
L4
o

)

0

Chapter & AM: Discovary in Mathematics as Hauristic Search -84-

an Unordered-structure and yet was not a Bag.2®

This last example has suggested another use for this facet: holding heuristic rules which are
relevant to filling in and checking con jectures. For example, the Con jec facet of Operations
has some special heuristics which look for certain kinds of relationships involving any
given operation (e.g, "Pick any example F(x)=y. See what interesting statements can be
made about y. Then try to verify or disprove each one by looking at the values of all the
other known calls on operation F"). The Con jec facet of Any-concept will contain knowledge
which is much more general in scope (e.g., "See whether concept C is an example of some
member of (C.Isa).Spec”). Compose.Con jec will contain more specific heuristics (e.g., "See if
the composition AoB is really no different from B").

Given any concept C, AM will ripple upwards, locating Isas(C), and collect the heuristics
which are tacked onto their Con jec facets. These heuristic rules will then be evaluated (in
order of increasing generality), and some conjectures will probably be proposed, checked,
discarded, modified, etc. In fact, each Conjec facet of each concept can have two separate
subfacets: Con jec.Fillin and Conjec.Check. The former contains heuristics for noticing
con jectures, the second for verifying and patching them up.

There is yet another use for this facet, one of efficiency of storage. After discovering that
all primes except 2 are Odd-primes, there is very little reason to keep around Odd-primes
as a separate concept from Primes. Yet they are not quite equivalent. Primes.Con jec is a
good place for AM to store the con jecture "Prime(x) implies that x=2 or Odd(x)", and to
pull over to Primes any efficient definition/algorithm which Odd-primes might possess
(patching it up to work for "2"), and then destroy the concept Odd-primes. Another way
out is merely to destroy "Primes”, and make 2 a distinguished number tacked onto the Just-
barely-missed subfacet of Odd-primes.Exs (just like "1" is already).

Here is another example: AM discovers that Set-insertoSet-insert is the same as just Set-
insert. That is, if you insert x twice into a set S, it's no different than inserting it just once
(because Sets don't allow multiple copies of the same element). Then there’s no longer any
reason for keeping Set-inserteSet-insert hanging around as a separate concept. Instead, just
add a small new entry te Set-insert.Conjec and forget that space-consuming composition
forever.

There 1s another use of the Con jec facet: untangling paradoxes. It is with no sorrow that I
mention that this facility was never needed by AM: no genuine contradictions ever were
believed by AM. What would one look like? Suppose a chain of Spec links indicates that X
is a specialization of Y, and yet AM finds some example x of X which does not satisfy
Y .Definition). So X is — and is not — a specialization of Y. In such cases, the Con jecs
facets of the concepts involved would indicate which of those Spec links were initially-
supplied (hence unchallengabie), which links were created based on formal verifications
(barely challengabie), and which links were established based only on empirical evidence
(yes, these are the ones which would then fade into the sunset). If it has to, AM should be
abl: to recall the justification for each new link it created. AM can deduce this by
examining the Con jec facets of the concepts involved.

29 Bags ore not multisets, sithough those two notions are very closely related to each other. Esch set is 8 multiset by
definition; but sach set is gusranteed by definition to not be o bag.

& S v e Bt v a8 Bet it s S AR YRR A i IO g et iE 8 LSl IRl A SR R e e

R AR A S

k| S0 1

ma

B it |

2

ey g

[iy |

Lamrees

redriiH

[

L

[+ SE4

-3 2

[Chat i

| ACpai Rt

5
B

4

PlE

|

Al
.
<

A\

‘?
’
-

b
TR

fad
1)

A W Lo e Ty S T

e e v e aw e ta w N BT e LR T A

Ll e A A S A s R T,

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -85-

Periodically (at huge intervals) AM chose a task of the form "Check conjecs about C", at
which time all the entries on C.Con jec would be re-examined in light of existing data. Some
would be discarded (perhaps causing some Exs/Isa/Spec/Genl links to vanish with them).
Some of the con jectures might be believed much more strongly now (causing some new links
to be recorded). This turned out to be a surprisingly ineffective activity; very few new
revelations were obtained this way. Ultimately, this kind of task was muzzled (AM was
inhibited from doing this).

Theoretically, AM might possess rules which transformed a con jecture into 2 more efficient
algorithm for an operation, or which used the knowledge contained therein to speed up an
existing algorithm. Another sophisticated use of a conjec would be to set up a new

representation scheme for a concept™.

Finally, the Con jec's facet is used as a showcase, to highlight some nice discovery that AM
wants to display. The user can look at the entries on each concept’s Conjec facet (after a
long run) and get a better feeling for AM’s abilities. If there are several powerful
con jectures listed for concept C, then it appears to the user that AM “understands” the
concept much better than if C.Con jecs is empty.

Let's recapitulate the uses of this facet:

1. Store awkwardly-phrased con jectures: this wasn't really useful,

2. Store flimsy con jectures: apparent relationships worth remembering, yet not quite
believed.

3. Hold heuristics which notice and check con jectures.

4, Obviate the need for many similar concepts: Collapse the entire essence of a related
concept into one or two relationships involving this one.

5. Untangling paradoxes: a historic record, which wasn't really used.

6. Improve existing algorithms, definition testing procedures, representations.

7. Display AM’s most impressive observed relationships in a form which is easily
inspectable by the user.

The syntax of this facet is simply a list of con jectures, where each con jecture has the form
of ‘a relationship: (R a b c.d). R is the name of a known operation (in which case, abc... are
its arguments and we claim that d is its value), or R is a predicate (and d is either True or
False), or R is the name of a kind of link (Genl, Spec, Isa, or Exs), and the claim is that a
and b are related by R. Here are three example of conjectures, illustrating the possible
formats:

1. (Compose Set-insert Set-insert Set-insert). This says that if you apply the known
nperation Compose, to the two arguments Set-insert and Set-insert, then the
resuitant composition is indistinguishable from Set-insert.

2. (Same-size Insert(S,5) S False). That 1s, inserting a set into itself will always (for finite
sets) give you a set of a different length.

3. (Example-of Prime-factorings Function). This conjecture is the unique factorization

30 eg, sfter unique factorization is discovered, begin repre:- ‘ing numbars ss a bag of primes: n is represented as the

prime factorization of n This is exponentislly better than unary notation bags-of-T's. AM had a tiny sbility
for this kind of ongoing transformation, so crude it's better left undescribed

PARAIAdE L e AL et e Al LA R A S AR S R RN R A A A R S A o B A0 o e e R LR A DA R E S Bk A il e S B VB, Tt NS

;'\“j: Chapter 5 AM: Discovery in Mathematics as Heuristic Search -86- !
A
e
ek theorem. The operation which takes a number n, and finds all prime factorizations i
: of n, is claimed to be a function, not merely a relation. That is, each n has i

precisely one such prime factoring.

5.2.8. Definitions

A typical way to disambiguate a concept from all others is to provide a "definition” for it.3!
Almost every concept had some entries initially supplied on its "Definitions" facet. The
format of this facet is a list of entries, each one describing a separate definition. A single
entry will have the following parts:
1. Descriptors: Recursive/".inear/lterative, Quick/Slow, Opaque/Transparent, Once-
only/Early/Late, Destructive/Nondestructive.
2. Relators: Reducing to the definition of concept X, Same as Y except.., Specialized
version of Z, Using the definition of W, etc.
3. Predicate: A small, executable piece of LISP code, to tell if any given item is an
example of this concept.

PR PR

P T

The predicate or "code” part of the entry must be faithfully described by the Descriptors,
must be related to other concepts just as the Relators claim. The predicate must be a LiSP
function wiich take argument(s) and return either T or NIL (for True/False), depending on
whether or not the argument(s) can be regarded as examples of the concept.

PRNEL

The argument “{A B}" should satisfy the predicate of any valid definition entry of the Sets
concept. This triple of arguments <{A B}, {A C}, {A B C}> should satisfy any definition of
the Set-union concept, since the third is equal to the Set-union of the first two arguments. !

Here is a typical entry from the Definitions facet of the Set-union concept:

Descriptors: Slow, Recursive, Transparent

Relators: Uses the algorithm for Set-insert, Uses the definition of Emply-set,
Uses the definition of Set-equal, Uses the algorithm for Some-member,
Uses the algorithm for Set-delete, Uses the definition of Set-union

ey

Code: A (A BC)
IF Emply-set.Defn(A) THEN Set-equal.Defn(B,C} ELSE z
X « Some=-member.Alg(A)
A « Set-delete.Alg(X,A)
B ¢ Set-insert.Alg(X,B)

[L0

Set-union.Dein{A,B,C)
i
31 As EPAM studier showed [Feigenbaum €3], ona car never be sure that this definition will specify the concept uniquely
for all time. In the distant future, eome new concept may differ in ways thought to ba ignoreble at the H
present time. é

- aw

S T S P Bt S SRR S S S ‘y-‘_‘) .*H‘x*,;u PRI S L N T
| 4

A s Y A P A R A

A R

T AT A TR A IR A N LR IR A T I NTATRT OYVOT OY OTHY N Y

Chapter 5 AM: Discovery in Mathematics as Heuristic Sesrch -87-
Let me stress that this is just one entry, from one facet of one concept.

The notation "X « Some-member.Alg{A)" means that any one algorithm for the concept
Some-member should be accessed, and then it should be run on the argument A. The result,
which will be an element of A, is to be assigned the name "X". The effect is to bind the
variable X to some member of set A.

In the actual LISP implementation, the ELSE part of the conditional is really coded3? as:

(Set-union.Defn (Set-delete.Alg (SETQ X (Some-member.Alg A)) A)
(Set-insert.Alg X B)
C

This particular definition is not very efficient, but it is described as Transparent. That
means it is very well suited to analysis and modification by AM itself. Suppose some
heuristic rule wants to generalize this definition. It can peer inside it, and, e.g, replace 'he

base step call on Set-equal, by a call on a generalization of Set-equal (say "Same-length"33).

How could different definitions help here? Suppose there were a definition which first
checked to see if the three arguments were Set-equal to each other, and if so then it
instantly returned T as the value of the definition predicate; otherwise, it recurred into Set-
union.Defn again. This might be a good algorithm to try at the very beginning, but if the
Equality test fails, we dont want to keep recurring into this definition. This algorithm
should thus have a descriptor labelling it ONCE-ONLY EARLY.

A typical kind of entry for the Definitions facet of an operation is to simply call on the
Algorithm:s part of that same concept. Here is such an entry from the Definitions facet of the
Set-union concept:

Descripicrs: none
Relators: Uses the definition of Set-equal, Uses the algorithm for Set=union

Code: \ (A B C) Sei-equal.Defn(C, Set-union.Alg(A,B))

This definition is a trivial call on the "Algorithms" facet of Set-union. That is, one way to
test whether C is the set-union of A and B, is simply to run set-union on A and B, and
compare the result against C. The descriptors and relators of the particular algorithm
which is chosen will then be added to the descriptors and relators which exist so far on this
entry. Note that the box above (like the box on the previous page) is simply one entry on
the Definitions facet of the Set-union concept.

32 The expression "(f Defn al 22)" means "apply the predicate part of a definition of f, to arguments sl, #2,.". This
definition is to be randomly selected from the entries on the Definitrons facet of concept f.

33 For disjoint sets, the new definition would specify the opsration which we call “addition”

S o - L et W e e tm A s om g T LI SR
A R A A R T T i T T) S N A I T

[/ B

[Y

” o

- ¥
L

R
x 'l o

Ir

‘- "v "‘t A" /

"
V. #

!w-u“ ' I"‘:r’ Ferm ey

- -
1' . X[A

v-‘
'

vl' L}
,'u"‘ .! .'

o e

4"12’]

o
e

TR

T prsel

-’
.

i

gty By Ry
w -‘__’l _. A

e T ¥ T
o S N B W

-

ek,

A
n Ju e
P

AOE 3 4

v
S
LR Yy

DY

¥

.."'." ..! '

W

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -88-

There are three purposes to having descriptors and relators hanging around:

1. For the benefit of the user. AM appears more intelligent because it can describe the
kind of definition it is using — and why.

2. For the sake of efficiency. When all AM wants to do is to evaluate Set-union(A,B),
it's best just to grab a fast definition. When trying to generalize Set-union, 1t's
more appropriate to modify a very clean, transparent definition — even if it is a
slow one.

3. For the benefit of the heuristic rules. Often, a left- or a right-hand-side will ask
about a certain kind of definition. For example, "If a transparent definition of X
exisls, then try to specialize X".

Granted that Descriptors and Relators are useful, how do these "meta-level” modifiers get

filled in, for newly-createdd concepts? All such powers are embedded in the fine structure
of :he heuristic rules. This is true for the Algorithms facet as well, and will be illustrated in
the very next subsection.

Let me pull back the curtain a little further, and expose the actual implementation of these
ideas in AM. The secrets about to be revealed will not be acknowledged anywhere else in
this document. They may, however, be of interest to future researchers. Each concept may
have a cluster of Definition facets, just as it can have several kinds of Examples facets.
These include three types: Necessary and sufficient definitions, necessary definitions, and
sufficient definitions. These three types have the usual mathematical meanings. All that
has been alluded to before (and after this subsection) is the necc&suff type of definition (x is
an example of C if and only if x satisfies C.Def/necc&suff). Often, however, there will be a
much quicker sufficient definition (x satisfies C.Def/suf, only if x is certainly a C). Similarly,
entries on C.Def/nec are useful for quickly checking that x is not an example of C (to check
this, it suffices to verify that x fails to satisfy a necessary definition of C).

So given the task of deciding whether or not X is an example of C, we have many
alternatives:

1. If x is a concept, see if C is a member of x.ISA (if so, then x is an example of C).

2. Try to locate x within C.Exs. (depending upon the flavor of subfacet on which x is

found, this may show that x is or is not an example of C).

3. If X is a concept, ripple to collect ISA's(x), and see if C is a member of ISA's(x).
4. If there is a fast sufficent definition of C, see if x satisfies it.
5

By

A Y

P

i :‘" |" A

- . If there is a fast necessary definition of C, see if x fails it (if so, then X is not an
= example of C).
& 6. If there is a necessary and sufficient definition of C, see whether or not x satisfies
E"' that definition (this may show that x is or is not an example of C).
™. 7. Try to locate x within C.Exs. (depending upon the flavor of subfacet on which x is
- found, this may show that x is or is not an example of C).
- 8. Recur: check to see if x is an example of any specialization of C.

Y
[l

|
B
w

. Recur: check to see if x is not an example of some generalization of C (if so, then x
is not an example of C),

.":‘J‘“ X
A

e

In fact, there is a LISP function, IS-EXAMPLE, which performs those steps in that order.
-:\-
a 34 For initially-supplied definition entries, the suthar hand-coded thase modifiers.

o
l‘l FE

[}

W, - -
| LSS RN AN v

AR i

_ W A - - - P - -, - -
v LIS R N o] L A > LI e B R e A L [N A A I A N AT LA Y R - w T LY
S A e e e D T T e S S T T S R i T A T T, e St T T T N T T

(G DA VR FL P FE SR GE S0 Tt PRSI SN NS "L a e D VU AR S R S R NSRS S A A e

2
v
LY

¥

ta 8
el

I

)

= v
AN
LS

=]

36 30 S

")

ﬂ;&.ij

-
A

g
5

e
."11"
et e

e
1

i >

e

lo

™

-t 5
P P

S L AR E L R L RN M AL D YR T R o P D R A R AN R A A A S A T Tt I R RS

Y

e

. .
v .
[N

G

Ay

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -89- t'

L“

At each moment, there is a timer set, so even if there is a necessary and sufficient definition i

hanging around, it might run out of time before settling the issue one way or the other. ks

Each time the function recurs, the timer is granted a smaller and smaller quantum, until ~

finally it has too little to bother recurring anymore. There is a potential overlap of activity: >
I}f to see if x is an example of C, the function might ask whether x is or is not an example of -
& a particular generalization of C (step 9, above); to test that, AM might get to step 8, and ;
again ask if x is an example of C. Even though the timer would eventually terminate this “

F fiasco (and even though the true answer might be found despite this wasted effort) it is not e
s overly smart of AM to fall into this loop. Therefore, a stack is maintained, of all concepts N
whose definitions the IS-EXAMPLE function tried to test on argument x. As the function S

e, recurs, it adds the cuvrrent value of C to that stack; this value gets removed when the <
i‘;:: recursion pops back to this level, when that recursive call "returns” a value. a3
™ ki
3 5.2.9. Algorithms
) ,)
) Earlier, we said that each concept can have any facets from the universal fixed set of 25
[' facets. This is not strictly true. Sometimes, a whole class of concepts will possess a certain N
. type of facet which no others may meaningfully have. If C can have that facet, then so can o
any specialization of C. Typically, there will be some concept C such that the examples of £

0 C are precisely the set of concepts which can possess the new facet. That is, there will be a -
b domain of applicability for the facet, just as we defined such domains of applicability for 0
' heuristics. For example, consider the "Domain/Range” facet. It is meaningful only to R
. “operations”, but really is an important feature of all operations. Its domain of applicability o
li is Operation. u
The kinds of facets — including all such limited "jargon” facets — is fixed once and for all.

. New kinds of facets cannot be conceived and added by AM itself. Nor does AM have any
- control over the domain of applicability of each facet.
< If desired, one can view all this in a more general light. For each facet f, the only concepts o
E which can have entries for facet f are examples of some particular concept J(f) - the “}" -
: stands for "jargon”. J(f) is the domain of applicability of facet f. If C is any concept which .
- is not an exampie of J(f), then it can never meaningfully possess any entries for that facet f. -
i For almost all facets £, J(f) is "Any-concept”. Thus any concept can possess almost any facet. o
b For example, J(Defn)="Any-concept", so any concept may have definitions. -
5

F There are a few more restricted facets. For example, J(Domain/range)="Operation”. Sc only «
i operations can have domain/range facets.3% The concept "Sets”, which is not an operation, 3
can’t have a domain/range facet. -

£ . . o
I Similarly, J(Algorithms)="Actives". This facet is the sub ject of this section. The Algorithms "
’ facet is present for all — but only for — Actives (predicates, relations, operations). -
- Ll
f The representation is, as usual, a list of entries, each one describing a separate algorithm = iy
e single entry will have the following parts: s
X

35 Actually, Predicates also have domain/range facets, even though the Rangse parts are all nacessarily the same. {T,F}. ':‘

B A e R A £ 2 R ol £, BILE, ST B T S . Bl T Rt i

Chapter 5 AM: Discavery in Mathematics as Heuristic Search -90-

1. Descriptors: Recursive/Linear/Iterative, Quick/Slow, Opaque/Transparent,
Once-only/Early/Late, Destructive/Nondestructive.

2. Relators: Reducing to the algorithm for concept X, Same as Y except.., Specialized
version of Z’s algorithm, Using the algorithm for W, etc.

3. Program: A small, executable piece of LISP code, for actually running C.

Note the similarity to the format for the Definitions facets of concepts. Instead of a LISP
predicate, however, the Algorithms facets possess a LISP function (an executable piece of
code whose value will in general be other than True/False). That "program” part of the
entry must be faithfully described by the Descriptors, must be related to other concepts just
as the Relators claim, must take argurents and return values as specified in the
Domain/Range facet of C, and when run on any arguments, the resultant <args value> pair
must satisfy the Definitions facet of C.

There is an extra level of sophistication which is available but rarely used in AM. The
descriptors can themselves be small numeric-valued functions. For example, instead of just
including the Descriptor "Quick”, and instead of just giving a fixed number for the speed of
the algorithm, there might be a little program there, which looked at the arguments fed to
the algorithm, and then estimated how fast this algorithm would be. The main reason for
not usir.o this feature more heavily is that most of the algorithms are fairly fast, and fairly
constant in performance. It would be silly to spend much time recomputing their efficiency
each time they were called. If the algorithm is recursive, this conjures up even sillier
pictures. The main reason in support of using this feature is of course "intelligence™: in the
long run, processing a little bit before deciding which algorithm to run Aas to be the
winning solution. At the moment, it is not yet cost-effective.

Here is a typical entry from the Algorithms® facet of the Set-union concept:

Descriptors: Slow, Recursive, Transparent

Relators: Uses the algorithm for Set-insert, Uses the definition of Empty~-set,
Uses the algorithm for Some-member, Uses the algorithm for Sel-insert,
Uses the algorithm for Set-union

Code: \ (A B)
IF Emply-set.Defn{A) THEN B ELSE
X « Some-member.Alg(A)
A « Set-delete.Alg(X,A)
B « Set-insert.Alg(X,B)
Set-union.Alg(A,B)

36

note that it is similar to -~ but not identical to -~ the entry shown on page 86, of s Definition of Set-union.

P e
Lrielr

Ty

!

-
1

)
s

Chapter 5 AM: Discovery in Mathematics as Heuristx Search -91-

Note that the Descriptors don't say whether this algorithm is destructive®” or not. That
means that this same algorithm can be used either destructively or not, depending on what
AM wants. More precisely, it's up to the algorithms which get called on by this one. If they
are all chosen to be destructive, so will Set-union. If they all copy their arguments first thei
Set-union will not be destructive. For example, note how the algorithm calls on Set-
insert(X,B). If this is destructive, then at the end B will have been physically modified to
contain X; the original contents of B will be lost.

This particular algorithm is not very efficient, but it is described as Transparent. That
means it is very well suited to analysis and modification by AM itself. Suppose some
heuristic rule wants to specialize this algorithm. It can peer inside it, and, e.g, replace the

variable X in (Set-insert X B) by the constant "T"38

Why should AM bother storing multiple algorithms for the same concept? Consider this
example again, of Set-union. Suppose there were an algorithm which first checked to see if
the two arguments were Equal to each other, and if so then it instantly returned one of
them as the final value for Set-union; otherwise, it recurred into Set-union.Alg. This might
be a good algorithm to try at the very beginning, but if the Equality test fails, we don’t want
to keep recurring into this definition. This algorithm should thus have a descriptor
labelling it ONCE-ONLY EARLY.

Also, there is an iterative algorithm which checks to see if A equals B, and if so then it
returns B. If not, the algorithm proceeds to check that A is shorter than B, and if not it
switches them. Finally, it enters an iterative loop similar to the recursive one above: it
repeatedly transfers an element from A to B, using Some-member, Set-delete and Set-insert.
This iterative loop repeats until A becomes empty. While more efficient than the recursive
one, this definition is less transparent.

An even more efficient algorithm is provided, but it is totally opaque:

Descriptors: Quick, Non-recursive, Non-destructive, Opaque
Relafors: none

Code: A (A B) (UNION A B)

This algorithm calls on the LISP function "UNION" to perform the set-union. It is the
"best” algorithm to choose unless space is critical, in which case a destructive algorithm must
be chosen, or unless AM wishes to inspect it rather than run it, in which case a transparent
one must be picked.

37 A LISP sigorithm is destructive if it physically, permanently modifies the list structures it is fed ss arguments. Set-
union(A,B) is destructive if -- after running -- A and B don't have the same values they started with The
advantages of destructive operations are increased speed, decreased space used up, fewer assignment
statements. The danger of courss is in accidentally destroying some information you didn't mean to.

3t This is & fairly useless new operation, of course. It adds T to B unless A is empty, in which casa this operation has no
effect at all.

Chapter 5 AM: Discovary in Mathematics as Hsuristic Search -92-

All the details about understanding the descriptors and relators are embedded in the fine
structure of the heuristic rules. A left-hand-side may test whether a certain kind of
algorithm exists for a given concept. A right-hand-side which fills in a new algorithm must
also worry about filling in the appropriate descriptors and relators. As with newly created
concepts, such information is trivial to fill in at the time of creation, but becomes much
harder after the fact.

Here is a typical heuristic rule which results in a new entry being added to the Algorithms
facet of the newly-created concept named Compose-Set-Intersect&Set-Intersect:

IF the task is o Fillin Algorithms for F,
and F is an example of Composition
and F has a definition of the form FzGoH,
and F has no transparent, nonrecursive algorithm,
THEN add a new entry to the Algorithms facet of F,
with Descriptors: Transparent, Non-recursive
with Relators: Reducing to G.Alg and H.Alg, Using the Definition of <G.Domain>
with Program: A (||<G.Domain>]},l<H.Domain||=1,X)
(SETQ X (H.Alg [i<G.Domain>]j))
(AND
{<G.Domain>.Defn X)
{G.Alg X |IKH.Domaim||=1))

The intent of the little program which gets created is to apply the first operator, check that
the result is in the domain of the second, and then apply the second operator. The
expression ||[<G.Domain>|| means find a domain/range entry for G, count how many domain
components there are, and form a list that long from randomly-chosen variable names
(u,v,w,x,y,2).

For the case mentioned above, F = Compose-Set-Intersect&Set-Intersect, G = Set-Intersect,
and H = Set-Intersect. The domain of G is a pair of Sets, so [|<G.Domain>|| is a list of 2
variables, say (u v). Similarly, lli<H.Domain>|l-1 is a list of 1 variable, say (w). Putting all
this together, we see that the new definition entry created for Compose-Set-Intersect&cSet-
Intersect would look like this:

Descriptors: Non-Recursive, Transparent
Relators: Reducing to Set-Intersect.Alg, Using the definition of Sets

Code: A {u,v,w,X)
{SETQ X (Set-Intarsect.Alg u v))
(AND
(Sets.De‘n X)
(Set-Intersect.Alg X w)

Let me make ciear here one "kluge” of the AM program. At times, AM will be capable of
producing only a slow algorithm for some new concept C. For example, TIMES™}(x) was

e m Y P u v gm RS , - e e N Y v B bt Ml e e e a
-"n‘(-nxg.-"_-f_‘_n'{- VT T TS T T AT T T Tt T T T e T e et FA TR TR AT ST T BT e e e LT ‘;‘.__-‘

iy
L]
¥
1
L3
k]
]
L
¥
-
L]
'
1]
B
3
’
'
t
”
.
-
]
.
L]
x
.
"
\
v
'
P
1]
«
'
N
.
'
'
-
L]
.
.
“
¥
.
i
'
4
.
\
.

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -93-

originally defined by AM as a blind, exhaustive search for bags of numbers whose product
is X. As AM uses that algorithm more and more, AM records how slow it is. Eventually, a
task is selected of the form "Fillin new algorithms for C", with the two reasons being that the
existing algorithms are all too slow, and they are used frequently. At this point, AM should
draw on a body of rules which take a declarative definition and transform it into an
efficient algorithm, or which take an inefficient algorithm and speed it up. Doing a good job
on just those rules would be a mammoth undertaking, and the author decided to omit them.
Instead, the system will occasionally beg the user for a better (albeit opaque) algorithm for
some particular operation. In general, the only requests were for inverse operations, and
even then only a few of them. The reader who wishes to know more about rules for
creating and improving LISF algorithms is directed to [Darlington and Burstall 73). A
more general discussion of the principles involved can be found in [Simon 72].

5.2.10. Domain/Range

Another facet possessed only by active concepts is Domain/Range. The syntax of this facet
is quite simple. It is a list of entries, each of the form < Dj D,.. = R 5, where there can be

any number of D;'s preceding the arrow, and R and all the Djs are the names uf concepts.

Semantically, this entry means that the active concept may be run on a list of arguments
where the first one is an example of D, the second an example of Do, etc, and in that case

will return a value guaranteed to be an example of R. In other words, the concept may be
considered a relation on the cross-product D;xDox..xR. We shall say that the domain of

the concept is DyxDox.., and that its range is R. Each D; is called a component of the
domain.

For example, here is what the Domain/Range facet of TIMES might look like:

{
ﬂ < Numbers Numbers = Numbers >
) < Odd-numbers Odd-numbers - Odd-numbers >
< Even-Numbers Evan-Numbers - Even-numbers >
) < Odd-numbers Even-Numbers = Even-Numbers >

< Perf-Squares Perf-Squsies ~» Perf-Squares >
< Bags-of-Numbers -» Numbers >

r }

(- Here is what the Domain/Range facet of Set-Union might look like:

{

- < Sets Sets = Sels >
- < Nonempty-seis Sets = Non-empty-sels >
.’ < Sets-of-Sets = Sels >

}

O

s SRR R A M R S R LT BNl Bl S TR 6 M N 2N A A R A £t L a0 BN AL T R L Sl A Fact i N oM el Nl Ut

i A i ki o oy STl S Sy L0 R Sk i e -
SN NSl A Y el \)

A AR S

&
4

ERGLNVI I

Chapler 5 AM: Discovery in Mathematice as Heuristic Search -04.

The Domain/Range part is useful for pruning away absurd cormpositions, and for
syntactically suggesting compositions and "coalescings”. Let’s see what this means.

Suppose some rule sometime iried to compose TIMESoSet-union. A rule tacked onto
Compose says to ensure that the range of Set-union at least intersects (and preferably is
equal to) some component of the domain of TIMES. But there are no entities which are

both sets and numbers®; e:go this fails almost instantaneously.

This is too bad, since there was probably a good reason (eg., intustion) for trying this
compuosition. If the activation energy (priority of the current task) is high enough, AM will
continue trying to force it through. The failure arose because Sets could not be viewed as if
they were Numbers. A relevant rule says:

IF you want to view X's as if they w-re Y's,
THEN seek an interesting operation F from X to Y, to do the viswing.

Sc AM had to locate any and all operations whose domain/range had an entry of the form
<Sets»Numbers>. The only such operation known to AM at the time was F=Lengtii. So
the composition produced was TIMES[X, Length(Set-union(Y,Z))].

Notice that if the composition Set-unioneSet-union is proposed, there will be no conflict,
since the range of Set-union obviously intersects one component of the domain of Set-union.
How can AM determine the domain/range of this composition? A rule tacked onto Compose
indicates that if F=GoH, and a domain/range entry for G is <A..X..B » C>, and an entry
for His <D..E - Y>, and Y intersects X, then an entry for F's domain/range is <A..D..E..B
- C>. That is, the domain of H is substituted for the single component of the domain of G
which can be shown to intersect the range of H. Pu:..y syntactically, AM can thus compute
some domain/range entries for the composition Set-unioneSet-union.
< Sets Sets = Sels> and < Sets Sels = Sets> coribine to yield < Sets Sets Sets - Sets >;
<{Non-empty-sels Sets - Non-empty-setsd> and <Seis Seis - Sels> combine to yield
<Non-empty-sels Sels Sets = Non-emply-sets>:
and so on. Sirilarly, one can compute an entry for the domain/range facet of the previous
composition of three operations TIM EScLengthoSet-union:
< Sets Sels = Seis), ¢ Sets = Wumbers>, and < Numbers Numbers - Numbers > ¢combine to
yield < Numbers Sets Sets - Numbers >

So when computing TIMES(X, Length(Set-union(Y,Z))), both Y and Z can be sets, and X
a number, and the resuit will be a number.

The claim was also made that Domain/Range facets help propose plausible coalescings. By
“coalescing” an operation, we mean defining a new one, which differs from the original one
in that a couple of the arguments must now coincide. For example, coalescing TIMES(x,y)
results in the new operation F(x) defined as TIMES(x,x). Syntactically, we can coalscce a
pair of domain components of the domain/range facet of an operation if those two ¢ zmain
components are equal, or if one ¢f them is a specialization of the other, or even if they

39 Why? The number n, to AM, is represented in unary, as a bag of n T's None of these sre sets The composition
“TIMESoBAG-UNION" would have made senss to AM, but would hr.ve been defined only for bags-of-T's Then
TIMESoBAG-UNION(x,y,2) would be just x{ysz).

| olialeialedn A S AR R N T i S 1 R A R DAL TP s S e Rl Ul vl S o e R P e E o ns i o Sl e o ERHE DA MLAL/SL Wi et LAl al tet ok Gel-

[
it
l.

<

i}

W Chapter 5 AM: Discovary in Mathematice as Heuristic Search -95.

ﬁ merely intersect. In the case of one related to the other by specialization, the more
specialized concept will replace both of them, In case of mercly intersecting, an extra test will

have to be inserted into the definition of the new coalesced operation.

F'-—M.
'. “‘.‘ -

Given this domain/range entry for Set-insert: < Anything Sets - Sets >, we see that it is ripe
for coalescing. Since Sets is a specialization of Anything, the new operation F(x), which is
defined as Set-insert(x,x), will have a domainjrange entry of the form < Sets - Sets >. That
P is, the specialized concept Sets will replace both of the old domain elements (Anything and
Sets). F{x) takes a set x and inserts it into ite=5. Thus F({a,b})={a,b,{a,b}}. In fact, this new
operation F is very exciting because it always seems to give a new, larger set than the one

’y yau feed in as the argument.
L‘.‘

We have seen how the Domain/range facets can prune away meaningless coalescings, as well
-~ as meaningless compositions. Any projvsed composition or coalescing will at least be
{‘3 syntactically meaningful. If all compositions are proposed only for at least one good semantic

reason, then those passing the domain/range test, and hence those which ultimately get
created, will all be valuable new concepts. Since almost all coalescings are semantically
~ interesting, any of them which have a valid Domain/Range entry will get created and
probably will be intezestiiig.

This facet is occasionally used to suggest con jectures to investigate. For example, a heuristic
rule says that if the domain/range entries have the form <D D D.. » genl(D) >, then it's
worthwhile seeing whether the value of this operation doesn’t really always iie inside D

- itself. This is used right after the BagseNumbers analogy is found, in the following way.
One of the Bag-operations known already is Bag-union. The analogy causes AM to
consider a new operation, with the same algorithm as Bag-union, but restricted to Bags-of-

) T’s (numbers in unary representation). The Domain/range facet of this new, restricted
mutation of Bag-union contains only this entry: <Bags-of-T’s Bags-of-T's +» Bags>. Since
I‘,‘ Bags is a generalization of Bags-of-T’s, the heuristic mentioned above triggers, and AM sees
whether or not the union of two Bags-of-T’s is always a bag containing only T’s. It appeatrs

B to be so, even in extreme cases, so the old Domain/range entry is replaced by this new one:

<Bags-of-T’s Bags-of-T’s » Bags-of-T’s>. When the user asks AM to call these bags-of-T’s
"numbers”, this entry becomes <Numbers Numbers + Numbers>. In modern terms, then, the
con jecture suggested was that the sum of two numbers is always a number.

15

v

b To sum up this last abihty in fancy language, we might say that one mechanism for
proposing con jectures is the prejudicial belief ir the unlikelihood of asymmitry. In this

[case, it is asymimetry in the parts of a Domain/range entry that draws atte.:rion. Such

b con jecturing can be done by any action part of any heuristic rule; the Conjer fu.et entries
don't have a moncpoly on initiating this type of activity.

£

e 5.2.11. Worth

How can we represent the worth of each concept? Here are some possible suggestions:
1. The most intelligent (but most difficult) solution is "purely symbolically”. That is, an
individualized description of the good and bad poinis of the concept; when it is
po useful, when misleading, etc.
- 2. A simpler solution would be to "standardize” the above symbolic description once

ML
o
ok

o

k 1&(!..5-»-,.}-'. eI A S Sl o Shu ik o 0 Pyt STUNET R gty BS Y o

Chapter 5 AM: Discovery in Mathematics as Heuristic Search .96-

and for all, fixing a universal list of questions. So each concept would have to
answer the questions on this list (How good are you at motivating new concepts?,
How costly is your definition to exscui? ..). The answers might each be symbolic;
eg. arbitrary English phrases.

3. To simplify this scheme even more, we can assume that the answers to each question
will be numeric-valued functions (i.e, LISP code which can be evaluated to yield a
number between 0 and 1000). The vector of numbers produced by Evaluating ail
these functions will then be easy to manipulate (e.g. using dot-product, vector-
product, vector-addition. etc.), and the functions themselves may be inspected for
sernantic content. Nevertheless, much content is lost in passing from symbolic
phrases to small LISP functions.

4. A slight simplification of the above would be to just store the vector of numbers
answering the fixed set of questions; i.e, don't bother storing a bunch of programs
which compute them dynamically.

5. Even simpler would be to try to assign a single "worthwhileness” number to each
concept, in lieu of the vector of numbers. Simple arithmetic operations could
manipulate Worth values then. In some cases, this linear ordering seems
reasonable (“primes" really are better than “palindromes”) Yet in many cases we
find concepts which are too different to be so easily compared (eg., "numbers" and
“angles".)

6. The least intelligent solution is none at all: each concept is considered equally
worthwhile as any other concept. This threatens to be combinatorial dynamite.

As we progress along the intelligents--trivial dimension, we find that the schemes get easier
and easier to code, the Worth values get easier and easier to deal with, but the amount of
reliable knowledge packed into them decreases.

Initially, scheme #3 above was chosen for AM: a vector of numeric-valued procedural
answers to a fixed set of questions. Here are those questions, the components of the Worth
vectors for each concept:

1. Overall aesthetic worth.

2. Overall utility. Combination of usefulness, ubiquity.

3. Age. How many cycles since this concept was created?

4. Life-span. Can this concept be forgotten yet?

5. Cost. How much cpu time has been spent on this concept, since 1ts creation?

Notice that in general no constant number can answer one of these questions once and for
all (consider, e.g., Life-span). Each ‘answer’ had to be a numeric-valued LISP function.

A few question: which crop up often are not present on this list, since they can be answered
trivially using standard LISP functions (e.g., "How much space does concept C use up?" can
be found by ~alling the function "COUNT" on the property-list of the LISP atora "C").

Another kind of juestion, which was anticipated and did in fact come up frequently, 1s of
the form "How good are the entries on facet F of this concept?”, for various values of F.
Since there are a couple dwzen kinds of facets, this would mean adding a couple dozen more
guestions to the list. The line must be drawn somewhere. If too much of AM’s time is
drained by evaluating where 1t is already, it can never progress.

D - T I L S A AL S e A TN
DA P ., } {? “..; e AR - ._-'_!--)_.““\‘_;l_:..,‘-\'_-q‘f‘.». »- -"" =T A o~ \ L)

ST AN RN AR LI AP A S A A L L e e i R A i A RIS S LS ¥ U i RS TS SR R N Y SRR R 42 A | |

i* Chapter 5 AM: Discovery in Mathematice as Heuristrc Search -97-
(- The heuristic rules are responsible for initially setting up the various entries on the Worth
E! facets of new concepts, and for periodically altering those entries for ali concepts, and for
% delving into those entries when required.

“

f Recent experiments have shown (see Experiment I, page i27) there was little change in

behavior when 2uch vector of functions was replaced by a single numeric function (actually,
the sum of the values of the components of the "old" vector of functions). There wasn't even

F too much change when this was replaced by a single number. There was a noticeable

- degradation (but no collapse) when all the concepts’ numbers were set equal to each other
initially.

i For the purposes of this document, then (except for this page and the discussion of

Experiment 1), we may as well assume that each concept has a single number (between O
and 1000) attached as its overall "Worth" rating. This number is set’® and referenced and
updated by heuristic rules. Experiment 1 can be considered as showing that a more
sophisticated Worth scheme is not necessary for the particular kinds of behaviors that AM

L4
[

+ ¥,

exhibits.
e
W
5.2.12. Interest
s
L.«
} Now that we know how how to judge the overall worth of the concept "Composition”, le’s

turn to the question of how interesting some specific composition is. Unfortunately, the
- Worth facet really has nothing to say about that problem. The Worth of the concept
B "Compose” has little effect on how interesting a particular composition is: "CountoDivisors-

of" is very interesting. and "InsertoMember"! is less so. The Worth facets of those concepts
will say something about their overall value. And yet there is some knowledge, some
i "features” which would make any composition which possessed them more interesting than a
L composition which lacked them:
1 Are the domain and range of the composition equai to each other?

- Are interesting properties of each component of the composition preserved?
Are undesirable properties lost (i.e., not true about the composition)?
Is the new composition equivalent to some already-known operation?

[

These hints about "features to look for" belony tacked onto the Composition concept, since
they modify all compositions. Where and how can this be done?

[ey
v 1‘1_

For this purpose each concept — including "Composition” — can have entries on its
"Interest” facet. It contains a bunch of features which (if true) would make any particular
example of the current concept interesting.

“ia

o
l

{:‘- The format fo: the Interest facet is as follows:

. < Conflict-matrix
{~ {Festure;, Value,, Reason;, Used,>
b

<Faature,, Value,, Reasun,, Usedy

- 40 The author initully sets this vatue for the 115 initisl concepts. Heuristic rules set 1t for each concept created by AM.

2 al INSERTOMEMBER(x,,2)« if xty, then insert ‘T" into 2, else insert "N’ into 2.

Eu r Wi WL N oMW iR Wil Y t PR RS R T L I R S, S e N S Y2 Py P S, ViR B M S A AR LR Ry W) B T N Mt |
e HR AR R AT L TR

5}}3

g

Chapter 5 AM: Discovery in Mathematics ss Heuristic Search -98-

<Feaiurey, Valuey, Reasony, Usedy>
b

This is the format of the facet itself, not of each entry. The conflict-matrix is special and
will be discussec below. Each Feature/Value/Reason/Used quadruple will be termed an
“entry"” on the Interest facet.

Each "Feature,” is a LISP predicate, indicating whether or not some interesting property is
satisfied. The corresponding "Valve” 15 a numeric function for computing just how
ce valuable this feature is. The "Reason,” 1s a token (usually an Enghish phrase) which 1s
e tacked along and moved around, and can be inspected by the user. The "Used;" subpart is

a list of all the concepts whose definitions are known to incorporate?? this feature; all
examples of such concepts will then automatically satisfy this Feature;.

For example, here is one entry from the Interest facet of Compose:

FEATURE: Domain(Argl)=Range(Arg2)

VALUE: .4 + .4xWorth(Domain(Argl)) ¢ .2xPriority(current task)

REASON: "The composition of Argl and Arg2 will map from a set back info that same
sot"

USED: Compose-with-self-Domain=Range-operation, Interesting-compose=-4

Just as with Isa’s and Generalizations, we can make a general statement about Interest
features:

Any feature tacked onto the Interest facat of any member of ISA’s(C), also epplies to C.

That is, X.Intevest is relevant to C iff C is an example of X. For example, any feature
which makes an operation interesting, also makes a composition interesting.

So we'd like to define the function Interests(C) as the union of the Interest features found

S, tacked onto any member of ISA'(C)."® But suine of these might have already been
) conjuined to a definition, to form the concept C (or a generahzation of C). So all C’s will
) trivially (by definition) satisfy such features. The USED subparts can be employed to find
-~ such features. In fact, the final value of Interests(C) is the one computed above, using

ISA’s(C), but after eliminating all the features whose USED subparts pointed to any
member of ISA's(C).

This covers the purpose of each subpart of each entry on a typical Interest facet. Now we'’re
ready to motivate the presence of the Conflict-matrices.

Often, AM will specialize a concept by conjoining onto its definition some features which
would make any example of the concept interesting. So any example of this new specialized

92 Not SATISFY the feature. Thus the general concept DomaineRange-op incorporates the feature "range(x)is one component
vt domain{x)" ss pet one of the conpuncts in its definition On the other hand, Set-union satisfies the
feature, since its range, Sets, really s one component of its domain

43 Recall that the formuls for this is [SA’'s(C) « Generalizations(lsa(Generalizations(C)))

T~ , e

h |

oy
o
P

oo
'l

LR g f AR oy

4

o e e
A A

o
o

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -99.

concept is thus guaranteed tu be an interesting example of the old concept. Sometimes,
however, a pair of features are exclusive: both of them can never be satisfied
simultaneously. For example, a composition can also be interesting if "arg2" 1s an operation
from Range(argl) into a set which is much more interesting than either Domain(argl) or
Range(argl). Clearly, this feature and the one shown above can't both be true ("x=y" and
"x much more interesting than y" can't occur simultaneously). If AM didn't have some
systematic way to realize this, however, 1t might create a new concept, called Interesting-
composition, defined as any composition satisiying both of those features. But then this
concept will be vacuous: no operation can possibly satisfy that over-constrained definition;
this new concept will have no examples; it is the null concept; it is trivially forgettable.
Merely to think of it is a blot on AM’s claim to rationality.

The "Conflict-matrix” is specified to prevent many such trivial combinations from eating up
a lot of AM’s time (and, as usual, it helps to make AM appear smarter). If there are K
features present for the Interest facet of the concept, then its conflict-matrix will be a KxK
matrix. In row i, column j of this matrix is a letter, indicating the relationship between
features i and j:

E Exclusive of each other: they both can't be true at the same time.

- Implies: If feature i holds, then feature j must hold.

« Implied by: If feature j holds, then so does feature i.

= Equal. Feature i holds precisely when feature j holds.

U Unrelated. As far as known, there 1s no connection between them.

These little relations are utilized by some of the heuristic rules. Here is one such rule. Its
purpose is to create a new, specialized form of concept C, if many examples of C were
previously found very quickly.

IF Current-task is (Fillin Specializations of C)
and ||C.Exampies||>30
and Time-spent-on-C-so=-far < 3 cpu seconds,
and Interests(C) is not nuli,
THEN create s new concept named interesting-C,
Defined as the conjunction of C.Defn and the highest-valued member of Interests{(C)
which is U (unrelated) to any feature USED in the definition of C.
and add the following task lo the agenda: Fillin examples of interesting-C, with value
computed as the Value subpart of the chosen feature, for this reason: "Any
exampla of Interesting-C is automatically an interesting example of C".
and add “Interesting-C" o the USED subpart of the entry where that -asature was
originally plucked from.

Of course, the LISP form of the above rule 1s really more detailed about what to do, but
tr.v general flavor of the interaction with the Interest facet should come across. As before,
th. value desired is not C.Interest, but rather the post-rippling value Interests(C). C.Int
coi; wins a few features pertaining just to C’s, but Interests(C) contains many additional
feat:: s which are not limited 1n scope to merely judging C's, but pertain tc a more general
class »: concepts. The quantity ‘Time-spent-on-C-so-far’ is one component of the Worth
face. ef C; it might just as well have been accessed from some "Past-history" record of AM’s
activities. The numbers 1n the rule — and every lirtle bit of that rule — were specified ad
hoc by '~e author. This 1s true for each rule initially present in AM. As Section 6.2 will
discuss, :2 precise numbers don’t drastically affect the system's performance.

P L R U PR A S R R T T S S VN e R
d A d] R - f v AT
e l'\-_"\-’"n,-', R AR R - ‘u«,"’."_’v E A T AR g

-
ey
* .

‘u"f. '{u ks
M

DI P TS W A" N S SN i e I A R AR IR g MDA SRE T LA T ai e St A i s

Chapter 5 AM: Discovery in Mathematics as Heuristx Search -100-
5.2.13. Suggest

This section describes a space-saving “trick”, and a "fix-up” to undo some potentially serious
side-effects of that trick. Readers not interested in this level of detail may skip to the next
subsection.

AM maintains a long list of tasks (the agenda), ordered by a global priority rating scheme.
Besides this, AM maintains two threshholds: Do-threshhold and a lower one, Be-threshhold.

When a new task is proposed, if its global priority is below Be-threshhold, then it won't
even be entered on the agenda. This value is set so low that any task having even one
mediocre reason will make it onto the agenda.

After a task is finished executing, the top-rated one from the agenda is selected to work on
next If its priority rating is below Do-threshhold, however, it 1s put back on the agenda,
and AM complains that no task on the agenda s very interesting at the moment. AM then
spends a minute or so looking around for new tasks, re-evaluating the priorities of the tasks
on the agenda already, etc.

One way to find new tasks (and new reasons for already-existing tasks) is to evaluate the
“Suggest” facets of all the concepts in the system. More precisely, each Suggest facet
contains some heuristics, encoded into LISP functions. Each function accepts a number N
as an argument (representmg some minimum value tolerable for a new task), and the
function returns as its value a list of new tasks. These are then merged into the agenda, if
desired.

Semantically, each function is one heuristic rule for suggesting a new task which might be
very plausible, promising, and a propos at the current time. For example, here is one entry
from the Suggest facet of Any-concept:

IF there are no examples for concept C filled in so far,
THEN consider the task "Fiilin examples of C", for the following reason: “No examples
of C filled in so far", whose value is half of Worth(C). If that value is below
argl, then forget it; otherwise, try to add to to the agenda.

The argument “arg1” is that low numeric value, N, suppled to the Suggest facet.

This entry alone will produce a multitude of potential tasks; for concepts whose Worth
numbers are high, or for which a task is already on the agenda to fill in their examples,
these suggested tasks will be remembered; most of the other ones will typically be forgotten.

One use of this facet is thus to "beef up" the agenda whenever AM is discontented with all
the tasks thereon. At such a time, AM may call on all the Suggest facets in the system, and a
large volume of new tasks will be added to the agenda. Many of them will exist there
already, but for different reasons, so many old tasks’ priority values will rise. After this
period of suggesting is over, the agenda’s highest-ranking task will hopefully have a higher
value than any did before. Also at this time, the Be-threshhold and Do-threshhold
numbers are reduced. So there are two reasons why the top task may now be rated higher
than Do-threshhold. If it isn't, then the threshholds are lowered again, and again all the
Sugg facets are triggered (this time with a lower N value).

v
L
v

L)
o
1 L 1] t

a '

4 1"‘3“-‘:.1 oy
.« s ‘e
B

[

Chapter 5 AM: Discovery in Mathematics as Heuristic Searcls -101-

o)
-

Both threshholds are raised slightly every time AM succeeds in picking and executing a
d task. So they follow a pattern of slow increase, followed by a sudden decrement, followed by
another slow increase, etc. This was intended to mimic a human’s increasing expectations as
he makes progress.*® It also mimics the way a human strains his mind when an obstacle to
that progress appears; if the straining doesn’t produce a brilhant new insight, he grudgingly
is willing to reduce his expectations, and perhaps resume some “old path" abandoned

T
y————
4
o0t

n earlier,

L Another use of this facet is to re-suggest tasks that might have been dropped from (or never

i made it onto) the agenda, because they weren’t valued above Be-threshhold. How might this

£ work? Suppose that, at an earlier time, a task was proposed but never made it onto the

b agenda because Be-threshhold was quite high. Now, suppose Be-threshhold is much lower
(due to a succession of failures). If a Sugg facet re-proposes that same task, it will be

-~ accepted, will "stick” onto the agenda (albeit near the bottom). The Suggest facets can

v reproduce most of the common tasks, and try to stick them on the agenda (though usually

" for a mediocre to poor reason). It will stifl usually require another reason for such a task io

. rise to the very top of the agenda, and be selected and executed.
L So the use of the two threshholds is really an vnaesthetic space-saving device, aid the role

of the Suggest facets is merely to correct the errors introduced in this way. There may be
no convincing intuitive reason for having these facets at all in a "just” world.

o~ 5.2.14. Fillin/Check

To doubt everything doesn’t suffice; one must know why he doubts.

3:': =~ Poincare’

g There is one more level of structure to AM’s representation of a concept than the simple
"properties on a property-list” image. Each concept consisis of a bunch of facets; each facet
follows the format layed down for it (and described in the preceding several subsections).
Yet each facet of each concept can have two additional "subfacets” (little slots that are hung
onto any desired slot) named Fillin and Check.

o
Pt et }

ate

The "Fillin" field of facet F of concept C is abbreviated C.F.Fillin. The format of that
subfield is a list of heuristic rules, encoded into LISP functions. Semantically, each rule in
C.F.Fillin should be relevant to filling in entries for facet F of any concept which is a C.
‘“ This substructure is an implementation answer te the question of where to place certain
(- heuristic rules.

v

o™ As an illustration, let me describe a typical rule which is found on Compose.Examples.Fillin.
F According to the last paragraph, this must be useful for filling in examples of any operation
é; a4 This was based on personal introspection, and should be tested sxperimentally

Sl SR gRe R T E it Teis teintaa Sk Vil B e 2 Sa i i B Al S NSk R (iRl g e S i Pav, ¢ g At s R WY L ot R gtel ARSI 41 67 A i R R e T e Bl R) f S |

T

Lt
e 2 €

ey TETg e T
‘1‘1{.""‘?.“

2 AN A AN

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -192-

which is a composition. The rule says that if the composition AoB is formed from two very
time-consuming operations A and B, then it’s worth trying to find some examples of AoB by
symbolic means; in this case, scan the examples of A and of B, for some pair of examples
x-y (example of B) and y-z (example of A). Then posit that x-z is an example of AoB.
This rule applies precisely to the task of filling in examples of Examples(Composition).
Thus, it is relevant to the task "Fill in examples of Insertolnsert”. It is irrelevant if you
change the action (e.g., “Check examples of Insertolnsert”), or if you change the facet to be
dealt with (e.g.,, "Fill in algorithms for Insertolnsert”), or if you change the class of concept

(eg., "Fill in examples of Set-union)®.

As another illustration, let me describe a typical rule which is found on
Compose.Con jec Fillin. It says that one potential con jecture about a given composition AoB
is that it is unchanged from A (or from B). This happens often enough that it's worth
examining each time a new composition is made. This rule applies precisely to the task of
filling in con jectures about particular compositions.

The subfacet Any-Concept.Examples.Fillin is quite large; it contains al! ine known methods

for filling in examples of C (when all we krow is that C is a concept). Here are a few of

those techniques®;

1. Instantiate C.Defn

2. Search the examples facets of all the concepts on Generalizations(C) for examples of
Cc

3. Run some of the concepts named in In-ran-of(C) (i, operations whose range is C)
and collect the resultant values.

Any-Concept.Examples.Check is large for simil: reasons. A typical entry there says to
examine each verified example of C: if it is also an example of a specialization of C, then it

must be removed from C.Examples and inserted”” into the Examples facet of that
specialized concept.

Here is one typical entry from Operation.Domain/Range.Check:

IF a domain/range entry has the form (D D D.. = R),
and all the D's are equal, and R is a generalization of D,
THEN it's worth seeing whether (D D D.. = D) is consistent with all known examples of the
operation.
If there are no known examples, add s task to the agenda requesting they be filled in.
If there are examples, and (D D D.. = D) is consistent, add it to the Domain/range facet
of this operation,
If there are some contradicting examples, create & new concept which is defined as this
operation restricted to (D D D... = D).

a5 Note that it doss make sense if you replace the concept "Insert o Insert” by any other example of s Composition (e.g.,
"Fill in examples of Set-Union o Set-intersection™).

6 The interested resder will find them all listed in Appendix 3, beginning on page 233.

a7 Conditionally Since each concept 18 of finite worth, it is allotted a finite amount of space. A random number is generated
to decide whether or not to actually inzert this example mto the Examples facet of the specialization of C.
The more thet specishized concept 1s “sxceeding its quota™, the narrower the range that the random number
must fall into to have ihst new item inserted. The probability is never precisely 1 or O

I

P

o |

—

<y

i LV

i
PLIMEL®)

.,
.')
.
ey

e
A3
Ty

rE

Chapter 5 AM: Discovery in Mathematics as Heuristic Sesrch -103-

Note that this "Checking” rule doesn't just passively check the designated facet; it actively
“fixes up” faulty entries, adds new tasks, creates new concepts, etc. Ali the check rules are
very aggressive in this way. For example, one entry on No-multiple-elements-
structure. Examples.Check will actually remove any multiple occurrences of an element from
a structure.

As you might expect, the set Checks(C.F) of all relevant rules for checking facet F of
concept C is obtained as (ISA’s(C)).F.Check. That is, look for the Check subfacet of the F
facet of all the concepts on ISA'S(C)). Similarly, Fillins(C.F) is the union of the Fillin
subfacets of the F facets of all the concepts on ISA's(C).

When AM chooses a task like "Fillin examples of Primes", its first action is to compute
Fillins(Primes.Exs). It does this by asking for ISA's(Primes); that is, a list of all concepts of
which Primes is an example. This list is: <Ob jects Any-concept Anything>. So the relevant
heuristics are gathered from Ob jects.Exs.Fillin, etc. This list of heuristics is then executed,
in order (last executed are the heuristics attached to Anything.Exs.Fillin).

It should now be clear what is meant when a concept’s facets are listed in the following
format:

Name(s) . Frob, Frobnation

Algorithms Al A2

Examples El E2E3 E4E5 E6
Fillin Rule! Rule2
Check Rule3 Rule4 Rule5

Domain/range DRI DR2 DR3
Check Rule6

Conjecs C1 C2C3CAC5C6
Fitlin Rule? Rule8
Check Rule9 RuleiO

E.g., the entry Rule9 is a heuristic rule which may help to check entries on the Con jecs facet

of any Frob®. This notation will not be used actually in this document, partly for the
benefit of those readers who skip this subsection, partly for consistency between concepts
diagrammed before and after this subsection. Rather, all the Fillin heuristics for a concept
will be gathered together into what appears to be just one coherent facet. Theoretically, of
course, one could organize them that way, with an extra precondition on each Fillin
heuristic to indicate which facet it is useful for filling in.

a8 ‘Frob’ is » ncnsense word, a varisble identifier which stands for sny concept.

P S S S N PR P I B B D P i . PG o - e T Bl B Rt Tl Sl
- o “ e @ ininiileima

Chapter 5 AM: Discovery in Mathematics as Heuristic Search

5.2.15. Other Facets which were Considered

Most facets (like "Definitions") were anticipated from the very beginning planning of AM,
and proved just as useful as expected. Others (like "Intuitions”) were also expected to be
very important, yet were a serious disappointment. Still others (like "Suggest”) were
unplanned and grumblingly acknowledged as necessary for the particular LISP program
that bears the name AM. Finally, we turn to a few facets which were initially planned, and
yet which were ad judged useless around the time that AM was coded. They were therefore
never really a part of the LISP program AM, although they figured in its proposal. Let me
list them, and explain why each one was dropped.

I. UN-INTERESTINGNESS. This was to be similar to the Interest part. It would contain
entries of the form feature/value/reason, where the feature would be a bad (dull,
trivializing, undesirable, uninteresting) property that an entity (a concept or a task)
might possess. If it did, then the value component would return a negative number as its
contribution to the worth/priority of that entity. This sounded plausible, but turned out
to be useless in practice: (i) There were very few features one could point to which
explicitly indicated when something was boring; (ii) Often, a con junction of many such
features would make the entity seem unusual, hence interesting; (iii) Most entities were
viewed as very mediocre unless/until specific reasons to the contrary, and in those cases
the presence a few boring properties would be outshadowed by the few non-boring ones.
In a sea of mediocrity, there is little need to separate the boring from the very boring.

2. JUSTIFICATION. For conjectures which were not yet believed with certainty, this part
would contain all the known evidence supporting hem. This would hopefully be
convincing, if the user (or a concept) ever wanted to know. In cases of contradictions
arising somehow, this facet was to keep hold of the threads that could be untangled to

A8 resolve those paradoxes. As described earlier, this duty could naturally be assumed by

5 the Conjecs facet of each concept. The other intended role for this facet was to hold
: sketches of the proofs of theorems. Unfortunately, the intended concepts for Proof and

Absolute truth were never implemented, and thus most of the heuristic rules which

would have interacted with this facet are absent from AM. It simply was never needed.

3. RECOGNITION Originally, it was assumed that the location of relevant concepts and
their heuristics would be much more like a free-for-all (pandemonium) than an orderly

rippling process. As with the original use of BEINGs?, the expectation was that each
concept would have to "shout out” its relevance whenever the activities triggered some
recognition predicate inside that concept. Such predicates were to be stored in this facet.
But it quickly became apparent that the triggering predicates which were the left-hand-
sides of the heuristic rules were quick enough to obviate the need for pre-processing
them too heavily. Also, the only rules relevant to a given activity on concept C always
seemed to be attainable by rippling in a certain direction away from C. This varied
with the activity, and a relatively small table could be written, to specify which direction
to ripple in (for any given desired activity). We see that for "Fill-in examples of..", the
direction to ripple in is "Generalizations", to locate relevant heuristic rules. For “Judge
interest of.." the direction is also generalizations. For "Access specializations of”, the

ey
A

N

. . '- - -

a9 Interacting knowledge modules, aach module simulsting s different expert at a round-tsble meeting. See [Lenat 75b).

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -105-

direction is Specializations, etc. The only important point here is that the Recognition
facet was no longer neceded.

5,3, AM's Starting Concepts

The first subsection presents a diagram of the top-ievel (general) concepts AM started with,
with the lines indicating the Generalizations/Specializations kinds of relationships (single
line links) and a few Examples/Isa’s links (triple vertical lines). Several specific concepts
have been cmitted from that picture. All the concepts initially fed to AM are then listed
alphabeticaliy and described in Section 53.2. A full facet-by-facet description of each
concept is provided in Appendix 2. Finally, Section 5.3.3 discusses the choice of starting
concepts.

5.3.1. Diagram of Initial Concepts

1 e e N N A A A A N S Y I

Chapter 5 AM: Discovary in Mathematics as Heuristic Search -106-

Anything

/\

Any-concept non-concepts

ct%vitg' Object

Relation
Predicate Operation Atom Conjec Structure
Logical-reln

Constant-pred Equality-pred | Truth-value Struc-of-strucs
Empty
Const-T Const-F Obj-equal Mult-eles Non-mult Ord Unordered
Coalescing Osets

Inverted-operation
Canonization
Composition Sets
Restricted-operation

Lists)

Bags
Ord-pairs

The diagram above represents the "topmost™ concepts which AM had initially, shown
connected via Specialization links (\) and Examples links (). The only concepis not
diagrammed are examples of the concept Operation. There are 47 such operations.

Also, we should note that many entities exist in the system which are not themselves
concepts. For example, the number "3", though it be an example of many concepts, is not
itself a concept. All entities which are concepts are present on the list called CONCEPTS,
and they all have property lists (with facet names as the properties). In hindsight, this
somewhat arbitrary scheme is regrettable. A more aesthetic designer might have come up
with a more uniform system of representation than AM’s.

.y s - . PR > e

F A BA SR AAA LI ORI DA AR e AV R R e e e TS N N Y T s AN SO SO Y VIO Tt

L 2t TaP S Rl

Chapter 5 AM: Discovary in Msthematics as Hauristic Search -107-

5.3.2. Summary of Initial Concepts

Since the precise set of concepts is not central to the design of AM, or the quality of
behaviors of AM, they are not worth detailing here. On the other hand, a cursory
familiarity with their names and definitions should aid the reader in building up an
understanding of what AM has done. For that reason, the concepts will now be briefly
described, in alphabetical order. This is the same order as concepts are listed on page 173.
A fuller description of the concepts is provided in Appendix 2. The ordering within that
appendix is different; concepts are grouped together if they are semantically related, by
starting at the top of the diagram and meandering downward.

ACTIVITY represents something that can be "performed”. All Actives — and only Actives —
have Domain/range facets and Algorithms facets.

ALL-BUr-FIRST-ELEMENT is an operation which takes an ordered structure and removes the
first element from it. It is similar in spirit to the Lisp function "CDR".

ALL-BUT-LAST-ELEMENT takes an ordered structure and removes its last element.
ANY-CONCEPT is useful because it holds all the very general tactics for filling in and
checking each facet. The definition of Any-concept is "\ (x) x¢€CONCEPTS". ‘CONCEPTS’ is
AM'’s global list of entities known to be concepts. Initially, this list contains the hundred or
so concepts which AM starts with (e, all those diagrammed on the preceding page).
ANYTHING is defined as " (x) T" i.e, a predicate which will always return true. Notice that
the singleton {a} is an example of Anything, but (since it's not on the list CONCEPTS) it is
not an example of Any-concept.

ATOM contains data about all primitive, indivisible ob jects (1dentifiers, constants, variables).
BAG is a type of structure. It is unordered, and multiple occurrences of the same element
are permitted. They are isomorphic to the concept known as ‘multiset’, except that we
stipulate that sets are not bags.

BAG-DELETE is an operation which takes two arguments, X and B. Although x can be
anything, B must be a bag. The procedure is to remove one occurrence of x from B.

BAG-DIFF is an operation which takes two bags B,C. It repeatedly picks a member of C, and
removes it (one occurrence of it) from both B and C. This continues until C is empty.

BAG-INSERT is an operation which adds (another occurrence of) x into bag B.

BAG-INTERSECT takes two bags B,C, and creates a new bag D. An item occurs in D the
minimum number of times it occurs in either B or C.

BAG-UNION takes bag C and dumps all its elements into bag B.

CANONIZE is both an example of and a specialization of ‘Operation’. It accepts two
predicates P1 and P2 as arguments, both defined over some domain AxA, where P1 is a

=2

Chapter 5 AM: Discovary in Mathamatics as Heuristic Search -108-

generalization of P2. Canonize then tries to produce a "standard representation” for
elements of A, in the following way. It creates an operation f from A into A, sausfying.
P1(x,y) iff P2(f(x),{(y)). Then any item of the form f(x) is called a canonical member of A.
The set of such canonical-A's is worth naming, and it is worth investigating the restrictions
of various operations' domains and ranges to this set of canonical-A’s*®. "Canonize”
contains lots of information relevant to creating such functions f (given P1 and P2). Thus
Canonizr is an example of the concept Operation. Canonize also contains information
relevant to dealing with any and all such f's. So Canonize is a specialization of Operation.

COALESCE admits the same duality®. This very useful operation takes as its argument any
operation F(ab,cd..), locates two domain components which intersect (preferably, which are
equal; say the second and third), and then creates a new operation G defined as
G(abd..)eF(abbd..). That is, F is called upon with a pair of arguments equal to each
other. If F were Times, then G would be Squaring. If F were Set-insert, then G would be
the operation of inserting a set S into itself.

COMPOSITION involves taking two operations A and B, and applying them in sequence:
AoB(x):A(B(x)). This concept deals with (i) the activity of creating new compositions, given
a pair of operations; (ii) all the operations which were created in this fashion. That 1s why
this concept is both a specialization of and an example of Operation.

CONJECTURES are a kind of ob ject. This concept knows about — ard can store — con jectures.
When proof techniques are inserted into AM, this tiny twig of the tree of concepts will grow
to giant proportions.

CONSTANT-PREDICATE is a predicate which can afford to have a very liberal domain: it
always ignores its arguments and just returns the same logical value ail the time.

DELETE is an operation which contains all the information common to all flavors of
removing an element from a structure (regardless of the type of structure which is being
attenuated). When called upon to actually perform a deletion, this concept determines the
type of structure and then calls the appropriate specialized delete concept (e.g., Bag-delete).

DIFFERENCE is another general operation, which accepts two structures, determines their type
(e.g., Bags), and then calls the appropriate specialized version of difference (e.g., Bag-diff).

EMPTY-STRUCTURE contains data relevant to structures with no members.

FIRST-ELEMENT 1s an operation which takes an ordered structuic and returns the first
element. It is like the Lisp function ‘CAR’.

ICENTITY is just what it claims to be. It takes one argument and returns it immediately. The
main purpose of knowing about this boring transformation is just in case some new concept
turrs out unexpectedly to be equivalent to it.

50 ie, take an operation which used to have "A" as one of its domain components or as its rangs, and try to create a» new

opseration with sssentially the same definition but whose domain/range says "Canonical-A" instead of “A".

51 Both & specialization of Operation and an example of Operation.

;-
A

) b
e
et

SAOULSLELELGE AT RET LI LETIESL FE A S eUSEAtEEE SRR S A P SRR A RS SO T

Chapter 5 AM: Discovery in Mathematics as Heuristic Search -109-

INSERT takes an item x and a structure S, determnes S's type, and calls the appropriate
flavor of specialized Insertion concept. The general INSERT concept contains any
information common to all of those insertion concepts.

INTERSECT is an operation which computes the intersection of any two structures. It, too, has
a separate specialization for Bags, Sets, Osets, and Lists.

INVERT-AN=OPERATION is a very active concept. It can invert any given operation. If
F:X-Y is an operation, then its inverse will be abbreviated F!, and F"(y) is defined as all

the x’s in X for which F(x)=y. The domain and range of F~' are thus the range and
domain of F.

INVERTED-GP contains information specific to operations which were created us the inverses
of more primitive ones.

LAST-ELEMENT takes an ordered structure and returns its final member.

LIST is a type of structure. It is ordered, and multiple occurrences of the same element are
permitted. Lists are also called vectors, tuples, and obags (for "ordered bags").

LIST-DELETE is an operation which takes two arguments, x and B. Although x can be
anything, B must be a list. The procedure is to remove the first occurrence of x from B.

LIST-DIFF is an operation which takes two lists B,C. It repeatedly picks a member of C, and
removes it (the first remaining occurrence of it) from both B and C. This continues until
there are no more members in C.

LIST-INSERT is an operation which adds (another occurrence of) x onto the front of list B. It
is like the Lisp function ‘CONS’.

LIST-INTERSECT takes two lists B,C, and creates a new list D. An item occurs in D the
minimum number of times it occurs in either B or C. D is arranged in order as (a sublist
of) list B.

LIST=UNION takes list C glues it onto the end of list B. It’s like ' APPEND’ in Lisp.

LOGICAL-RELATION contains knowledge about Boolean cembinations: disjunction,
con junction, implication, etc.

MULTIPLE-ELEMENTS-STRUCTURES are a specialization of Structure. They permit the same
atom to occur more than once as a member. (e.g., Bags and Lists)

NO-MULTIPLE-ELEMENTS~STRUCTURES are a specialization of Structure. They permit the
same atom to occur only once as a member. (e.g., Sets and Osets)

NONEMPTY-STRUCTURES arc 3 speciaiizauon of Structure also. They contain data about all
structures which have some members.

OBJECT is a general, static concept. Objects are like the subjects and direct objects in

TR T T Y T A I P P A S T, D T S A S

M LA L AR NS EATA RN Ba i iy < it SR S AL AR U ot) S Mgl gl W) 31

Chapter 5 AM: Discoverv in Mathematics as Heuristic Search -110-

sentences, while the Actives are like the verbs>2.

OBJECT-EQUALITY is a predicate. It takes a pair of objects, and returns True if (i) they are
identical, or (ii) they are structures, and each corresponding pair of members satisfies
Ob ject-Equality. Often we'll call this ‘Equal’, and denote it as ‘=",

OPERATIONS are Actives which take arguments and return a value. While a predicate
examines its arguments and returns either True or False, an operation examines its
arguments and returns any number of values, of varying types. Assuming that the
arguments lay in the domain of the operation (as specified by some entry on its
Domain/range facet), then every value returned must lie within its range (as specified by
that same Domain/range entry).

ORDERED-PAIR is a kind of List. It has just twc ‘slots’, however: a front and u rear element.

ORDERED-STRUCTURE is a specialized type of Structure. It includes all structures for which
the order of insertion of two members can make a difference in whether the structures are
equal or not. Ordered-structures are those for which it makes sense to talk about a front
and a rear, a first element and a last element.

OSET is a type of structure. It is ordered, and multiple occurrences of the same element are
not permitted The short-term-memory of Newell's PSG [Newell 73] is an Oset, as is a
cafeteria line. Not much use was found for this concept by AM.

OSET-DELETE remov x from oset B (if x was in B).
OSET-DIFF 15 an operation which takes two osets B,C. It removes each member of C from B.

OSET-INSERT is an operation which adds x to the front of oset B. If x was in B previously,
it is simply moved te the front of B.

OSET-INTERSECT takes two osets B,C, and removes from B any items which are not in C as
well. B thus ‘induces’ the ordering on the resultant oset.

OSET-UNION takes oset C, removes any clements in B already, then glues what’s left of C
onto the rear of B.

PARALLEL-JOIN is an operation which takes a kind of structure and an operation H. It
creates a new operation F, whose domain is that type of structure. Fer any such structure S,
F(S) is computed by appending together H(x) for each member x of S.

PARALLEL-JOIN2 is a similar operation. It creates an operation F with two structural
arguments. F(S,L) is computed by appending the values of H(x,L), as x runs through the
elements of .53

52 As in English, a particular Activity can sometimes itsslf sa the subject

Here, the srgs to PARALLEL-JOINZ are two types of structures SS and LL, snd an operation H whose range is slso a
structural type DD. Then a new operation is created, with domain SSxLL and range DD.

-
-

LM
a8 ey
o

Chapter S AM: Discovary in Mathematics as Heuristic Search “11t-

PARALLEL-REPLACE is an operation used to synthesize new substitution operations. It takes
a structural type and an operation H as its arguments, and creates a new operation F. F(S)
is computed by simply replacing each member x of S by the value of F(x). The operation
produced is very much like the Lisp function MAPCAR.

PARALLEL-REPLACE2 is a slightly more general operation. It creates F, where F(S,L) is
computed by replacing each x¢€S by F(x,L).

PREDICATES are actives which examine their arguments and then return T or NIL (True or
False). It is only due to the capriciousness of AM's initial design that predicates are kept
distinct from operations. Of course, each example of an operation can be viewed as if it
were a predicate; if F:A-B is any operation from A to B, then we can consider F a relation
on AxB, that is a subset of AxB, and from there puss to viewing F as a (characteristic)
predicate F:AxB-{T,F}. Similarly, any predicate on Ax..XxBxC may be considered an
operation (a multi-valued, not-always-defined function) from Ax..xB into C. There are no
unary predicates. If there were one, say P:A-{T,F}, then that predicate would essentially be
a new way to view a certain subset of A; the predicate would then be transformed into
{a€A|P(a)}, made into a new concept, tagged as a specialization of A, and its definition
would be "A(a) [A.Defn(a) A P(a)]".

PROJECTIONI is a simple operation. It is defined as A (x y) x. Notice that Identity is just a
specialized restriction of Proji. Projl(Me.You)=Me.

PROJECTIONZ 1= a similar operation. It is defined as X (x y) y.

RELATION is ar:, Active which has been encapsulated into a set of ordered pairs. ‘Relation’
bridges the gap Letween active and static concepts.

REPEAT is an operation for generating new operations by repeating old ones. Given as its
argument a structural type SS and an existing operation H (with domain and range of the
form SSxS5-SS), Repeat(SS,H) synthesizes a brand new operation F. The domain/range of
F is just that of H. F(S) is computed by repeating TEMP«H(x,TEMP) for each element x
of S. TEMP is initialized as some member (preferably the first element) of S.

REPEAT2 is similar, but requires that H take three arguments, and it creates F, where F(S,L)
is gotten by repeatedly doing TEMP«H(x, TEMP,L).

RESTRICT is an operation which turns out new operations. Given an argument operation (or
predicate) F, the synthesized concept would have the same definition as F, but would have
its domain and/or range curtailed.

REVERSE-ORDERED-PAIR transfor:ns the ordered pair <x,y> into <y,x>.

SET 1s a type of structure. It is unordered, and multiple occurrences of the same element are
not permitted.

SET-DELETE is an operation which takes two arguments, x and B. Although x can be
anything, B must be a set. The procedure Is to remove x from B (if x was in B), then
1cturn the resultant value of B.

RS B RS VA D A0 A0 Rt F e Ave e R e R R A Sl Aal e R U £ A, - EaPS, i B aic et i g M i d AN S g A gt s Nl LI A

Chapter 5 AM: Discovary in Mathematics as Heuristic Search -1e2-
SET-DIFF is an operation which taves two sets B,C. It removes each member of C from B.
SET-INSERT is an operation which adds x to set B.

SET-INTERSECT removes from set B any items which are not in set C, too.

SET=-UNION dumps into B ail the members of C which weren't in there already.

STRUCTURE, the antithesis of ATOM, is inherently divisible. A structure is something that
has members, that can be breken into pieces. There are two questions one can ask about
any kind of structure: Is it ordered or not? Can there be multiple occurrences of the same
element in it or not? There are four sets of answers to these two questions, and each of the
four specifies a wel’-kncwn kind of structure (Sets, Lists, Osets, Bags).

STRUCTURE-OF-STRUCTURES is a specialization of Structure, representing those structures all
of whose membei s are themselves structures.

TRUTH-VALUE is a specialized kind of atomic object. Its only examples are True and False.
This concept is the range set for all predicates.

UNION is a general kind of joining operation. It takes two structures and combines them.
Four separate variants of this concept are given to AM initially (e.g., Set-union).

UNORDERED-STRUCTURE is a specialized type of Structure. It includes all structures for
which the order of insertion of two members never makes any difference in whether the
structures are equal or not. Unordered-structures cannot be said to have a front or a rear, a
first element or a last element.

5.3.3. Rationale behind Choice of Concepts

A necessary part of realizing AM was to choose & particular set of starting concegts. But
how should such a choice be made?

et

’(

My first impuise was to gather a complete set of concepts. That is, a basis which would be
sufficient to derive all mathematics. The longer I studied this, the larger the estimated size

of this basis grew. It immediately became clear that this would never fit in 256k. > One
philosophical problem here is that future mathematics may be inspired by some real-world
phenomena which haven’t even been observed yet. Aliens visiting Earth might have a
‘ different mathematics from ours, since their collective life experiences could be quite
e different from we Terrans.

L
L e |

Il
‘

PN X

X
"

(2 Scrapping the idea of a sufficient basis, what about a necessary one? That is, a basis which
. o would be minimal in the following sens=: if you ever removed a concept from that basis, it
E- could never be re-discovered. In isolated cases, one can tell when a basis is not minimal: if
. it contains both addition and multiplication, then it is too rich, since the latter can be

4 This is the size of the core memory of the computer | had st my disposal.

|
Sl
1,2 LI R)
nn‘.,,. .
L N RPN
e '..‘-

LN

ML
LR 2 I
AP

Mt Y
Vo

»

nE
L
'a e
1

| N4
"ﬂ‘d‘u *
- v

w
PN
"

o
R
Y

.
T T e T I S U U S SR gt . - - T R E s T N P P T U R
. -t - A s R R A .' e ..- d “h. s v-. _f.r-’ _s._ “—._- -, > -,‘fl'n . 's--!;'l ‘.‘n ,-‘ > _,-‘f\.,‘. i A

R e MR g B e

Chapter 5 AM: Discovary in Mathematics as Heuristic Search -113-

derived from the former.3®> #nd yet, the same problem about "absoluteness" cropped up:

how can anyone claim tha: the discovery of X can never be made from a given starting
point? Until recently, mathemas cians didn’t realize how natural it was to derive numbers

and arithmetic from set theor) .. task which AM does, by the way)®®. So 50 years ago the
concepts of set theory and numbar theory would both have been undisputedly placed into a
"minimal” basts. There are thus no absolute conceptual primitives; each culture (perhaps
even each individual) possesses its own basis.

Since I couldn't give AM a minimal basis, nor a complete one, I decided AM might as well
have a nice one. Although it can never be minimal, it should nevertheless be made very
smal! (order of magnitude: 100 concepts). Although it can never be complete, it should
suffice for re-discovering muca of aiready-known mathematics. Finally, it should be
rational, by which I mean that there should be a simple rule for deciding which concepts do
and don’t belong in that basis.

The concepts AM starts with are meant to be those possessed by young children (age 4, say).
This explains some omissions of concepts which would otherwise be considered
fundamental: (i) Proof and techniques for proof/disproof; (ii) Abstract properties of
relations, like associativity, single-valued, onto; (iii) Cardinality, arithmetic; (iv) Infinity,
continuity, limits. The interested reader should see [Piaget 55] or [Copeland 70).

Because my programming time and the PDP-10's memory space were both quite small, only
a small percentage of these ‘pre-numerical’ concepts could be included. Some un justified
omissions are: (i) visual operations, like rotation, coloration; (ii) Games, rules, procedures,
strategies, tactics; (iii) Geometric notions, e.g., outside and between.

AM is not supposed to be a model of a child, however, It was never my intention (and it
would be much too hard for me) to try to emulate a human child’s whimsical imagination

and emotive drives. And AM is not ripe for "teaching”, as are children.%” Also, though it
possesses a child’s ignorance of most concepts, AM is given a large body of sophisticated
“adult” heuristics. So perhaps a more faithful image is that of Ramanujan, a brilliant
modern mathematician who received a very poor education, and was forced to re-derive
much of known number theory all by himself. Incidentally, Ramanujan never did master
the concept of formal proof.

There is no formal justification for the particular set of starting concepts. They are all
reasonably primitive (sets, composition), and lie several levels "below" the ones whitt Aivi
managed to ultimately derive (prime factorization, square-root). Tt m=..ht be valuable to
attempt a similar automated math discoverer, whirk Legan with a very different set of
concepts (eg, start it out as an evpcii in lattice theory, possessing all known concepts
thereof). The converes Lind of experiments are to vary the initial base of concepts, and
observe *hc eitects on AM’s behavior. A few experiments of that form are described in
Section 6.2.

55 by AM, and by any mathematician As Don Cohen points out, if the researcher lacked the proper discovery methods, then

he might never derve Times from Pius

56 The "new math” 1s trying to get young children to do this as well, unfortunately, no one showed the elementary-school
tsachere the underlying harmony, and the resuits have been saddening

57 Learning psychologists might labsl AM as neo-behavioristic and cognitivistic. See [LeFrancois)

oo

o s |
o
'y

Ty
.

X3

¥
(]

g

T

Lt
P

[}

W

il

PakTd

T Ty
o

E)‘

-114-

Chapter 6. Results

—————

This chapter opens by summarizing what AM "did". Section | gives a fairly high-level
description of the major paths which were explored, the concepts discovered along the way,
the relationships which were noticed, and occasionally the ones which "should” have been
but but weren't.

The next section (6.2) continu?s this exposition by presenting the results of experiments
which were done with (and on) AM.

Chapter 7 will draw upon these resuits — and others given in the appendices — to form
conclusions about AM. Several meta-level questions will be tackled there (e.g., "What are
AM'’s limitations?").

6.1. What AM Did

Now we have seen that mathematical work is not simply mechanical, that it could
not be done by a machine, however perfect. It is not merely a question of applying
rules, of making the most combinations possible according to certain fixed laws.
The combinations so obtained would be exceedingly numerous, useless, and
cumbersome. The true work of the inventor consists in choosing among these
combinations so as to eliminate the useless ones or rather to avoid the trouble of
making them, and the rules which must guide this choice are extremely fine and
delicate. It is almost impossible to state them precisely; they are felt rather than
formulated. Under these conditions, how imagine a sieve capable of applying
them mechanically?

-~ Poincare’

AM is both a mathematician of sorts, and a big computer program.

By granting AM more anthropomorphic qualities than it deserves, we can describe its
progress through elementary mathematics. It rediscovered many well-known concepts, a
couple interesting but not-generally-known ones, and several concepts which were hitherto
unknown and should have stayed that way. Section 1.3, on page 10, recaps what AM did,
much as a historian might critically evaluate Euler's work. A more detailed prose
description of everything AM did is found in Appendix 5.1, beginning on page 287.

S e T
O P T
1FJ. . e e p
- R RIS
nia nola

-,

o

w) - -
......

”
"
.
L
- s

7’

. =y

g v o v

. e

P e L

PRI i 2N

Radiatn, sl)

S N : P

W

D AT I §

» « » »
R S

o

AR
'

PP afe 0 el als
'1':‘¢“1 WeleZa e ln

Chapter 6 AM: Discovery in Mathematics as Heuristic Search -115-

Instead of repeating any of this descriptive prose here, Section 6.1.} will provide a very
brief listing of what AM did in a single good run, task by task. A much more detailed
version of this same list is found tn Appendix 52, beginning on page 294. The task
numbers there correspond to the numbering below!. These task-by-task listings are not
complete listings of every task AM ever attempted in any of its many runs, but rather a
trace of a single, better-than-average run of the program.? The reader may wish to consult
the brief alphabetized glossary of concept names in the last chapter (page 107), or the more
detailed appendix of concept descriptions (following page 173).

Following this linear trace of AM's behavior is a more appropriate representation of what it
did: namely, a two-dimensional graph of that same behavior as seen in “concept-space”.
This forms Section 6.1.2, and is found on page 123.

By under-estimating AM’s sophistication, one can demand answers to the typical questions
to ask about a computer program: how big is it, how much cpu time does it use, what
language it's coded in, etc. These are found in Section 6.1.3.

6.1.1. Linear Task-by-task Summary of a Good Run

1. Fill in examples of Compose. Failed, but suggested next task:

2. Fill in examples of Set-union. Also failed, but suggested:

3. Fill in examples of Sets. Many found {e.g,, by instantiating Set.Defn) and then more
derived from those examples (eg. by running Union.Alg).

4. Fill in specializations of Sets (because it was very easy to find examples of Sets).
Creation of new concepts. One, INT-Sets, is related to "Singletons”. Another, "BI-
Sets”, is all nests of braces (no atomic elements).

5. Fill in examples of INT-Sets. This indirectly led to a rise in the worth of Equal.

6. Check all examples of INT-Sets. All were confirmed. AM defines the set of Nonempty
INT-Sets; this is renamed "Singletons” by the user.

7. Check all examples of Sets. To check a couple con jectures, AM will soon look for
Bags and Osets.

8. Fill in examples of Bags.

9. Fill in specializations of Bags. Created INT-Bags (contain just one kind of element),
and BI1-Bags (nests of parentheses).

10. Fill in examples of Osets.

11. Check examples of Osets.

z. Fill in examples of Lists.

13. Check examples of Lists.

14. Fill in examples of All-but-first.

15. Fill in examples of All-but-last.

16. Fill in specializations of All-but-last. Failed.

! They do 10! precissly match the task numbers accompanying the example given in Chapter 2.

2 In fact, it is parhaps the best overall run. It accurred in two stages (dus to space problems: unimportant). In this particular
run, AM misses the few "very best” discoveries it ever made, since the runs they occurred in went in
somewhat different directions. it also omits some of the more boring tasks see, e g, the description of task
number 69,

, —
LA

L Eo ML T W mt W ow cmt e [at ot - g

Chapter 6 AM: Discovery in Mathematics as Heuristic Search -116-

17. Fill in examples of List-union.

18. Fill in examples of Projl.

19. Check examples of All-but-first.

20. Check examples of All-but-last.

21, Fill in examples of Proj2.

22. Fill in examples of Empty-structures. 4 found.

23. Fill in generalizations of Empty-structures. Failed.

24, Check examples of List-union.

25. Check examples of Bags. Defined Singleton-bags.

26. Fill in examples of Bag-union.

27. Check examples of Proj2.

28. Fill in examples of Set-union.

29. Check examples of Set-union. Define A (x,y) xuy=x, later called Superset.

30. Fill in examples of Bag-insert.

31. Check examples of Bag-insert. Range is really Nonempty bags. Isolate the results of
insertion restricted to Singletons: call them Doubleton-bags.

32. Fill in examples of Bag-intersect

33. Fill in examples of Set-insert.

34. Check examples of Set-insert. Range is always Nonempty sets. Define A (x,S) Set-
insert(x,S)=S; i.e., set membership. Define Doubleton sets.

35. Fill in examples of Bag-delete,

36. Fill in examples of Bag-difference.

37. Check examples of Bag-intersect. Define A (x,y) xny=(); i.e. disjoint bags.

38. Fill in examples of Set-intersect.

39. Check examples of Set-intersect. Define A (x,y) xny=x; i.e, subset. Also define
disjoint sets: A (x,y) xny={}.

40. Fill in examples of List-intersect.

41. F1ll in examples of Equal. Very difficult to find examples; this led to:

42. Fill in generalizations of Equal. Define "Same-size", "Equal-CARs", and some losers.

43. Fill in examples of Same-size.

44. Apply an Algorithm for Canonize to the args Same-size and Equal. AM eventually
synthesizes the canonizing function "Size". AM defines the set of canonical
structures: bags of T’s; this later gets renamed as "Numbers".,

45. Restrict the domain/range of Bag-union. A new operation is defined, Number-
union, with domain/range entry <Number Number -+ Bags.

46. F1ll in examples of Number-union. Many found.

47. Check the domain/range of Number-union. Range is ‘Number’. This operation is
renamed "Add2".

48. Restrict the domain/range cf Bag-intersect to Numbers. Renamed "Minimum",

49. Restrict the domain/range of Bag-delete to Numbers. Renamed "SUBI".

50. Restrict the domain/range of Bag-insert to Numbers. AM calls the new operation
"Number-insert”. Its domain/range entry is <Anything Number - Bag>.

51. Check the domain/range of Number-insert. This doesn't lead anywhere.

52. Restrict the domain/range of Bag-difference to Numbers. This becomes "Subtract”.

53. Fill in examples of Subtract. This leads to defining the relation LEQ (¢).3
54. Fill in examples of LEQ, Many found.

3 If o larger number is "subtiacted” from a smaller, the result is zero. AM explicitly defines the set of ordered peirs of

numbers having zero "difference”. <x,y> is in that set iff x is less than or equal to .

o
U
%

gt
-

i g

.ol e
Hehe a0 iy
‘(“'.\“.J P

G

Tl i
2 .’7‘.:11-’-.‘j'u’J“r !

T
"y SR

" i
LR #
Qo
L I |
AT

yos
]
+ e

Tor o

v’,;v,
I3

€,
]

Ll e
o B
WS

N
o,

r
‘l

T
e
N)

v

a

m“ ey Ty
T .
aF e ot

PREATRF AR

2

-

o

| 30
s

k=
»
=

56.
57.

58.
70.

71.
72,
73.
74.
75.
76.
77.
78.
79.

80.
81.
82.
83.
84.

85,

" 86.
87.
88.
89.

90.

91.

g Janiase SO M= S0P B v Rat T an it dah B Bt Tl Y <2 a0 Bl i o el o N A6 W Ta i e 2 it gt e P e R R A S Ty B e B N A A 4 4
Chapter 6 AM: Discovary in Maihematics as Heuristic Search -117-
55. Check examples of LEQ,

Apply algorithm of Coalesce to LEQ. LEQ(x,x) is Constant-True. ,

Fill in examples of Parallel-join2. Included is Parallel-join2(Bags,Bags,Proj2), which
is renamed "TIMES", and Parallel- join2(Structures,Structures,Projl), a generalized
Union operation renamed "G-Union", and a bunch of losers.

— 69. Fill in and check examples of the operations just created.

Fill in examples of Coalesce. Created: Self-Compose, Self-Insert, Self-Delete, Self-
Add, Self-Times, Self-Union, etc. Also: Coa-repeat2, Coa-join, etc.

Fill in examples of Self-Delete. Many found.

Check examples of Self-Delete. Self-Delete is just Identity-op.

Fill in examples of Self-Member. No positive examnles found.

Check examples of Self-Member. Self-member is just Constant-False.

Fill in examples of Self-Add. Many found User renames this "Doubling”.

Check examples of Coalesce. Confirmed.

Check examples of Add2. Confirmed.

Fill in examples of Self-Times. Many found. Renamed "Squaring” by the user.

Fill in examples of Self-Compose. Defined SquaringoSquaring. Created AddoAdd
(two versions: Add21 which is A (x,y,z) (x+y)+z, and Add22 which is x+(y+z))
Similarly, two versions of TimesoTimes and of ComposesCompose.

Fill in examples of Add21. (x+y)+2. Many are found.

Fill in examples of Add22. x+(y+z). Again many are found.

Check examples of Squaring. Confirmed.

Check examples of Add22. Add2l and Add22 appear equivalent. But first:

Check examples of Add21. Add21 and Add?22 still appear equivalent. Merge them.
So the proper argument for a generalized "Add" operation is a Bag.

Apply algorithm for Invert to argument ‘Add’. Define Inv-add(x) as the set of all

bags of numbers (>0) whose sum is . Also denoted Add"'(x).

Fill in examples of TIMES21. (xy)z. Many are found.

Fill in exarnples of TIMES22. x(yz). Again many are found.

Check examples of TIMES22. TIMES2i and TIMES22 may be equivalent.

Check examples of TIMES2l. TIMES2l and TIMES22 still appear equivalent.
Merge them. So the proper argument for a generalized "TIMES" operation is a
Bag. Set up an analogy between TIMES and ADD, because of this fact.

Apply algorithm for Invert to argument TIMES'. Define Inv-TIMES(x) as the set
of all bags of numbers (>1) whose product is x. Analogic to Inv-Add.

Filt in examples of Parallel-replace2. Included are Parall-

replace2(Bags,Bags,Proj2) (called MR2-BBP?), and many losers.

92. — 107. Fill in and check examples of the operations just created.
108. Fill in examples of Compose. So easy that AM creates Int-Compose.
109. Fill in examples of Int-Compose. The two chosen cperations G,H must be such

that ran(H)edom(G), and ran(G)dom(H); both G and H must be interesting.
Create G-UnionoMR2-BBP2, InsertoDelete, TimesoSquaring, etc.

110. — 127. Fill in and check examples of the compositions just created. Notice that G-

UnionoMR2-BBP2 15 just TIMES.

128. Fill in examples of Coa-repeat2. Among them: Coa-repeat?(Bags-of-Numbers,

Add2) [multiplication again!}, Coa.repeat2(Bags-cf-Numbers, Times)

4 an alternate derivation of the opsration of multiplication.

...........

(e W,

TR YA
FA LA N R

-

Chapter 6

-

J'.-.*‘.-“

129.
130.

131.
132.
133.
134,
135.
136.
137.
138.
139.
140.
141.
142,
143.
144,
145,
146.
147.
148.

149.

150.
151.
152,
153.
154,
I55.
156.
157.
158,
158.
160,

i61.

162.
163,
164.
165.
1€6.
167.
168.

176.

. - L . - - AT . Al * = T os .t . M .
K < - > el h
A T T T AL R SN S SNEAP S AP ; Lo

e M R o R R T R A W o R O e Y A R W R R T T T N LS S L R Ty S LR T L N VLR O v Oy e sV I W v

AM: Discovery in Mathematics as Heuristic Search -118-

[exponentiation], Coa-repeat2(Structures, Projl) [CAR), Coa-repeat2(Structures,
Proj2) [Last-element-of], etc.

Check the examples of Coa-repeat2. All confirmed.

Apply algorithms for Invert to ‘Doubling’. The result {5 caiied "Halving" by the
user. AM then defines "Evens".

Fill in examples of Self-Insert.

Check examples of Self-Insert. Nothing special found.

Fill in examples of Coa-repeat2-Add2.

Check examples of Coa-repeat2-Add2. It's the same as TIMES.

Apply algorithm for Invert to argument ‘Squaring’. Define "Square-root”.

Fill in examples of Square-root. Some found, but very inefficiently.

Fill in new algorithms for Square-root. Had to ask user for a good one.

Check examples of Square-root. Define the set of numbers “Perfect-squares”.

Fill in examples of Coa-repeat2-Times. This is exponentiation.

Check examples of Coa-repeat2-Times. Nothing special noticed, unfortunately.

Fill in examples of Inv-TIMES. Many found, but inefficiently.

Fill in new algorithms for Inv-TIMES. Obtained opaquely from the user.

Check examples of Inv-TIMES. This task suggests the next one:

Compose G-Union with Inv-TIMES. Good domain/range. Renamed "Divisors”.

Fill in examples of Divisors. Many found, but not very efficiently.

Filt in new algorithms for Divisors. Obtained from the user.

Fill in examples of Perfect-squares. Many found.

Fill in specializations of TIMES. Timesl(x)z1¢x, Times2(x)=2x, Times-sq is TIMES
with its domain restricted to bags of perfect squares, Times-ev takes only even
arguments, Times-to-evens requires that the result be even, Times-to-sq, ...

Check examples of Divisors. Define 0-Div, 1-Div, 2-Div, and 3-Div, the sets of
numbers whose Divisors value is the empty set, a singleton, a doubleton, and a
tripleton, respectively.

Fill in examples of 1-Div. Only one example found: "1". Lower [-Div.Worth.

Fill in examples of 0-Div. None found. Lower the worth of this concept.

Fill in examples of 2-Div. A nice number are found. Raise 2-Div.Werth,.

Check examples of 2-Div. All confirmed, but no pattern noticed. -

Fill in examples of 3-Div. A nice number found.

Check examples of 3-Div. All confirmed. All are perfect squares.

Restrict Square-root to numbers which are in 3-Div. Call this Root3.

Fill in examples of Root3. Many found.

Check examples of Reot3. All confirmed. All are in 2-Div. Raise their worths.
Restrict Squaring to 2-divs. Call the result Square2.

Fill in examples of Square2. Many found.

Check the range of Square2. Always 3-Divs. Conjecture: x has 2 divisors iff x2
has 3 divisors.

Restrict Squaring to 3-Divs. Call the result Square3.

Restrict Square-rooting to 2-Divs. Call the result Root2.

Fill 1n examples of Square3. Many found.

Compose Divisors-of and Square3. Call the result Div-Sq3.

Fill in examples of Div.5q3. Many found.

Check examples of Div-5q3. All such examples are Same-size.

— 175. More confirmations and explorations of the above con jecture. Gradually,
all its ramifications lead to dead-ends (as far as AM is concerned).

Fill in examples of Root2. None fourid. Con jecture that there are none.

LN AT UL L N L L R T

)"

ki Y el T

»

. e ¥
PP P
[Ty & [N A A

W >
» .1—,

D L S
n

AM: Discovary in Mathematics as Heuristic Search -119-

. Check examples of Inv-TIMES. Inv-TIMES always contains a singleton bag, and
always contains a bag of primes.

Restrict the range of Inv-TIMES to bags of primes. Call this Prime-Times,

Restrict the range of Inv-TIMES to singletons. Called Single-Times.

Fill in examples of Prime-times. Many found.

Check examples of Prime-times. Always a singleton set. User renames this
con jecture “The unique factorization theorem”.

Fill in examples of Single-TIMES. Many found.

Check examples of Single-TIMES. Always a singleton set. Single-TIMES is
actually the same as Bag-insert!

Fill in examples of Self-set-union. Many found.

Check examples of Self-set-union. This operation is same as Identity.

Fill in examples of Self-bag-union. Many found.

Check examples of Self-bag-union. Confirmed. Nothing interesting noticed.

Fill in examples of Inv-ADD.
Check examples of Inv-ADD. Hordes of boring con jectures, so:

Restrict the domain of Inv-ADD to primes (Inv-Add-primes), to evens (Inv-Add-
evens), to squares, etc.

Fill in examples of Inv-add-primes. Many found.
Check examples of Inv-add-primes. Confirmed, but nothing special noticed.

Fill in examples of Inv-add-evens. Many found.

Check examples of Inv-add-evens. Always contains a bag of primes.

Restrict the range of Inv-Add-evens to bags of primes. Called Prime-ADD.

Restrict the range of Inv-ADD to singletons. Call that new operation Single-ADD.
Fill in examples of Prime-ADD. Many found.

Check examples of Prime-ADD. Always a nonempty set (of bags of primes). User
renames this con jecture "Goldbach’s con jecture”.

Fill in examples of Single-ADD. Many found.

Check examples of Single-ADD. Always a singleton set. This operation is the same
as Bag-insert and Single-TIMES.
. Restrict the range of Prime-ADD to singletons, by analogy to Prime-TIMES.® Call
the new operation Prime-ADD-SING.

Fill in examples of Prime-ADD-SING. Many found.
Check examples of Prime-ADD-SING. Nothing special noticed.

Fill in examples of Times-sq.> Many examples found.

Check domain/range of Times-sq. Is the range actually Perfect-squares? Yes!
Fill in examples of Times1. Recall that Times{x)*TIMES(1,x).

Check examples of Timesl. Apparently just a restriction of Identity.

Check examples of Times-sq. Confirmed.

Fill in examples of Times0.

Fill in examples of Times2.

Check examples of Times2. Apparently the same as Doubling. That is, x+x=2¢x.
Very important. By analogy, define Ad2(x) as x+2.

Fill in examples of Ad2.

Check exaiples of Ad2. Nothing interesting noticed.

~
e

W

5 In this case, AM is asking which numbers are uniqusly representsble as the sum of two primes.

A
N
Xy

5

6 Recall that this is just TIMES restricted to operate on perfect squares

%

[ouil Wk Nty

X
1y

e
‘JL

_‘..,
o

]
A :"]"‘:

’l’.,"

Az
S

».‘:_
{‘-!

cra iy
“1‘*1:‘ "
o

s

i

&
*
“

"

R B L R
L s R T T T St G A L i DAL AT T S

Chapter 6

214,

215,

216.
217.

218.
219,
220.

221,
222.
223.
224,
225,
226.
227.
228.

229.
230.

231.
232.
253.
254,

255,
256.

[ttt

AM: Discovery in Mathematics as Heuristic Search -120-

Fill in specializations of Add. Among those created are: AddO (x+0), Addl, Add3,
ADD-sq (addition restricted to perfect squares), Add-ev (sum of even numbers),
Add-pr (sum of primes), etc.

Check examples of Times0. The value always seems to be 0.

Fill in examples of Times-ev.” Many examples found.
Check examples of Times-ev. Apparently all the results are Evens.

Fill in examples of Times-to-ev.2 Many found.

Fill in examples of Times-to-sq. Only a few found.

Check examples of Times-to-sq. All arguments always seem to be squares. Con jec:
Times-to-sq is really the same as Times-sq. Merge the two. This is a false
con jecture, but did AM no harm.

Check examples of Times-to-ev. The domain always contains an even number.

Fill in examples of Self-Union. '

Check examples of Self-Union.

Fill in examples of SubSet.

Check example of SubSet.

Fill in examples of SuperSet.

Check examples of SuperSet. Con jec: Subset(x,y) iff Superset(y,x). Important.

Fill in examples of ComposesCompose-1. AM creates some explosive combination
(e.g, {(ComposesCompose)s(ComposesCompose)os(ComposesCompose)), some poor

ones (eg., SquareoCountoADD"), and even a few — very few — winners (eg,
SUB IoCountoeSelf-Insert).
Check examples of ComposeocCompose-1.

Fill in examples of ComposeoCompose-‘z.9 AM recreates many of the previous
tasks’ operations.

Check examples of ComposesCompose-2. Nothing noticed yet!®.

— 252. Fill in and check examples of the losing compositions just created.

Fill in examples of Add-sq (i.e, sum of squares).

Check domain/range entries of Add-sq. The range is not always perfect squares.
Define Add-sq-sq(x.y), which is True iff x and y are perfect squares and their sum
is a perfect square as well.

Fill in examples of Add-pr; i.e, addition of primes.

Check Domain/range entries of Add-pr. AM defines the set of pairs of primes
whose sum is also a prime. This is a bizarre derivation of prime pairs.

T
&

r ‘-- i

‘ [K ECIN

7 Recall that Times-ev is just ike TIMES restricted to operating on evan numbers.
8 That is, consider bags of numbers which multiply to give an even number.
° Recall that the difference betwean this operstion and the last one is merely in the order nf the compasing: Fo(GoH) versus

(FoG)oH.

1o Later on, AM will use thess new operations to discover the sesociativity of Compose.

...........

T AT

it St e RS St A AE BT B O avh 1 U P A avh . g gyl At v AL A B A I R R L Bl o

Chapter 6 AM: Discovery in Mathematics as Heuristic Search -121-

6.1.2. Two-Dimensional Behavior Graph

On the next two pages is a graph of the same "best run” which AM executed. The nodes
are concepts, and the links are actions which AM performed. Labels on the links indicate
when each action was taken, so the reader may observe how AM jumped around. It should
also easy to perceive from the graph which paths of development were abandoned, which
concepts ignored, and which ones concentrated upon. These are precisely the features of
AM's behavior which are awkward to infer from a simple linear trace (as in the previous
section).

In more detail, here is how to read the graph: Each node is a concept. To save space, these
names are often highly abbreviated. For example, "x0" is used in place of "TIMES-0".

Each concept name is surrounded by from zero to four numbers:

318 288
FROBNATION
310 291

The upper right number indicates the task number (see last section) during which examples
of this concept were filled in. The lower right number tells when they were checked. The
upper left number indicates when the Domain/range facet of that concept was modified.
Finally, the lower left humber is the task number during which some new Algorithms for
that concept were obtained. A number in parentheses indicates that the task with that
number was a total failure.

Because of the limited space, it was decided that if a concept were ever renamed by the
user, then only that newer, mnemonic name would be given in the diagram. Thus there is
an arrow from "Coalesce” to "Square”, an operation originally called "Self-Times" by AM.

Sometimes, a concept will have under it a note of the form *GROK. This simply means that

AM eventually discovered that the concept was equivalent to the already-known conccpsc-

"Grok", and probably forgot about this one (merged it into the one it alreadv .niew about).
The traxl of discovery may pick up again at that pre-existing concept. A node written as

*GROK means that the concept was really the same as "Grok", but AM never investigated it
enough to notice this.

Each node may have an arrow icading into it, and any number of arrows emanating from
it. The arrows indicatc the creation of new concepts. Thus an arrow leading to concept
"Frobnate” indicates how that concept was created. An arrow directed away from Frobnate
nciats to a concept created as, eg., a specialization or an example of Frobnate. No
arrowheads are in practice necessary: all arrows are directed downwards.

The arrows may be labelled, indicating precisely what they represent (eg., composition,
restriction) and what the task number was when they occurred. For space reasons, the
following convention has proven necessary: if an arrow emanating from C is un-numbered,
it is assumed to have occurred at the same time as the arrow to its immediate left which also
points from C; if all the arrows emanating from C have no number, than all their times of

Pt T .'K‘-“ AT TN 'J\\ B S T T T T LR i

"y 4y » - P A - 2N T oS - Palii sl

ey

pios iy

LM i 2aie)

e

XTI

WO

N I I . - e a

Chapter 6 AM: Discovary in Mathematics as Heuristic Search -122-

occurrence are assumed to be the lower right'! number of C. Finally, if C has no lower
right number, the arrow is assumed to have the value of the upper right number of C.

An unlabelled arrow is assumed to be an act of Specialization or the creation of an

Example.'? Labels, when they do occur, are given in capitals and small letters; concept
names (nodes) are by contrast in all capitals.

All the numbers correspond to those given to the tasks in the task-by-task traces presented
in the last section (p. 115) and in Appendix 5 (p. 294).

The first part of this graph (presented below) contains static structural (and ultimately
numerical) concepts which were studied by AM:

STRUCTURES
SETg 08 'ig Lls%g EMPTY Tﬂbég
€ -5TRU
7 i 13 T Ceneralize
. (2

44 (failure)
\\Cmonlcll ize
allze

5 44
INT-SE;’ BI-SET INT-BAG B\hBﬂGS SINGU-BRG DOUBL-BRG TRIPL-BAG NUMBERS

130 |136>14
130 14 15015 52 154
SINGLETONS DOUBLETONS EVENS SQUARES f-DIV 8-DIV PRIMES 3-DIV "
sEMPTY . 153 15§ :

The rest of the graph (presented on the next page) deals with activities which were
investigated:

H This is often true because many concepts are created while checking sxamples of some known concept.

12 It should be clear in sach context which s happening. If not, refer 1o the short trace in the preceding section, and look up
the sppropriate tesk number.

. . . L C e pm e 4 .
A S R Sttt 2 T R o T

s emw e v we we ema e

s s e = -

g oy vy g

FRaA
R

g coz . .
. . INIS$~008=3UINd .
!) W
182 13diney
w., & I
' cu-3:
T. g I3 . .
T : f 1314188y
% S5t ; .
w. . 267 161 { 082 x=7INIST

. TEANY_THANL Q*ANL_3UUNDS*AN] JUIWE*ANT NIAJ*ARD OCB-JINIS '

¥

€61 £st N R
'
. ' 150 spsi8ey '
, 06T 561 ,,
YIUAIHIN ,27,A%,X QCH-ARL
113 . ‘.
. 852 111 1JeAu]) .
?mwn A0 NIAQE JUI¥JE JuupDSH s ..
Nan[-/////Aﬁ r
. . SR <
/IIFIN. . N
JeSAunT 9st 291
. {262-2¢2) [#3] [4% '] €10038 €05-Al0
* { R34 J~ g3t ;
, _) .o_.:usv/—u_.:-.z ssodsay S
< [(53Ul eem ﬁﬁ/j s9t .
s, . 2°X2 .
..u ' me 3 mwm.* mw X mwrx. mmwm munmm £3EUNDS Z3¥YALS ONIATUR .
. -3I8Y% | Bl "
! - . . onwr: V/SCI Fl- i 1] ST ’ 158 [EIRRE T '

AN

. 1344 SCT S3urLs-

Mm.u.onhulmmmg ERE R T U R Y T L
M SNI-Sugs
(313 T €91 181 £22 481 /«%

€97 Nigo13 [543
{20y e¥3: J0-SYOSIAIQ XTIOKIS X-3KL¥d NOIKA=233S NOINA~OYI-3135 NOINN-135-4138 hmwwznluuum. 21834344

e

N\ 20380y 1d0au1

] {341
¥¢_4-SAuUmyT 2L Niols
60 Munuucouuum wwugmo 13

e,
.

1 s Nw/ eer 124 R ygy I
T. fbojpuy ssodu 1959y) -
-7 .usss: andor w3012 neu . |
Y - 4 .
a2z 122 a2 S et urlen R bR
JYUADS-0L-% KIAZ-OLTX NIADL TX. WA TX\3WURBSX SIW[L-AR{ 35
: 812 12 NNz 80z e g2 1
y 9338100)
, - 42 szt SIT sauNs (R . ss
www:oméz umd%:umﬁ mwm.z.ss vob w&» 01=1UNDI~¥a-NUHL~$511
. AN s2pejugey « v L " i
3 21 :/J. .\.\ v szz) . . @ L4
5 2dig-zuu AUNN-Y STIL WEIDI TUS-3uuy/ GUNIQLSIA L3SonS gavpiens TENG MMWGHI SSIMNIONSIO-ON Linians Z0¥
-, 47 8. I 11 wy - €5 T-008 (eanjivly V
.

wq. 4TLLRI . 19jJ)ney 19]J4i80 1314} 80 o fs 1314188, s v,
4 . E 3] oy 2aijiend og L S : v,
r. e o \J 13 i §q a2 LI 1 1 >

350203 2324438131 A7238 TAIOF “13TWILS Ailwen03 ULSTI UR1IS U-1350 4210-548 203130-008 LN3SKI-13S Uoy8 LU3SKL-068 A-135 N-AUQ 2r0¥d TrOV4 N-1S1T 1SY1-LNE=T18 LSWI4-10e~10 <,
X BIUn 18 @ s i g s¢c a st 33 T 2 62 1z st & ST]
1
W,.
2l .
; .) .. ;
al . .
b . .
2
2 : .
-
! .
s . .
%,
AL LT,

LN

b L

o T N A P T P L A

Tt T e T e A AT - A T A R R RS T T T e T R T T TR T T e A e T AR R T TR A RPN R T RO T T R RN R R e W N

Chapter 6 AM: Discovary in Mathamatics as Heuristic Search -124-

6.1.3. AM as a Computer Program

When viewed as a large LISP program, there 1s very little of interest about AM. There are
the usual battery of customized functions (eg., a conditional PRINT function), the storage
hacks (special emergency garbage collection routines, which know which facets are
expendible), the time hacks (omnisciently arrange clauses in a conjunction so that the one
most likely to fail will come first), and the bugs (if the user renames a concept while it's the
current one being worked on, there is a 5% chance of AM entering an infinite loop).

Below are listed a few parameters of the system, although I doubt that they hold any
theoretical significance. The reader may be curious about how big AM, how long it takes to
execute, etc.

Machine: SUMEX, PDP-10, KI-10 uniprocessor, 256k core memory.

Language: Interlisp, January '75 release, which occupies 140k of the total 256k, but which
provides a surplus "shadow space” of 266k additional words available for holding compiled
code.

AM support code: 200 compiled (not block-compiled) utility routines, control routines, etc.
They occupy roughly 100k, but all are pushed into the shadow space.

AM itself: 115 concepts, each occupying about .7k (about two typed pages, when Pretty-
printed with indentation). Facet/entries stored as property/value on the property list of

atoms whose names are concepts’ hames.'® Each concept has about 8 facets filled in.
P P

Heuristics are tacked onto the facets of the concepts. The more general the concept, the
more heuristic rules it has attached to it.'? "Any-concept" has 121 rules; "Active concept"
has 24; "Coalesce” has 7; "Set-Inseition” has none. There are 250 heuristic rules in all,
divided into 4 flavors (Fillin, Check, Suggest, Interestingness). Although the mean number
of rules is therefore only about 2.2 (i.e, less than | of each flavor) per concept, the standard
deviation of this is a whopping 127.4. The average number of heuristics (of a given flavor)
encountered rippling upward from a randomly-chosen concept C (along the network of

generalization links) is about 35, even though the mean path length is only about 4.'°

The total number of jobs executed in a typical run (from scratch) is about 200. The run
ends becazise of space problems, but AM’s performance begins to degrade near the end
anyway.

"Final” state of AM: 300 concepts, each occupying about 1k. Many are swapped out onto

13 Snazzy feature Executable entries on facets (e g, an entry on UnwnAlg) are stored uncompiled until the first time they
are sctuslly called on, at which time they ars compiled snd then executed

14 This was not done consciously, and may or may not hold some theoretical significance

15 If the heurtstice were homogeneously distributed smong the concepte, the number of heuristics (of 3 given type) along &
typical path of length 4 would only be about 2, not 35 [f all the heuristics were tacked onto Anything and
Any-concept, the number encountered in any path would be 75, not 35

gy s g

ymr g _mem

[

[——

¢
;
‘I
'
r

T
AN
Ay Ay

b

o
1
!"
.

« LA

e) L

Chapter 6 AM: Discovary in Mathematics as Heuristic Search -125-

disk. Number of winning concepts discovered: 25 (estimated). Number of acceptable

concepts defined: 100 (est.).'® Number of losing concepts unfortunately worked on: 60 (est.).
The original 115 concepts have grown to an average size of 2k. Each concept has about 11
facets filled in.

About 30 seconds of cpu time were allocated to each task, on the average, but the task
typically used only about 18 seconds before quitting. Total CPU time for a run is about 1
hour. Total cpu time consumed by this research project was about 500 cpu hours.

Real time: about | minute per task, 2 hours per run. The idea for AM was formulated in
the Fall of 1974, and AM was coded in the summer of 1975. Total time consumed by this
project to date has been about 2500 man-hours: 700 for planning, 500 for coding, 600 for
modifying and debugging and experimenting, and 700 for writing this thesis.

6.2, Experiments with AM

Now we’ve described the activities AM carried out during its best run. AM was working
by itself, and each time executed the top task on the agenda. It received no help from the
user, and all its concepts’ Intuitions facets had been removed.

One valuable aspect of AM is that it is amenable t6 many kind of interesting experiments.
Although AM is too ad hoc for numerical results to have much significance, the quahtative
results perhaps do have some valid things to say about research in elementary mathematics,
about automating research, and at least about the efficacy of various parts of AM’s design.

This section will explain what it means to perform an experiment on AM, what kinds of
experiments are imaginable, which of those are feasible, and finally will describe the many
experiments which were performed on AM.

By modifying AM in various ways, its behavior can be altered, and the quality of its
behavior will change as well. As a drastic example, one experiment involved forcing AM
to select the next task to work on rahdomly from the agenda, not the top task each time.
Needless to say, the performance was very different from usual.

By careful planning, each experiment can tell us something new about AM: how valuable a
certain piece of it is, how robust a certain scheme really is, etc. The results of these
experiments would then have something to contribute to a discussion of the “real
intelligence” of AM (eg., what features were superfiuous), and contribute to the design of
the "next” AM-like system. Generalizing from those results, one might suggest some
hypotheses about the larger task of automated math research.

Let’s cover the different kinds of experiments one could perform on AM:

(i) Remove individual concept modules, and/or individual heuristic rules. Then examine

16 'For s hst of most of the ‘winners’ and ‘scceptables’, sse the final section in Appendix 2, page 224.

S T T T N T T T R T e D T T T T O N T N X O X O X T

TS T N T v -, [. . -
!_vi‘r-"(.q‘ﬂ,-\" T T e T T S L ¢ SESR Te [
= el e e T e fe g e e '*'."' P e T AT s R = e vy "“’sg’-""“A.

Chinter 6 AM: Giicovary in Mathematics as Heunistic Search -126-

how AM’s performance is degraded. AM should operate even 1f most of its heuristic rules
and most of its concept modules were excised. If the remaining fragment of AM is too
small, however, it may not be able to find anything interesting to do. In fact, this situation
was actually encountered experimentally, when the first few partially complete concepts were
inserted. If only a little bit of AM is removed, the remainder will in fact keep operating
without this "uninteresting collapse™. The converse situation should aiso hold: although still
functional with any concept module unplugged, AM’s performance should be noticeably
degraded. That is, while not indispensable, each concept should nontrivially help the
others. The same holds for each individual heuristic rule. When a piece of AM s
removed, which concepts does AM then “miss" discovering? Is the removed
concept/heuristic later discovered anyway by those which are left in AM? Thkis should
indicate the importance of each kind of concept and rule which AM starts with,

(ii) Vary the relative weights given to features by the criteria which judge aesthetics,
interestingness, worth, utility, etc. See how important each factor is in directing AM along
successful routes. In other words, vary the little numbers in the formulae (both the global
priority-assigning formula and the local reason-rating ones inside heuristic rules). One
important result will be some idea of the robustness or "toughness” of the numeric weighting
factors. If the system easily collapses, it was too finely tuned to begin with.

(ii1) Add several new concept modules (including new heuristics relevant to them) and see if
AM can work in some unanticipated field of mathematics (like graph theory or calculus or
plane geometry). Do earlier achievements — concepts and conjectures AM synthesized
already — have any impact in the new domain? Are some specialized heuristics from the
first domain totally wrong here? Do all the old general heuristics still hold here? Are they
sufficient, or are some "general” heuristics needed here which weren't needed before? Does
AM "slow down" as more and more concepts get introduced?

(iv) Try to have AM develop nonmathematical theories (like elementary physics, ot
program verification). This might require limiting AM’s freedom to "ignore a given body
of data and move on to something more interesting”. The exploration of very non-
formahzable fields (eg., politics) might require much more than a small augmentation of
AM’s base of concepts. For some such domains, the "Intuitions” scheme, which had to be
abandoned for math, might prove valid and valuable.

(v) Add several new concepts dealing with proof, and of course add all the associated
heuristic rules. Such rules would advise AM on the fine points of using various techniques
of proof/disproof: when to use them, what to try next based on why the last attempt failed,
etc. See if the kinds of discoveries AM makes are increased.

Just prior to the writing of this document, several experimente (of types i, ii, and iii

above!’) were set up and performed on AM. We're now ready to exarine each of them in
detail. The following puints are covered for each experiment:
I. How was it thought of?
2. What will be gained by it? What would be the implications of the various possible
outcomes?

17

axperiments of type (iv) weren't tried and sre left as "open problems”, as invitations for future research efforts.
Experiment (v) will probably be carried out this year (1976).

T TR R R Tl T T S e O L Nroe o~
[o, B T T T e UM A A
W St T T O D 7

A
S
3

;‘)‘:‘i o I £ R NS e b % IR R 6 TRV o I o R eV e
.l

Chapter 6 AM: Discovary in Mathematics as Heuristrc Search -127-

3. How was the experiment set up? What preparations/modifications had to be made?
How much time (man-hours) did it take?

4. What happened? How did AM’s behavior change? Was this expected? Analysis.

5. What was learned from this experiment? Can we conclude anything which suggests
new experiments (eg., use a better machine, a new domain) or which bears on a
more general problem that AM faced (eg., a new way to teach math, a new idea
about doing math research)?

6.2.1. Must the Worth numbers be finely tuned?

Each of the 115 initial concepts has supplied to it (by the author) a number between 0 and
1000, stored as its Worth facet, which is supposed to represent the overall value of the
concept. "Compose” has a higher initial Worth than "Structure-delete”, which is higher

than "Equality"'®.

Frequently, the priority of a task involving C depends on the overall Worth of C. How
sensitive is AM's behavior to the initial settings of the Worth facets? How finely tuned
must these initial Worth values be?

This experiment was thought of because of the ‘brittleness’ of many other Al systems, the
amount of fine tuning needed to elicit coherent behavior. For example, see the discussion of
limitations o' PUPS, in [Lenat 75b). The author believed that AM was very resilient in
this regard, and that a demonstration of that fact would increase credibility in the power of
the ideas which AM embodies.

To test this, a simple experiment was performed. Just before starting AM, the mean value
of all concepts’ Worth values was computed. It turned out to be roughly 200. Then each

concept had its Worth reset to the value 200.'® This was done "by hand", by the author, in
a matter of seconds. AM was then started and run as if there were nothing amiss, and its
behavior was watched carefully.

What happened? By and large, the same major discoveries were made — and miss: * — as
usual, in the same order as usual. But whereas AM proceeded fairly smoothly before, with
little superfluous activity, it now wandered quite blindly for long periods of time, especially
at the very beginning. Once AM "hooked into" a hine of productive development, it
followed it just as always, with no noticeable additional wanderings. As one of these lines
of developments died out, AM would wander around again, until the next one was begun.

It took roughly three times as long for each major discovery to occur as normal. This
"delay” got shorter and shorter as AM developed further. In each case, the tasks preceding
the discovery and following it were pretty much the same as normal; only the tasks
"between" two periods of develcpment were different — and much more numerous. The
precise numbers involved would probably be more misleading than helpful, so they will not

18 As AM progresses, it notices somsthing interesting sbout Equality every now and then, and pushes its Worth value
upwards.

19 The imtial spread of vakses was from 100 to 600.

AR AL L L A A i A A TR e e A I e e e R AL S R A R A L L LD SN

Chapter 6 AM: Oncovery in Mathematics as Heursstic Search -128-

be given?. o
The reader may be interested to learn that the Worth values of many of the concepts — and N
most of the new concepts — ended up very close to the same values that they achieved in -

the original run. Overrated concepts were investigated and proved boring; underrated
concepts had to wait longer for their chances, but then quickly proved interesting and had -
their Worth facets boost>. -

The conclusion I draw from this change in behavior is that the Worth facets are useful for
making blind decisions — where AM must choose based only on the overall worths of the
various concepts in its repertoire. Whenever a specific reason existed, it was far more
influential than the “"erroneous” Worth values. The close, blind, random decisions occur

between long bursts of specific-reasor-driven periods of creative work.2! "

The general answer, then, 15 No, the initial settings of the Worth vaiues are not crucial.
Guessing reasonable initial values for them is merely a time-saving device. This suggests ~
an interesting research problem: what impact does the quality of initial starting values have :
on humans? Give several bright undergraduate math majors the same set of ob jects and "
operators to play with, but tell some of them (i) nothing, and some of them (ii) a certain few by
pieces of the system are very promising, (1i1) emphasize a different subset of the ob jects and .
operators. How does "misinformation” impede the humans? How about no information?
Have them give verbal protocols about where they are focussing their attention, and why.

Albeit at a nontrivial cost, the Worth facets did manage to correct themselves by the end of .

a long®? run. What would happen if the Worth facets of those 115 concepts were not only
nitialized to 200, but were held fixed at 200 for the duration of the run?

In this case, the delay still subsided with time. That 15, AM still got more and more "back
to normal” as it progressed onward. The reason 1s because AM’s later work dealt with
concepts like Primes, Square-root, etc,, which were so far removed from the initial base of
concepts that the initial concepts’ Worths were of little consequence.

2
Even more drastically, we could force all the Worth facets of all concepts — even newly- ,,:
created ones — to be kept at the value 200 forever. in this case, AM’s behavior doesn't ("
completely disintegrate, hut that delay factor actually increases with time: apparently, AM "
begins to suffer from the exponential growth of "things to do" as its repertoire of concepts ;:.3

grows linearly. Its purposiveness, its directionalty depends on "focus uf attention” more and
more, and if that feature is removed, AM loses much of its rationality. A factor of 5 delay
doesn’t sound that bad “efficiency-wise”, but the actuai apparent bdehavior of AM is as
staccato bursts of development, followed by wild leaps to unrelated concepts. AM no longer
can "permanently” record its interest in a certain concept.

‘ T LN 1]'1'-7 . T

So we conclude that the Worth facets are (1) not finely tuned, yet (i1) provide important

AN |

0 Any reader who wishes to perform this experiment can simply say [MAPC CONCEPTS "(LAMBDA (c) (SETB ¢ WORTH

200] to Intertisp, just before iyping (START) io begin AM

'
A A AN,

2 Incidentally, GPS behaved just this same way See, e g, [Newell&Simon 72]

!!" .

22 A couple cpu hours, about 2 thousand tasks total selected from the agenda

Tl Ty -

"
:

Chapter 6 AM: Discovary in Mathematice as Heuristic Search -129-
global information about the rel> ve values of concepts. If the Worth facets are completely

disabled, the rationality of AM’s behavior hangs on the slender thread of "focus of
attention”.

6.2.2. How finely tuned is the Agenda?

The top few candidates on the agenda always appear to be reasonable (to me). If I work
with the system, guiding it, I can cause it to make a few discoveries it wouldn’t otherwise
make, and I can cause it to make its typical ones much faster (about a factor of 2). Thus the
very top task is not always the best.

If AM randomly selects one of the top 20 or so tasks on the agenda each time, what will
happen to its behavior? Will it disintegrate, slow down by a factor of 10, slow down
shightly,..?

This experiment required only a few seconds to set up, but demanded a familiarity with the
LISP functions which make up AM's control structure. At a certain point, AM asks for
Best-task(Agenda). Typically, the LISP function Best-task is defined as CAR ~ i.e,, pick the
first member from the list of tasks. What I did was to redefine Best-task as a function

which randomly selected n from the set {1,2,.,20}, and then returned the n'® member of the
job-list.

If you watch the top job on the agenda, it will take about 10 cycles until AM chooses it.
And yet there are many good, interesting, worthwhile jobs sprinkled among the top 20 on
the agenda, so AM’s performance is cut by merely a factor of 3, as far as cpu time per given

major discovery. Part of this better-than-20 behavior is due to the fact that the 18" best
task had a much lower priority rating than the top few, hence was allocated much less cpu
time for its quantum than the top task would have recerved. Whether it succeeded or
failed, it used up very little time. Since AM was frequently working on a low-value task, it
was unwilling to spend much time or space on it. So the mean time allotted per task fell to
about 15 seconds (from the typical 30 secs). Thus, the "losers” were dealt with quickly, so the
detriment to cpu-time performance was softened.

Yet AM is much less rational in its sequencing of tasks. A topic will be dropped right in the
middle, for a dozen cycles, then picked up again. Often a "good” task will be chosen,
having reasons all of which were true 10 cycles ago — and which are clearly superior to
those of the last 10 tasks. This is what is so annoying to human onlookers.

To carry this investigation further, another experiment was carried out. AM was forced to
alternate between choosing the top task on the agenda, and a randomly-chosen one.
Although its rate of discovery was cut by less than half, its behavior was almost as
distasteful to the user as in the last (always-random) experiment.

Conclusion: Picking {on the average) the 10th-best candidate impedes progress by a factor
less than 10 (about a factor of 3), but it dramatically degrades the "sensibleness” of AM'’s
behavior, the continuity of its actions. Humans place a big value on absolute sensibleness,
and believe that doing something silly 50% of the time is muck worse than half as
productive as always doing the next most logical task.

R e S

R LA LA LS R A AR A AL N S A R S O E N C A A LI SN A L SN M e e R
.
”

Sat el es Jote i oot Jhn dn s NP St B e S Pl o el st shi pet S e i S SR B S S S BRSNS A Sl S Rk g AR A 4 WA TSIy AR b I g 2l e Ea o § R

Chapter 6 AM: Discovary in Mathematics as Heuristic Search -130-

Corollary: Having 20 multi-processors simultaneously execute the top 20 jobs will increase
the rate of "big" discoveries, but not by a full factor of 20.

Another experiment in this same vein was done, one which was designed to be far more
crippling to AM. Be-threshhold was held at 0 always, so any task which ever got proposed
was kept forever on the agenda, no matter how low its priority. The Best-task function war
modiiied so it randomly selected any member of the list of jobs. As a final insult, the Worth
facets of all the concepts were initialized to 200 before starting AM.

Result: Many "explosive” tasks were chosen, and the number of new concepts increased
rapidly. As expected, most of these were real "losers”. There seemed no rationality to AM’s
sequence of actions, and it was quite boring to watch it floundering so. The typical length
of the agenda was about 500, and AM’s performance was "slowed" by at least a couple
orders of magnitude. A more subjective measure of its "intelligence” would say that it
totally collapsed under this random scheme.

Conclusion: Having an unlimited number of processors simultaneously execute all the jobs
on the agenda would increase the rate at which AM made big discoveries, at an ever
accelerating pace (since the length of the agenda would grow exponentially).

“ﬂi‘ el

Having a uniprocessor simulate such parallel processing would be a losing idea, however.
The truly "intelligent” behavior AM exhibits is i's plausible sequencing of tasks.

Kl

6.2.3. How valuable is tacking reasons onto each task?

Let's dig inside the agenda scheme now. One idea I've repeatedly emphasized is the
attaching of reasons to the tasks on the agenda, and using those reasons and their ratings to
compute the overall priority value assigned to each task. An experiment was done to
ascertain the amount of intelligence that was emanating from that idea.

The global formula assigning a priority value to each job was modified. We let it still be a
function of the reasons for the job, but we "trivialized” it: the priority of a job was
computed as simply the number of reasons it has (normalized by multiplying by 100, and
cut-off if over 1000).

This raised the new question of what to do if several jobs all have the same priority. In
that case, | had AM execute them in stack-order (most recent first)>.

Result: I secretly expected that this wouldnt make too much difference on AM’s apparent
n level of directionality, but such was definitely not the case. While AM opened by doing
tasks which were far more interesting and daring than usual (eg, filling in various
Coalescings right away), it soon became obvious that AM was being swayed by hitherto
trivial coding decisions. Whole classes of tasks — like Checking Examples of C — were
never chosen, because they only had one or two reasons supporting them. Previously, one

oy ,(,.2',\

23 Why? Becsuse (i) it sounds right intuitively to me, (ii) this is akin to human focus of attention, snd mainly because (iii)
this 1s what AM did anyway, with no extra modificstion

Lo g 1

Ty
L b 1

v R T T T > . e e e Lt s e = e e a e e -
- R SR A PR R RN P I R T o R UL SV Ut i L N P R R A
Sl . Wiy - o - : 5 N

P

-

bl Tl YA "SR B A% RR G A e e S L AL e 0t BTN N N T g e ot e LR SO

Chapter 6 AM: Discovery in Mathematics as Heuristic Search -131-
or two good reasons were sufficient. Now, tasks with several poor reasons were rising to the
top and being worked on. Even the LIFO (stack) policy for resolving ties didn’t keep AM’s
attention focussed.

Conclusion: Unless a conscious effort is made to ensure that each reason really will carry

roughly an eq+ al amount of semantic impact (charge, weight), it is not acceptable merely to -

choose tasks on the basis of how many reasons they possess. Even in those constricted
equal-weight cases, the similarities between reasons supporting a task should be taken into
account.

Another experiment, not yet performed, will pin down the value of this rule-attaching i~.a
even more precisely. A threshhold value — say 400 — will be fixed. Any reason whose rating
is above that threshhold will be called a good reason, anc every other reason will be a
minor reason. Then tasks will be ordered by the number of good reasons they possess, and
ties will be broken by the number of minor reasons. Still another experiment would be to
randomly pick any task with at least one good reason.

6.2.4. What if certain concepts are eliminated/added?

Feeling in a perverse mood one day, I eliminated the concept "Equality" from AM, to see
what it would then do. Equality was a key concept, because AM discovered Numbers via
the technique of generalizing the relation "Equality” (exact equality of 2 given structures, at
all internal levels). What would happen if we eliminate this path? Will AM rederive
Equality? Will it get to Cardinality via another route? Will it do some set-theoretic things?

Result: Rather disappointing. AM never did re-derive Equality, nor Cardinality. It spent its
time thrashing about with various flavors of data-structures (unordered vs. ordered,
multiple-elements allowed or not, etc), deriving large quantities of boring results about
them. Very many composings and coalescings were done, but no exciting new operations
were produced.

It is expected that eliminating other, less central concepts than Equality will do less damage
to AM’s progress. The reader is invited to try such experiments himseif.

To eliminate a concept, like equality, one need merely type KILB(OBJ-EQU ALITY?%) at the
beginning of the session, before typing (ST ART).

An even kinder type of experiment would be to add a few concepts. One such experiment
was done: the addition of Cartesian-product. This operation, named C-PROD, accepts twu
sets as arguments and returns a third set as its value: the Cartesian product of ihe first two.

Result: The only significant change in AM’s bekavior was that TIMES was discovered first
as the restriction of C-PROD to Canonical-Bags. When it soon was rediscovered in a few
other guises, its Worth was even higher than usual. AM spent even more time exploring
concepts concerned with it, and deviated much less for quite a long time.

24 14 find out the precise PNAME of each concept, just typs CONCEPTS.

R R R i P R L AR PP e N A A B SRR AL LT R N BN ST SRS B S T AT

..n ’-

P

Chapter 6 AM: Discovery in Mathematics as Heuristic Search -132-

Synthesis of the above experiments: It appears that AM may really be more specialized than
expected; AM may only be able to forge ahead along one or two main lines of development
— at least if we demand it make very interesting, well-known discoveries quite frequently.
Removing certain key concepts can be disastrous. On the other hand, adding some
carefully-chosen new ones can greatly enhance AM's directionality (hence its apparent
intelligence).

Conclusion: In its current state, AM is thus seen to be minimally competent. if any
knowledge is removed, it appears much less intelligent; if any is added, it appears slightly
smarter.

Suggestion for future research: A hypothe-*- which should be test.v =xperimentally, is that
the importance of the presence of each indiviuual concept decreases as the number of — and
depth of — the synthesized concepts increase. That is, any excision would eventually “heal
over”, given enough time. The failure of AM to verify this may be due to the relatively
smail amount of development in toto (an hour of cpu time, a couple hundred new concepts,
a few levels deeper than the starting ones).

6.2.5. What if certain _heuristics are tampered with?

The class of experiments described by this section’s heading should prove entertaining, but
it will probably be difficult to learn from their results.

Why is this? Some of the heuristics were added to correct a specific problem; removing
them would simply re-initiate that problem. Others were never actually used by AM, so
their deletion would have no effect. If AM enlarged the range of what it worked on, their
absence might then be felt.

What good would these experiments be, then? We might learn something about ihe
“redundancy of reasoning chains”. We'd stop AM just before it made a big discovery,
remove the heuristic rule 1t was about to use, and sec if it ever makes that big discovery
anyway, later on. If not, perhaps the discarded rule was very important, or there are
alternate rules which exist but haven't been inserted in AM. If the same discovery is made
by an alteriiate route, does that indicate an unexpected duplication of heuristic knowledge?
if heuristic H2 is used now, instead of H1, does that suggest a new meta-rule: “if you want
to apply one of H1/H2 but can't, see if the other rule can be applied."? Is that last sentence
really a Meta-meta-rule?

Before this discussion enters an infinite loop, I'd better extract myself — and the reader — by
commenting that there may be an idea in all this, perhaps of use to whoever writes Meta-
AM. It was decided not to carry out a systematic series of experiments of this type until
AM is much further developed in abilities.

Sl M e g Ry
AT T

Chapter 6 AM: Discovary in Mathematics as Heuristic Search -133-

6.2.6. Can AM work in a new domain: Plane Geometry?

A true strategy should be domain-independent.

== Adams

As McDermott points out [McDermott 76), just labelling a bunch of heuristics ‘Operation
heuristics’ doesn't suddenly make them relevant to any operation; all it does is give that
impression to a human who looks at the code (or a description of it). Since the author
hoped that the labelling really was fair, an experiment was done to test this. Such an
experiment would be a key determiner of how general AM is.

How might one demonstrate that the "Operation” heuristics really could be useful or dealing
with any operation, not just the ones already in AM’s initial base of concepts?

One way would be to pick a new domain, and see how many old heuristics contribute to —
and how many new heuristics have to be added to elicit — some sophisticated behavior in
that domain. Of course, some new primitive concepts would have to be introduced (defined)
to AM.

Only one experiment of this type was attempted. The author added a new base of concepts
to the ones aiready in AM. Included were: Point, Line. Angle, Triangle, Equality of
points/lines/angles/triangles. These simplc piane geometry notions were sufficiently removed
from set-thecrclic ones that those pre-existing specific concepts would be totally irrelevant;
on the other hand, the general concepts — the ones with the heuristics attached — would still
be just as relevant: Any-concept, Operation, Predicate, Structure, etc.

For each new geometric concept, the only facet filled in was its Definition. For the new
predicates and operators, their Domain/range entries were also supplied. No new heuristics
were added to AM.

Results: fairly good behavior. AM was able to find examples of all the concepts defined,
22d to use the character of the results of those examples searches to determine intelligent
courses of action. AM derived congruence and similarity of triangies, and several other
well-known simple concepts. An unusual result was the repeated derivation of the idea of
“timberline”. This is a predicate on two triangles: Timberline(T 1,T2) iff T1 and T2 have a
common angle, and the side opposite that angle in the two triangles are parallel:

-
PR

——

I

o ———_
o
sy

v
"

G ... B
.
] v X

"~

At Ay

iyt

.
»
»

o)

e
ln. -

Wy <
ERC

Sl L LR M R SR QN LA LA EA LA G G AN 1 N g) a3 W iEEia A St s P B im s i (sl

Chapter 6 AM: Discovery in Mathamatics as Heuristic Search -134-

Timberline(ABC,ADE)

Since AM kept rederiving this in new ways, it seems surprising that thete is no very
common name for the concept. It could be that AM 15 using techniques which humans don't
— at least, for geometry.

The only new bit of knowledge that came out of ifis experiment was a "use” foir Coldbach’s
con jecture: any angle (0-180 degrees) can be built up (to within | degree} as the sum of two
angles of prime degrees (<180). This result is admitiedly esoteric 2t best, but is nonetheless
wotth reporting.

The total effort expended on this experiraent was: a few months of subconscious processing,
ten hours of designing the base of concepis to insert, ten hoiirs inserting and debugging
them. The whole task took about two days of real time.

The conclusion to be drawn is that heuristics really can be generally useful; their attachment
to general-sourding cuncepts is not an illusion.?% The mpiication of this is that AM can be
grown incrementally, domain by domain. Adding eapertise in a new domain 1equires only
the introduction of concepts fecal to that demain; ail the vary general concepes — and their
heuristics — already exist and can be used with no change.

The author feels that this result can be genesalized: AM can be expanded in scope, even to
non-mathematical fields of endeavor. In each field, however, the rankings of the various
heuristics?® may shift shghtly. As the domain gets further away from mathematics, various
heuristics are important which were ignorable before (eg., those dealing with ethics), and
some pure math research-oriented heuristics become less applicable ("giving up arnd moving
on to another topic” is not an acceptable response to the [5-puzzle, nor to a hostage
situation).

Well, it sounds as if we've shifted our orientation from ‘Results’ to a sub jective evaluation
of those results. Let’s start a new chapter to legitimize this type of commentary.

%5 Or it's a very good illusion! But note: if this phenomenon is repsatable snd useful, then (ke Newtonisn mechanics) it
won't pragmatically matter whether it's only an illusion.

26 the numeric values that should be returned by the local ratings formulse which are attached to the heuristic rules

A A e e e m m e = o= e e o - -
A T A Y AP P T T S T R T AP ARl AP il WL LW v W W W W v W w

~w e T L e Te e e M R T R LA T A RGTRY E TR TT N T AT AT W A T T TR

A‘l-
;E (']

:
E
E:
o
o
AN -135-
|
g
3
a
E
{ e
L Chapter 7. Evaluating AM
)
%‘j}: All mathematicians are wrong at times.
5 == Maxwall
e
r-
.
») This chapter contains discussions "meta” to AM itself.
S First comes an essay about judging the performance of a system like AM. This 1s a very
hard task, since AM has no "goal". Even using current mathematical standards, should AM
E._ be judged on what it produced, or the quality of the path which led to those results, or the
r difference between what it started with and what it finally derived?
. Section 7.2 then deals with the capabilities and limitations of AM:
h » What concepts can be elicited from AM now? With a little tuning/tiny additions?
» What are some notable omissions in AM’s behavior? Can the user elicit these?
- ¢ What could probably be done within a couple months of modifications?
l\ + Aside from a total change of domain, what kinds of activiu.s does AM lack (e.g.,
proof capabilities)? Are any discoveries (e.g, analytic function theory) clearly
p beyond its design limitations?
o Finally, all the conclusions will be gathered together, and a short summary of this project’s
‘contribution to knowledge’ will be tolerated.
[
E: .
7.1, Judging Performance
e One may view AM’s activity as a progression from an initial core of knowledge to a more
sophisticated “final”! body of concepts and their facets. Then each of the following is a
g{. reasonable wajy to measure success, to "judge” AM:
j v 1. By AM’s ultimate achievements. Examine the list of concepts and methods AM
[
{-.

-

! As has been stressed before, AM has no fixed goal, no "final" state For practicsl purposes, however, the totality of
explorstions by AM s about the same as the "best run so far"; either of these can be thought of as
defining what 1s meant by the "final" stste of knowledge.

Fl

.

el

i,

-3

s
H]

o~

Chapter 7 AM: Discovary in Mathematics as Heuristic Search -136-

developed. Did AM ever discover anything interesting yet unknown to the user??
Anything new to Mankind?

2. By the character of the difference between the initial and final states. Progressing
from set theory to number theory is much more impressive than progressing from
two-dimensional geometry to three-dimensional geometry.

3. By the quality of the route AM took to accomplish these advances: How clever, how
circuitous, how many of the detours were quickly identified as such and
abandoned?

4. By the character of the User—System interactions: How important is the user's
guidance? How closely must he guide AM? What happens if he doesn’t say
anything ever? When he does want to say something, is there an easy way to
express that to AM, and does AM respond well to it? Given a reasonable kick in
the right direction, can AM develop the mini-theories which the user intended, or
at least something equally interesting?

5. By its intuitive heuristic powers: Does AM believe in "reasonable” con jectures? How
accurately does AM estimate the difficulty of tasks it is considering? Does AM tie
together (e.g., as analogous) concepts which are formally unrelated yet which benefit
from such a tie?

6. By the results of the experiments described in Section 6.2 (beginning on page 125).
How "tuned” is the worth numbering scheme? The task priority rating scheme?
How fragile is the set of initial concepts and heuristic ruless How domain-specific
are those heuristics really? The set of facets?

7. By the very fact that the kinds of experiments outlined in Section 6.2 can easily be
"set up” and performed on AM. Regardiess of the experiments’ outcomes, the
features of AM which allow them to be carried out at all are worthy of note.

8. By the implications of this project. What can AM suggest about educating young
mathematicians (and scientists in general)? What can AM say about doing math?
about empirical research in general?

9. By the number of new avenues for research and experimentation it opens up. What
new projects can we propose?

10. By comparisons to other, similar systems.

For each of these 10 measuring criteria, a subsection will now be provided, to illustrate (i)
the biggest achievement and (1i) the biggest failure of AM along each dimension, and (iii)
to try to objectively characterize AM’s performance according to that measure. Other

measures of judging performance exist3, of course, but haven't been applied to AM.

7.1.1. AM’s Ultimate Discoveries

2 The “user” is a3 human who works with AM intersctively, giving 1t hints, commands, questions, etc Notice that by "new” we
mean new to the user, not new to Mankind This might occur if the user were a child, and AM discovered
soms elamentary facts of arithmetic. This is not really so provincial- mathematicians take "new” to mean new
to Mankind, not new in the Universe | fesl philosophy slipping in, so this footnote is terminated

2 For example, Coby sent transcripts of a session with PARRY to various psychistrists, and had them evaluste each
intersction slong several dimensions The same kind of survey could be done for AM. A quite separate
measure of AM would be to wait and see how many future articles in the field refer to this work (and in
what lightl).

el m s mm a mmamNAmTataraar e - e e A . e e e .
T e T S A SRS R R L A T i S

SR R ek i Y S S 4 S 2 A PR T 28 Nl A AR R LR RS R R U R T ST e S RN R N L LS L A A S A 15 i RNLBCL AN 4L et AN AL AL RS i

. ¢
L_\
2 Chapter 7 AM: Discovery in Mathematics as Heuristc Search -137-

E Two of the ideas which AM proposed were totally new and unexpected:*
W 1. Consider numbers with an abnormally high number of divisors. If d(n) represents

the number of divisors of n, then AM defines the set of "maximally-divisible

% numbers” to be {n¢N | (Vm¢n) d(m)d(n)}. By factoring each such number into

o primes, AM noticed a regularity in them. The author then developed a "mini-

theory” about these numbers. It later turned out that Ramanujan had already

proposed that very same definition (in 1915), and had found that same regularity.

g His results only partially overlap those of AM and the author, however, and his
methods are radically different.

2. AM found a cute geometric application or Goldbach's con jecture. Given a set of all

F' angles of prime degree, from 0 to 180%° then any angle between 0 and 180 degrees

can be approximated to within 1° by adding a pair of angles from this prime set.
In fact, it is hard to find smaller sets than this one which approximate any angle to
= that accuracy.

By and large, the other concepts which AM developed were either already-known, or real

w losers. For example, AM composed Set-insert with the predicate Equality. The result was
an operation InsertoEqual(x,y,z), which first tested whether x was Equal to y or not. The

value of this was either True or False”. Next, this T/F value was inserted into z. For
‘-‘, example, InsertoEqual({1,2},{3,4},{56}) = {False,56}. The first two arguments are not equal,
E\ so the atom ‘False’ was inserted into the third. Although hitherto "unknown", this operation

would clearly be better off left in that state.

E Another kind of loser occurred whenever AM entered upon some "regular” behavior. For
example, if it decided that Compose was interesting, it might try to create some examples of
compositions. It could do this by picking two operations and composing them. What better

[_ operations to pick than Compose and Compose! Thus ComposeoCompose would be born.

By composing that with itself, an even more monstrous operation is spawned:

ComposesComposesComposecCompose. Since AM actually uses the word "Compose”

instead of that little infix circle, the PNAME of the data structure it creates is horrendous.

Its use is almost nonexistent: it must take b operations as arguments, and it returns a new

operation which is the composition of those five. An analogous danger which exists is for

AM to be content con jecturing a stream of very similar relationships (e.g., the multiplication

table). In all such cases, AM must have meta-rules which pull it up out of such whirlpools,

to perceive a higher generalization of its previous sequence of related activities.

E &
RENES . 2

In summary, then, we may say that AM produced a few winning ideas new to the author, a
couple of which were new to Mankind. Several additional "new" concepts were created

Ta

%':- 4 tw.te that these are "ultimate discoveries” only in the sense of whet has been done st the time of writing this thesis For
- one of AM's ideas to be "new", it should be previously unknown to both the author and the user. Why? If the

suthor knew sbout it, then the heuristics he provided AM with might unconsciously encode a path to that
; knowledge If the user knew sbout that ides, his guidance might unconsciously help AM to derive it. An even
¥. more stringent interpretation would be that the idea be hitherto unknown to the collective written record of
},_ Mathematics.

% eg, d(12) ~ Size({1,2,3,0,6,12)) = 6.

it Included are 0° and 1°, as well as the “typical* primes 2°, 3°, 8%, 7°, 11°,., 179°,
:; 7 Actually, in LISP, it was essier to have such results always be sither T or Nil

Pd --'"--" - '-' St T -q" e T ."‘.' Tt n‘-. - v - .'. A -'= - _-'xah'. -'; P n-,‘ -’_ oo -\ -.. Pl Pt S S n-‘ n".' - -"l VR wT, fh L) LS

.
4
-4
-
9
o

-

"~

"

D Y SO S R WA

¥ vy

L .’.
y]

YT
i

s

PR
« " »

Vot ot
Ve

T
. N
L LU ST . “:4

2
L]

LN
»

¥

-

0
A

Rt R

hl’ -

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -138-

which both AM and the user agreed were better forgotten. The "level” of AM’s fruits could
be classified as an undergraduate math ma jor, although this is deceptive since AM lacks the
breadth of abilities any human being possesses.

7.1.2. The Magnitude of AM’s Progress

Even with men of genius, with whom the birth rate of hypotheses is very high, it
only just manages to exceed the death rate.

= W. H. George®

We can ask the following kind of question: how many "levels” did AM progress along? This
is a fuzzy notion, but basically we shall say that a new level is reached when a valuable new
bunch of connected concepts are defined in terms of concepts at a lower level.

For example, AM started out knowing about Sets and Set.operations. When it progressed
to numbers and arithmetic, t.at was one big step up to a new level. When it zeroed in on
primes, unique-factorization, and divisibility, it had moved up another level.

When fed simple geometry concepts, AM moved up one level when it defined some
generalizations of the equality of geometric figures (parallel lines, congruent and similar
triangles, angles equal in measure) and their invariants (rotations, translations, reflections).

The above few examples are unfortunately exhaustive: that just about sums up the major
advances AM made. Its progress was halted not so much by cpu time and epers, a: by a
paucity of meta-knowledge: heuristic rules for filliny i3 i.ew heuristic rules. Thus AM’s
successes are finite, and its failuies inhnite, along this dimensnon.

A more charitable view might compare AM to a human who was forced to start from set
theory, with AM's sparse abilities. In that sense, perhaps, AM would rate quite well. The
"unfair” advantage it had was the presence of many heuristics which themselves were
gleaned from mathematicians: i.e, they are like compiled hindsight. A major purpose of
mathematics education in the university is to instil these heuristics into the minds of the
students.

AM is thus characterized as possessing heuristics which are powerful enough to take it a
few "levels” away from the kind of knowledge it began with, but only a few levels. The
limiting factors are (i) the heuristic rules AM begins with, and more specifically (ii) the
expertise in recognizing and compiling new heuristics, and more generally (iii) a lack of
real-world situations to draw upon for analogies, intuitions, and applications.

& Quoted from [Beveridge 50}

L LI
o

. . 4 ¥
R e N e A A = o -..-.,',, Lo, W, MR PR

B RS TR AR A oA I D e AR N e et AN A A A Rl I e AR e LR SN M A ISR ACE AL BN A S I e R P et

~ - .

ar- e

.y e

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -139-

7.1.3. The Quality of AM’s Route

¢ -

oy

Thinking is not measured by what is produced, but rather is a property of the
way something is done.

Loy F "

== Hamming

No .natter what its achievements were, or the magnitude of its advancement from initial
knowledge, AM could® still be judged "unintelligent” if, eg., 1t were exploring vast numbers
of absurd avenues for each worthwhile one it found. The quality of the route AM followed
is thus quite significant.

Bs"2p"2"35s 3 » & 3

CEa

AM performed better in this respect than expected. It is not obvious'® how well a human
wotlld have fared under similar circumstances. Of the two hundred new concepts it defined,
about 130 were acceptable — in the sense that one can defend AM’s reasoning in at least
exploring them; in the sense that a human mathematician might have considered them. Of
these "winners", about two dozen were significant — that is, useful, catalytic, well-known by
human mathematicians, etc. Unfortunately, the sixty or seventy concepts which were losers
were real losers. In this respect, AM fell far below the standards a mathematician would set
for acceptable behavior: all his failures should have at least seemed promising at the
beginning. Half of AM’s adventures were poorly grounded, and (perhaps due to a lack of
intuition) AM bothered with concepts which were "obviously" trivial: the set of even primes,
the set of numbers with only one divisor, etc. The human mathematician would
momentarily consider many poor courses of action, whereas AM on the other hand
managed to avoid truly lunatic activities without even momentary consideration of them,
But a fitiwan would only spend a significant amount of time on very promising tasks, and
AM wasted a huge amount ot time Gi tacks which a human would have quickly recognized
as dead-ends.

Drxiivie T i T S S 1

-

T Lt

X e TN Y Y AR

.3

o

Once again we must observe that the quality of the route is a function of the quaiity of the
heuristics. If there are many clever little rules, then the steps AM takes will often seem
clever and sophisticated. If the rules superimpose nicely, joining together to collectively
buttress some specific activity, then their effectiveness may surprise — and surpass — their
creator.

oAma T

Py
’

it 21

Such moments of great insight (i.e, where AM’s reasoning surpassed mine) did occur,
although rarely. Both of AM’s "big discoveries” started by its examining concepts I felt
weren't really interesting. For example, I didn’t like AM spending so much time worrying
about numbers with many divisors; I "knew" t+ * the converse concept of primes was

- -
"R NN

T .

v not necessarily WOULD be so judged. Humans may very well consider sn incredible number of silly ideas before the right

pair of "hooked atoms” collide into & sensible thought, which is then considered in full consciousness If, Iike
humens, AM was capable of doing thie procsssing in & sufficiently brisf pericd of real tims, it would not
reflect ill on its svaluation Of course, this may simply be the DEFINITION of "sufficiently brief".

10 Or whether ihat even mskes sense to consider. Comparisons with mathematiciens would be desirable, but sre beyond the
scops of this investigation.

B Tt

RCICIE R R] |

(R

Chapter 7 AM: Discovary in Mathematics as Heuristic Search -140-

infinitely more valuable. And yet AM saw no reason to give up on maximally-divisible
numbers; it had several good reasons for continuing that inquiry (they were the converse to
primes which had already proved interesting, their frequency within the integers was
neither very high nor very low nor very regular, their definition was simple, they were
extremals of the interesting operation "Divisors-of”, etc, etc) Similarly, I "knew" that
Goldbach’s con jecture was useless, so I was unhappy that AM was bothering to try to apply
it in the domain of geometry. In both cases, AM’s reasons for its actions were unassailable,
and in fact it did discover some interesting new ideas both times.

Sometimes AM's behavior was displeasing, even though it wasn’t “erring”. Occasionally it
was simultaneously developing two mini-theories (say primes and maximally-divisibles).
Then it might pick a task or two dealing with one of these topics, then a task or two dealing
with the other topic, etc. The task picked at each moment would be the one with the highest
priority value. As a theory is developed, the interestingness of its associated tasks go up
and down; there may be doldrums for a bit, just before falling into the track that will lead
to the discovery of a valuable relationship. During these temporary lags, the interest value
of tasks related to the other theory’s concepts will appear to have a higher priority value:
i.e, better reasons supporting it. So AM would then skip over to one of those concepts,
develop it until its doldrums, then return to the first one, etc. Most humans found this

behavior unpalatable“ because AM had no compunction about skipping from one topic to
another. Humans have to retune their minds to do this skipping, and therefore treat it
much more seriously. For that reason, AM was given an extra mobile reason to use for
certain tasks on its agenda: "focus of attention”. Any task with the same kind of topic as the
ones just execuied are given this extra reason, and it raises their priority values a little.
This was enough sometimes to keep AM working on a certain mini-theory when it
otherwise would have skipped somewhere else.

The above "defect” is a cute little kind of behavior AM exhibited which was non-human
but not clearly "wrong”. There were genuine bad moments also, of course. For example,

AM became very excited'? when the conjunction of "empty-set” and other concepts kept
being equal to empty-set. AM kept repeating con junctions of this form, rather than stepping
back and generalizing this data into a (phenomenological) con jecture. Similar blind looping
behavior occurred when AM kept composing Compose with itself, over and over. In
general, one could say that "regular” behavior of any kind signals a probable fiasco. A
heuristic rule to this effect halted most of these disgraceful antics. This rule had to be
careful, since it was almost the antithesis of the "focus of attention" idea mentioned in the
preceding paragraph. Together, those two rules seem to say that you should continue on
with the kind of thing you were just doing, but not for too long a time.

The moments of insight were 2 in number; the moments of stupid misdirection were about
twenty times as many.

AM has very few heuristics for deciding that something was uninteresting, that work on it

i Although it might be the "best™ from & dynamic managemsnt point of view, it prohably would be wrong in the long run.
Major sdvances really do have Wlls in their development.

12 Please excuse this anthropomorphism. Technically, we may say that the priority value of the best job on the agenda 1s
the "level of excitement” of AM. 700 or higher is called "excitement”, on a scals of 0-1000.

ATt R Y R AU LR R B i B S e e R B Wl e e e W L -

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -141-

should halt for a long time. Rather, AM simply won't have anything positive to say about
that concept, and other concepts are explored instead, essentially by defauit. Each concept
has a worth component which corresponded to its right to life (its right to occupy storage in
core). This number slowly declines with time, and is raised whenever something interesting
happens with that concept. If it ever falls below a certain threshhold, and if space is

exhausted '3, then the concept is forgotten: its list cells are garbage collected, and all
references to it are erased, save those which will keep it from being re-created. This again
is not purposeful forgetting, but rather by default; not because X is seen as a dead-end, but
simply because other concepts seem so much more interesting for a long time.

Thus AM did not develop the sixty "losers” very much: they ended up with an average of
only L5 tasks relevant to them ever having been chosen. The "winners" averaged about
twice as many tasks which helped fill them out more. Also, the worth ratings of the losers
were far below those of the winners. So AM really did judge the value of its new concepts
quite welt.

The final aspect of this important dimension of evaluation is the quality of the reasons AM
used to support each task it chose to work on. Again, the English phrases corresponded
quite nicely to the "real” reasons a human might give to justify why something was worth
trying, and the ordering of the tasks on the agenda was rarely far off from the one that I
would have picked myself. This was perhaps AM’s greatest success: the rationality of its
actions.

7.1.4. The Character of the User-Systein Interactions

AM is not a "user-orientea” system There were many nice human-interaction features in

the original grandiose proposal for AM which never got off the drawing board. At the
heart of these features were two assumptions:

1. The user must understand AM, and AM must likewise have a good model of the

particular human using AM. The only time either should initiate a message is

when his model of the other is not what he wants that model to be. In that case,

the message should be specifically designed to fix that discrepancy.'?

2. Each kind of message which is to pass between AM and its user should have its
own appropriate language. Thus there should be a terse comment language,
whereby the user can note how he feels about what AM is doing, a questioning
language for either party to ret/give reasons to the other, a picture language for
communicating certain relationships, etc.

Neither of these ideas ever made it into the LISP code that is now AM, although they are
certainly not prohibited in any way by AM’s design. It would be a separate project, at or

above the level of a master’s thesis, for someone to build a nice user interface for AM!°.

13 No concepts wers forgciten in this way until near the end of AM's runs, when AM would usually collapse from several
causes including lack of space.

14 This idea was motivated by a lecture given in 1975 by Terry Winograd

15 | am not actually calling for this to be done, merely indicating the magnitude of the effort involved. A VERY nice user
interface might be much harder, st the level of & dissertation.

e
vod
2|
b

K
:
i.
1

l

L

R I | i S A

RS el Pl

RO Lacs SR

i\ TP ST FTr

B

o w e e
at

RN

0o it YD TF

Wty Ty T Y)

DA L s

e, v,

°q

T

LA R re b A LS SRR S ih B G ER SR AN IS S bt AN) SR S N S B R Sy G e Rt g AN N AL ALV PRSI S

Chapter 7 AM: Discovery in Mathamatics as Heuristic Search -142-

As one might expect, the reason for this atrophy is simply because very little guidance from
the user was needed by AM. In fact, all the discoveries, cpu time quotes, etc. mentioned in
this document are taken from totally unguided runs by AM. If the user guides as weil as he
can, then about a factor of 2 or 3 speedup is possible. Of course, this assumes that the user
is dragging AM directly along a line of development he knows will be successful. The user’s
"reasons” at each step are based essentially on hindsight. Thus this is not at all “fair". If
AM ever becomes more user-oriented, it would be nice to let children (say 6-12 years old)
experiment with it, to observe them working with it in domains unfamiliar to either of

them.'®

The user can "kick” AM in one direction or another, eg,, by interrupting and telling AM

that Sets are more interesting than Numbers'’. Even in that particular case, AM fails to
develop any higher-level set concepts (diagonalization, infinite sets, etc.) and simply wallows
around in finite set theory (de Morgan's laws, associativity of Union, etc.). When geometric
concepts are input, and AM is kicked in tAat direction, much nicer results are obtained. See
the report on the Geometry experiment, page 133.

There is one important result to observe: the very best examples of AM in action were
brought to full fruition only by a human developer. That is, AM thought of a couple great
concepts, but couldn’t develop them well on its own. A human (the author) then took them
and worked on them by hand, and interesting results were achieved. These results could be
told to AM, who could then go off and look for new concepts to investigate. This
interaction is of course at a much lower frequency than the kind of rapidfire
question/answering talked about above. Yet it seems that such synergy may be the ultimate
mode of AM-like systems.

7.1.5. AM’'s Intuitive Powers

Intuitive conviction surpasses logic as the brilliance of the sun surpasses the pale
light of the moon.

== Kline

Let me hasten to mention that the word “intuitive” in this subsection’s title is not related to
the (currently non-existent) "Intuitions” facets of the concepts. What is meant is the totality
of plausible reasoning which AM engages in: empirical induction, generalization,
specialization, maintaining reasons for jobs on the agenda list, creation of analogies between
bunches of concepts, etc.

o

;‘f{;"-: 16 Starred (+) exercise for the reader: carry out such a project on a statistically significant sample of children, wait thirty
SAS years, and observe the incidence of mathematicisns and scientists in general, compared to the national
‘;',-_"" sverages. Within whatever occupation they've chosen, rate their creativity and productivity.
:.“':,, 17 To actually do this, the user will type control-| to interrupt AM. He then types |, meaning “alter the interest of", followed
X }"« by the word "Sets” AM then asks whether this is to be raised or lowsred. He types back R, and AM ssks
Faltteh how much, on a8 1-10 scale. He reples 9, say, and than repeats this process for the concept "Numbers”,

¢

- - - =" " e A g m Wt R YR Rl S SN R B L el T N N T Pl A Wit Y e T e = * . .
L A e T T R N R W L AT L L s
A e e T AL A RN i R T e T B . P i AP N
it o '

Ao N A S AL AR AR I A Ak R e e N A R e e i AR e PR R AR R R L RS sl TS s At S

.

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -143-

AM only considers conjectures which have been explicitly suggested: cither by empirical
evidence, by analogy, or (de-implemented now:) by Intuition facets. Once a con jecture has
been formulated, it is tested in all ways possible: new experimental evidence is sought
(especially extreme cases), it 1s examined formally'® to see if it follows from already-known
con jectures, etc.

‘
.

‘.l—:l'f)

Because of this grounding in plausibility, the only conjectures the user ever sees (the ones
AM s testing) are quite believable. If they turn out to be false, both he and AM are
surprised. For example, both AM and the user were disappointed when nothing came out
of the concept of Uniquely-prime-addable numbers (positive integers which can be
represented as the sum of two primes in precisely one way). Several conjectures were
proposed via analogy with unique prime factorization, but none of them held
experimentally. Each of them seemed worth investigating, to both the user and the

system.'®

ey
.

L ar et
PP

Y

AM'’s estimates of the value of each task it attempts were often far off from what hindsight
proved their true values to be. Yet this was not so different from the situation a real
researcher faces, and it made little difference on the discoveries and failures of the system.
AM occasionally mismanaged its resources due to errors in these estimates. To correct for
such erroneous prejudgments, heuristic rules were permitted to dynamically alter the
time/space quanta for the current task. If some interesting new result turned up, then some
extra resources would be allotted. If certain heuristics failed, they could reduce the time
limits, so not as mi:ch total cpu time would be wasted on this loser.

b

8 An example of a nice con jecture is the unique factorizatio,. vrie. A nice analogy was the
one between angles and numbers (leading to the application of Goldbach’s con jecture).
Another nice analogy was between numbers and bags (and hence between bag-operations

§ and what we commonly call arithmetic operations).

. Some poor analogies were considered, like the one between bags and singleton-bags. The
g ramifications of this analogy were painfully trivial®,

%:',- 7.1.6. Experiments on AM

-

The experiments described in Section 6.2 (page 125 ff) provide some results relevant to the
overall value of the AM system. The reader should consult that section for cletails; neither

w h

i~ the experiments nor their results will be repeated here. A few conclusions will be
) summarized, to show that AM fared well in this dimension of evaluation.

' The worth-numbering scheme for the concepts is fairly robust: even when all the concepts’s
{

o 18 Currently, this is dons in trivial ways An open problem, which is under attack now, is to sdd more powerful formal
W reasoning sbilities to AM

¢ It is still not known whether there 1s anything interesting sbout that concept or not

(- 20 The bag-operations, applied to singletons, did not produce singletons as their result (x)U(y) is (x,y) which 18 not »
e singleton Whether they did or not dependsd only on the equality or inequality of the two arguments Thers
" were many tiny conjectures proposed which merely re-echoed this general conclusion

g
e
LR

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -144-

worths are initialized at the same value, the performance of AM doesn’t collapse, although
ic is noticeably degraded.

Certain mutilations of the priority-value scheme for tasks on the agenda will cripple AM,
but it can resist most of the small changes tried in various experiments.

Sometimes, removing just a single concepts (e.g., Equality) was enough to block AM from
discovering some valuable concepts it otherwise got (in this case, Numbers). This makes
A\’s behavior sound very fragile, like a slender chain of advancement. But on the other

hand, many concepts (eg, TIMES, Timberline, Primes?!) were discovered in several

independent ways. If AM’s behavior is a chain, it is multiply-stranded®?. More
exprriments of this sort should be done to test this general conclusion about AM.

The heuristics are specific to their stated domain of applicability. Thus when working in
geometry, the Operation heuristics were just as useful as they were when AM worked in
elementary set theory or number theory. The set of f{acets seemed adequate for those
domains, too. The Intuition facet, which was rejected as a valid source of information about
sets and numbe: s, might have been more acceptabie in geometry (e.g, something similar to
Gelernter's model of a geometric situation).

Allin all, then, we conclude that AM was fairly tough, and about as general as its heuristics
claimed it was. AM is not invincible, infallible, or universal. Its scrength lies in careful use
of heuristics. If there aren’t enough domain-specific heuristics around, the system will simply
not perform well in that domain. If the heuristic-using control structure of AM is tampered

with?3, there is some chance of losing vital guiding information which the heuristics would
otherwise supply.

7.1.7. How to Perform Experiments on AM

The very fact that the kinds or experiments mentioned in the lo:: section (and described in
detail in Section 6.2) can be "set up" and performed on AM, reflects a nice quality of the
AM program.

Most of those experiments took only a matter of minutes to set up, only a few tiny
modifications to AM. For example, the one where all the Worth ratings were initialized to
the same value was done by evaluating the single LISP expression:

(MAPC CONCEPTS "(x {c) (PUT ¢ 'Worth 200)))

2 Primes was discoverad indepsnd:ntly as follows: sll numbsrs (>0) were seen to be representable as the sum of smaller
numbers, Add was known to be anslogous to TIMES; But not sll numbers (>1) sppeared to be representsble
ss the product of two smaller ones; Rule number 81 triggered (see Appendix 3, page 243), and AM
defired the set of exceptions: the set of numbers which could not be expressed as the product of two
smaller ones; ie, the primes.

22 except for s faw weak spots, like Numbers. If they don't get discovered, AM losss

3 eg, trest all reasons as equivalent, so vou st CGUNT the number of reasons a task has, to determine its priority on

the sgends.

R A A LS A R A

‘v
-

o

.
]
v

LI)

Gt

-
¥

DAy

Cx

Chapter 7 AM: Discovary in Mathematics as Heuristic Search -145-

Similarly, here is how AM was modified to treat all tasks as if they had equal value: the
function Pick-task has a statement of the form

(SETQ Current-task (First=member=of Agenda))

All that was necessary was to replace the call on the function "First-member-of"?? by the
function "Random=member-of".

Even the most sophisticated experiment, the introduction of a new bunch of concepts —
those dealing with geometric notions lixe Between, Angle, Line — took only a day of
conscious work to set up.

Of course running the experiment involves the expenditure of hours of cpu time, so only a
limited number were actually performed.25

There are certain experiments one can't easily perform on AM: removing all its heuristics,
for example. Most heuristic search programs would then wallow around, displaying just
how big their search space really was. But AM would just sit there, since it'd have nothing
plausible to do.

Many other experiments, while cute and easy to set up, are quite costly in terms of cpu time.
For example, the class of experiments of the form: "remove heuristics X, y, and z, and
observe the resultant affect on AM’s behavior”. This observation would entail running AM
for an hour or two of cpu time! Considering the number of subsets of heuristics, not all
these questions are going to get answered in our universe’s lifetime. Considering the small
probable payoff from any one such experiment, very few should actually be attempted.

One nice experiment would be ts monitor the contribution eac* heuristic is making. That
is, record each time 1t 15 used and record the final outcome of its activation (which may be
several cycles later). Unfortunately, AM’s heuristics are not all coded as separate Lisp
entities, which one could then "trace”. Rather, they are often interwoven with each other
into large program pieces. So this experiment can't be easily set up and run on AM.

Most of the experiments one could think of can be quickly set up — but only by someone
familiar with the LISP code of AM. It would be quite hard to modify AM so that the
untrained user could easily perform these experiments. Essentially, that would demand that
AM have a deep understanding of its own structure. This is of course desirable, fascinating,

challenging, but wasn't part of the design of AM.2®

24 In LISP, this function is actusily sbbrevisted "CAR".

25 Those described in the last chapter. The series of experiments began st the same time that this document was being
written, and was intended originally only as a diversion from the tedium of writing The interesting character
of their results convinced me they should be included, sven though thoy are few in number and quite
incomplete

26 A suggestion for future rasearch projects in this general srea. such systems should be designed in 3 way which
facilitates 8 poorly-tramned user not only using the system but experimenting on it.

-

»

1

RORE e

i el
[

3w

2l |
)

13
-

15

1
oy

H
. 1
L@

g

kY
]

| iy
APAR
[300 B S

i
o

]

il g
Yy G B4 Aty
IR VP

A
x
L

{
il

‘1

P
1t

N T N D N I N S R R T VT T I W VTSR IR IR N T T

Chapter 7 AM: Discavery in Mathamatics as Houristic Search -146-

7.1.8. Future Implications of this Project

One harsh measure of AM would be to demand what possible applications it will have.
This really means (i) the uses for the AM system, (ii) the uses for the ideas of how to create
such systems, (iii) conclusions about math and science one can draw from experiments with
AM.

Here are some of these implications, both real and potential:

1. New tools for computer scientists who want to create large knowledge-based systems to

emulate some creative human activity.

la. The modular representation of knowledge that AM uses might prove to be
effective in any knowledge-based system. Division of a global problem into a multitude
of small chunks, each of them of the form of setting up one quite local "expert” on some
concept, is a nice way to make a hard task more managable. Conceivably, each needed
expert could be filled in by a human who really is an expert on that topic. Then the
giobal abilities of the system would be able to rely on quite sophisticated local criteria.
Fixing a set of facets once and for all permits effective inter-module communication.

1b. Some ideas may carry over unchanged into many fields of human creativity,
wherever local guiding rules exist. These include: (a) idcas about heuristics having
domains of applicability, (b) the policy of tacking them onto the most general knowledge
source (concept, module) they are relevant to, {c) the rippling scheme to locate relevant
knowledge, etc.,

2. A body of heuristics which cap be built upon by others.

2a. Most of the particular heuristic judgmental criteria for interestingness, utility,
etc, might be valid in developing theorizers in other sciences. Recali that each rule has
its domain of applicability; many of the heuristics in AM are quite general.

2b. Just within the small domain in which AM already works, this base of
heuristics might be enlarged through contact with various mathematicians. If they are
willing to introspect and add some of their “rules” to AM’s existing base, it might
gradually grow more and more powerful.

2¢. Carrying this last point to the limit of possibility, one might imagine the
program possessing more heuristics than any single human. Of course, AM as it stands
now is missing so much of the ‘human element’, the luife experiences that a

. mathematician draws upon continually for inspiration, that merely amassing more

heuristics won't automatically push it to the level of a super-human intelligence.
Another far-out scenario is that of the great mathematicians of each generation pouring
their individual heuristics into an AM-like system. After a few generations have come
and gone, running that program could be a valuable way to bring about ‘interactions’
between peopl. who were not contemporaries.

3. New and better strategies for math educators. [optional]
3a. Since the key to AM’s success seems to be itc lieuristics, and not the particular
concepts it knows, th~ wvhole orientation of rathematics education should perhaps be
modifiec, *~ ~ovide experiences fo; cne student which will build up these rules in his
mind. Learning a new thzurem is worth much less than learning a new heuristic which

=i ST P AT AR AT R TR T AL T ARG T AT T T RN T TR R RV TR

-Lb 1

.
PR)

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -147-
E lets you discover new theorems.2’ I am far from the first to urge such a revision (see,

e.g., [Koestler 67), p.265, or see [Papert 72]).
3b. If the repertoire of intuition (simulated real-world scenarios) were sufficient for

£ AM to develop elementary concepts of math, then educators should ensure that children
(e (4-6 years old) are thoroughly exposed to those scenarios. Such activities would include
seesaws, slides, piling marbles into pans of a balance scale, comparing the heights of
towers butlt out of cubical blocks, solving a jigsaw puzzle, etc. Unfortunately, AM failed
! to show the value of these few scenarios. This was a potential application which was

not confirmed.
3¢. One use for AM itself would be as a "fun” teaching tool. If a very nice user

f} interface is constructed, AM could serve as a model for, say, college freshmen with no
e math research experience. They could watch AM, see the kinds of things it does, play

with it, and perhaps get a real flavor for (and get turned on by) doing math research. A
- vast number of brilliant minds are too turned off by high-school drilling and college
b calculus to stick around long enough to find out how exciting — and different — research

math is compared to textbook math.

{: 4, Further experiments on AM might tell us something about how the theory formation task
changes as a theory grows in sophistication. For example, can the same methods which
lead AM from premathematical concepts to arithmetic also lead AM from number

(,, systems up to abstract algebra? Or are a new set of heuristic rules or extra concepts

o required? My guess is that a few of each are lacking currently, but only a few. Therz s

a great deal of disagreement about this subject among mathematicians. Dy tracing

. along the development of mathematics, one might categorize discovciies by how easy

s they would be for an AM-like system to find. Sometimes, a discovery required the
invention of a brand new heuristic rule, which vwaunid clearly be beyond AM as

- currently designed. Sometimes, discovery is b=ied on the lucky random combination of

f:.‘ existing concepts, for no good a priev] reason. It would be instructive to find out how

v often this is necessarily the casz, now often can’t a mathematical discovery be motivated
and "explained” using heuristic rules of the kind AM possessrs?

E 5. An urzaacipated result was the creation of new-to-Mankind math (both directly and by

aefining new, interestin~; concepts to investigate by hand). The amount of new bits of

s mathematics developed to date is minuscule.

. 5a. As described in (2c) above, AM might absorb heuristics from several

b individuals and thereby integrate their particular insights. This might eventually result

in new mathematics being discovered.

2 5b. An even more exciting prospect, which never matetialized, was that AM

- would find a new redivision of existing concepts, an alternate formulation of some
established theory, much like Hamiltonian mechanics is an alternate unification of the

£ data which led to Newtonian mechanics. The only rudimentary behavior along these

- lines was when AM occasionally derived a familiar concept in an abnormal way (e.g.,
’ TIMES was derived in four ways; Prime pairs were noticed by restricting Addition to

-~ primes).

i

g_l

‘n:‘
> " -

27 Usually One kind of exception 1s the following the sbility to take & powsrful theorem, and extract from it a new,
powerful heuristic. AM cannot do this, but it may turn out thet this mechamism is quite crucial for humans’
obtsining new heuristics This is another open ressarch problem

AL S EA L M S A K E A A AR

Chapter 7 AM: Discovary in Mathematics as Heuristic Search -148-

7.1.9. Open Problems: Suggestions for Future Research

While AM can and should stand as 2 complete research project, part of its value will stem
from whatever future studies are sparked by it. Of course the "evaluation™ of AM along
this dimension must wait for years, but even at the present time several such oper problems
come to mind:

* Devise Meta-heuristics, rules capable of operating uit and synthesizing new heuristic
rules. AM has shown the solution »f chis problem to be both nontrivial and
indispensable. AM’s progress ziound to a halt because fresh, powerful heuristics
were never produced Tne next point suggests that the same need for new rules
exists in mathenatics as a whole:

» Txamine the history of mathematics, and gradually build up a list of the heuristic
rules used. Does the following thesis have any validity: "T'he development of
mathematics is essentially the development of new heuristics.” That is, can we ‘factor
out’ all the discoveries reachable by the set of heuristics available (known) to the
mathematicians at some time in history, and then explain each new big discovery
as requiring the synthesis of a brand new heuristic’ For example, Bolyai and
Lobachevsky did this a century ago when they decided that counter-intuijtive
systems might still be consistent and interesting. Non-Euclidean geometry resulted,
and no mathematician today would think twice about using the heuristic they
developed. Einstein invented a new heuristic more recently, when he dared to

consider that counter-intuitive systems might actually have physicai reality.?® What
was once a bold new method is now a standard tool in theoretical physics.

* In a far less dramatic vein, a hard open problem is that of building up a body of
rules for symbolically instantiating a definition (a LISP predicate), These rules may
be structured hierarchically, so that rules specific to operating on ‘operations whost
domain and range are equal’ may be gathered. Is this set finite and managable; i.e.,
does some sort of "closure” occur after a few hundred (thousand?) such rules are

: assembled?
e ™
A * More generally, we can ask for the expansion of all the heuristic rules, of all
{:}: categories. This may be done by eliciting them from famous mathematicians, or
s automatically by the application of very sophisticated meta-heuristics. Some
E?‘f“ categories of rules include: how to generalize/specialize definitions, how to find
% examples of a given concept, how to optimize LISP algorithms.
x_‘:q_
S » Experiments can be done un AM. A few have been performed already, many more
*-:I::' are proposed in Section 6.2, and no doubt some additional ones have already
s occurred to the reader.
9
o0 « Extend the analysis already begun (see p. 59) of the set of heuristics AM possesses.

One reason for such an analysis would be to achieve a better understanding of the

28 As Courant says, "When Einstein tried to reduce the notion of ‘simultanecus events occurring at different places’ to

observable phenomena, when he unmasked as & metaphysical prejudice the belief that this concept must
have » scientific meaning in itself, he had found the key to his theory of relativity.”

Chapter 7

AM: Discovery in Mathematics as Heuristic Search -149-

contribution of the heuristics. In some sense, the heuristics and the choice of
starting concepts “encode” the discoveries which AM makes, and the way it makes
them. A better understanding of that encoding may lead to new ideas for AM and
for future AM-like systems.

Rewrite AM. In Chapter 1, on page 9, it was pointed out that there are two
common species of heuristic search programs. One type has a legal move
generator, and heuristics to constrain it. The second type, including AM, has only
a set of heuristics, and they.act as plausible move generators. Since AM seemed to
create new concepts, propose new con jectures, and formulate new tasks in a very
few distinct ways, it might very well be feasible to find a purely syntactic "legal
move generator” for AM, and to convert each existing heuristic into a form of
constraint. In that case, one could, e.g, remove all the heuristics and still see a
meaningful (if explosive) activity proceed. There might be a few surprises down
that path.

A more tractible project, a subset of the former one, would be to recode just the
con jecture-inding heuristics as constraints on a new, purely syntactic "legal
con jecture generator”. A simpie Generate-and-Test paradigm would be used to
synthesize and examine large numbers of con jectures. Again, removing all the
heuristics would be a worthwhile experiment.

At the reaches of feasability, one can imagine trying to extend AM into more and
more fields, into less-formalizable domains. International politics has already been
suggested as a very hard future applications area.

Abstracting that last point, try to build up a set of criteria which make a domain
ripe for automating (e.g, it possesses a strong theory, it is knowledge-rich {(many
heuristics exist), the perfc.mance of the professionals/experts is much better than
that of the typical practitioners, the new discoveries in that field all fall into a small
variety of syntactic formats,..?). Intially, this study might help humans build better
and more appropriate scientific discovery programs. Someday, it might even permit
the creation of an automatic-theory-formation-program-writer.

The interaction between AM and the user 1s minimal and painful. Is there a more
effective language for communication? Should several languages exist, depending
on the type of message to be sent (pictures, control characters, a subset of natural
language, induction from examples, etc)? Can AM’s output be raised in
sophistication by introducing an internal model of the user and his state of
knowledge at each moment?

Human protocol studies may be appropriate, to test out the model of mathematical

research which AM puts forward. Are the sequences of actions similar? Are the
mistakes analogous? Do the pauses which the humans emit quantitatively
correspond to AM’s periods of gathering and running ‘Suggest’ heuristics?

Can the idea of Intuition functions be developed into a useful mechanism? If not,

how else might real-world experiences be made available to an automated
researcher to draw upon (for analogies, to base new theories upon)? Could one

E"\;‘;T".' DR R Tob Tap hatt el Sl et s Lo Ve L Sel Uy in 0 v SN ol N sl Vel VAELLS B VRl Jop p it (g B VR I Cal S M NA R MR ISR~ TR VT YO T U T T VY Y
~ A
1

Chapter 7

AM: Discovery in Mathematics as Heuristic Search -150-

interface physical effectors and receptors and quite literally allow the program to
‘play around in the real world’ for his analogies?

Most of the ‘future implications’ discussed in the last section suggest future activities
(e.g., new educational experiments and techniques).

Most of the ‘limiting assumptions’ discussed in a later section (page 157) can be
tackled with today’s techniques (plus a great deal of effort). Thus each of them
counts as an open problem for research. *

Perform an information-theoretic analysis on AM. What is the value of each
heuristic? the new information content of each new con jecture?

If you're interested in natural language, the very hard problem exists of giving AM
(or a similar system) the ability to really do inferential processing on the reasons
attached to tasks on the agenda. Instead of just being able to test for equality of
two reasons, it would be much more intelligent to be able to infer the kind of
relationship between any two reasons; if they overlap semantically, we'd like to be
able to compute precisely how that should that effect the overall rating for the task;
eic.

Modify the control structure of AM, as follows. Allow mini-goals to exist, and
supply new rules for setting them up (plausible goal generators) and altering those
goals, plus some new rules and algorithms for satisfying them. The modification I
have in mind would result in new tasks being proposed because of certain current
goals, and existing tasks would be reordered so as to raise the chance of satisfying
some important goal. Finally, the human watching AM would be able to observe
the rationality (hopefully) of the goals which were set. The stmple "Focus of
Attention” mechanism already in AM is a tiny step in this goal-oriented direction.
Note that this proposal itself demonstrates that AM is not inherently opposed to a
goal-directed control structure. Rather, AM simply possesses only a partial set of
mechanisms for complete reasoning about its domain.

7.1.10. Comparison to Other Systems

One popular way to judge a system is to compare ii to other, similar systems, and/or to
others’ proposed criteria for such systems. There is no other project (known to the author)
having the same ob jective: automated math researc
been reported in the literature and will be mentioned here.

h.2% Many somewhat related efforts have

Several projects have been undertaken which overlap small pieces of the AM system and in
addition concentrate deeply upon some area not present in AM. For example, the CLET

29, [Atkin & Birch 1971}, eg, we find no mention of the computer except as & number cruncher,

§ CTVLITRONA]

DR A0 i e A A A A R LA Tk N NP I A R G A M sl SRR PN S Rt AN TR P S S A0S el B LR M G R N G AP0

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -151-

system [Badre 73] worked on learning the decimal addition algorithm3® but the
“mathematics discovery” aspects of that system were neither emphasized nor worth
emphasizing; it was an interesting natural language communication study. The same

comment applies to several related studies by IMSSS3.

Boyer and Moore's theorem-prover [Boyer&Moore 75] embodies some of the spirit of AM
(e.g., generalizing the definition of a LISP function), but its motivations are quite different,

its knowledge base is minimal, and its methods purely formal.32 The same comments apply
to the SAM program [Guard 69), in which a resolution theorem-prover is set to work on
unsolved problems in lattice theory.

Among the attempts to incorporate heuristic knowledge into a theorem prover, we should
also mention [Wang 60), [Pitrat 70), [Bledsoe 71}, and [Brotz 74). How did AM differ from
these "heuristic theorem-provers™? The goal-driven control structure of these systems is a
real but only minor difference from AM’s control structure (e.g., AM's "focus of attention” 1s
a rudimentary step in that direction; see p. 150). The fact that their overall activity 1s
typically labelled as deductive is also not a fundamental distinction (since constructing a
proof is usually in practice quite inductive). Even the character of the inference processes
are analogous: The provers typically contain a couple binary inference rules, ike Modus
Ponens, which are relatively risky to apply but can yield big resuits; AM’s few "binary”
operators have the same characteristics: Compose, Canonize, Logically-combine (dis join and
con join). The main distinction is that the theorem provers each incorporate only a handful
of heuristics. The reason for this, in turn, is the paucity of good heuristics which exist for
the very general task environment in which they operate: domain-independent (asemantic)

predicate calculus theorem proving. The need for additional guidance was recognized by
these researchers. For example, see [Wang 60), p. 3 and p. 17. Or as Bledsoe says®>:

There is a real difference between doing some mathematics and being a
mathematician. The difference is principally one of judgment: in the selection of a
problem (theorem to be proved); in delermining its relevance;.. I is precisely in
these areas that machine provers have been so lacking. This kind of judgment has
to be supplied by the user.. Thus a crucial part of the resolution proot is the
selection of the reference theorems by the Auman user; the human, by this one
action, usually employs more skill than that used by the computer in the proof.

Many researchers have constructed programs which pioneered some of thetechniques AM
uses®?. [Gelernter 63] reports the use of prototypical examples as analogic models to guide
search in geometry, and [Bundy 73] employs models of "sticks" to help his program work
with natural numbers. The singls heuristic of analogy was studied in [Evans 68] and

30 Given the addition table up to 10 + 10, plus an Enghsh text description of what it means to carry, how and when to
carry, stc, sctuslly write a program capable of adding two 3-digit numbers

3l See {Smith 74a), for example.

32 This 18 not meant as criticism; considering the goels of those resesrchers, and the age of that system, their work 1s quite
significant.
33 {

Bledsce 71}, p. 73
34 In many cases, those techniques were used for the first time, hence were thought of sz “tricks”,

Chapter 7 AM: Discovary in Mathamatics as Heuristic Search -152-

[Kling 71)3°

Theory formaticn systems in any field have been few. Meta-Dendral [Buchanan 74)]
represents perhaps the best of these. Its task 15 to unify a body of mass spectral data
(examples of "proper” identifications of spectra) into a small body of rules for making
identifications. Thus even this system is given a fixed task, a fixed set of data to find
regularities within. AM, however, must find its own data, and take the responsibility for

managing its own time, for not looking too long at worthless data.® There has been much
written about scientific theory formation (e.g, [Hempel 52]), but very little of it is specific
enough to be of immediate use to Al researchers, A couple pointers to excellent discussions
of this sort are: [Fogel 66), [Simon 73], and [Buchanan 75]. Also worth noting is a
discussion near the end of [Amarel 69), in which “formation” and "modelling" problems are
treated:
The problem of model finding is related to the following general question raised
by Schutzenbergei {in discussion at the Conference on Intelligence and Intelligent
Systems, Athens, Ga,, 1967): ‘W hat do we want to do with intelligent systems that
relates to the work of mathematicians?. So far all we have done in this general
area is to emulate some of the reasonably simple activities of mathematicians,
which is finding consequences from given assumptions, reasoning, proving
theorems. A certain amount of work of this type was already done in the
propositional and predicate calculi, as well as in some other mathematical systems.
But this is only one aspect of the work that goes on in mathematics.
Another very important aspect is the one of finding general properties of
structures, finding analogies, similarities, isomorphisms, and so on. This is the
type of activity that is extremely important for our understanding of model-
finding mechanisms. Work in this area is more difficult than theorem-proving. The
problem here is that of theorem finding.
AM is one of the first attempts to construct a "theorem-finding” program. As Amarel noted,
it may be possible to learn from such programs how to tackle the general task of automating

scientific research.

Besides "math systems”, and "creative thinking systems”, and “theory formation systems”, we
should at least discuss others’ thoughts on the issue of algorithmically doing math research.
Some individuals feel it is not so far-fetched to imagine automating mathematical research
\.g., Paul Cohen). Others (eg., Polya) would probably disagree. The presence of a high-
speed, general-purpose symbol manipulator in our midst now makes investigation of that
question possible.

There has been very little published thought about discovery in mathematics from an
algorithmic pnint of view; even clear thinkers like Polya and Poincare’ treat mathematical
ability as a sacred, almost mystic quality, tied to the unconscious. The writings of
philosophers and psychologists invariably attempt to examine human performance and
belief, which are far more managable than creativity in vitro. Belief formulae in inductive

35 Brotz’s program, [Brotz 74}, uses this to propose usefui iemmata

In cass that wasn't clear: Meta-Dendral has a fixed set of templates for rule: which it wishes to find, and a fixed
vocsbulary of mass spectral concepts which can be plugged intr (hose templstes. AM slso has only a few
stock formats for conjectures, but it selectively enlarges its ve-sbulary of math concepts

A Ha T m Tt ST AT LA T el To T T g R VLR R TR e T T

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -153-

logic®” invariably fall back upon how well they fit human measurements. The abilities of a
computer and a biain are too distinct to ccisider blindly working for results (let alone
algorithms!) one possesses which match those of the other.

1.2, Capabilities and Limitations of AM

The first two subsections contain a general discussion of what AM can and can’t do. Later
subsections deal with powers and limitations inherent in using an agenda scheme, in fixing
the domain of AM, and in picking one specific model of math research to build AM upon.
The AM program exists only because a great many simplifying assumptions were tolerated;
these are discussed in Section 7.2.4 (p. 157). Finally, some speculation is made about the
ultimate powers and weaknesses of any systems which are designed very much like AM.

7.2.1. Current Abilities

W hat fields has AM worked in so far? AM is now able to explore a small bit of the theory
of sets, data types, numbers, and plane geometry. It by no means has been fed — nor has it
rediscovered — a large fraction of what is known in any of those fields. It might be more
accurate to be humble and restate those domains as: elementary finite set theory, trivial
observations about four kinds of data types, arithmetic and elementary divisibility theory,
and simple relationships between lines, angles, and triangles. So a sophisticated concept in
each domain — which was discovered by AM — might be:
* de Morgan’s laws

* the fact that Deleteolnsert3® never alters Bags or Lists
* unique factorjzation
* similar triangles

Can AM work in a new field, like politics? AM can work in a new elementary, formalized
domain, if it is fed a supplemental base of conceptual primitives for that domain. To work
in plane geometry, it sufficed to give AM about twenty new primitive concepts, each with a
few parts filled in. Another domain which AM could work in would be elementary
mechanics. The more informal the desired field, the less of AM that is relevant. Perhaps an
AM-like system could be built for a constrained, precise political task.3? Disclaimer: Even
for a very small domain, the amount of common-sense knowledge such a system would need
is staggering. It is unfortunate to provide such a trivial answer to such an important
question, but there is no easy way to answer it more fully until years of additional research
are performed.

Can AM discover X? Why didn't it do V? It is difficult to predict whether AM will (without

37 For sxample, see [Hintikka 62), [Pietarinin 72} The lstter slso contains s good summary of Carnap’s Aot formalization.
2
3L Take an item x, insert it into (the front of) structure B, then delete one (the first) occurrence of x from B

39 For example, such a politics-oriented AM-like system might conceive the notion of a group of political entities which view
themseives as quite disparste, but which are viewsd from the outside as » single unit. @ g, ‘the Arabs’, ‘the
Amsrican Indians' Conjectures about this concept might include its reputation as a poor combatant (and
why). Many of the same facets AM uses would carry over to represent concapts in that new domain

Lo
Lol

i
:l_;ll
-rlal...l

l‘ - P‘", 1
M e
REAL It

o

ool el

e ‘0 'y

¥

-
L1
a
¢

oo

T R

= et
PRI
RANES

..
Ry

‘.-J

RISLINGL
DR
L

. e
n.“

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -154-

modifications) ever make a specific given discovery. Although its capabilities are small, its
limitations are hazy. What makes the matter even worse 1s that, given a concept C which
AM missed discovering, there is probably a reasonable heuristic rule which is missing from
AM, which would enable that discovery. One danger of this "debugging” is that a rule will
be added which only leads to that one desired discovery, and isn't good for anything else. In
that case, the new heuristic rule would simply be an encoding of a specific bit of
mathematics which AM would then appear to discover using general methods. This must
be avoided at all costs, even at the cost of intentionally giving up a certain discovery. If the
needed rule is general — it has many applications and leads to many interesting results —
then 1t really was an oversight not to include it in AM. Although I believe that there are
not too many such omisstons still within the small realm AM explores, there is no ob jective
way to demonstrate that, except by further long tests with AM.

In what ways are new concepts created? Although the answer to this is accurately given in
Section 4.3, page 42 (namely, this is mainly the jurisdiction of the right sides of heuristic
rules), »nd although I dislike the simple-minded way it makes AM sound, the list below
does characterize the major ways in which new concepts get born:

Fill in examples of a concept (e.g., by instantiating or running its definition)

Create a generalization of & given concept (e.g., by weakening ils definition)

Create a specialization of 2 given concept (e.g., by restricting its domain/range)

Compose iwo operations f,g, thereby creating a new one h. [Define h(x)z{(g(x)}]

Coalesce an operation f info 8 new one g. [Define g(x)=(x,x)]

Permute the order of the arguments of an operation. [Define g(x,y)zf(y,x)]

Invert an operation [g(x)=y iff f{y)=x] (e.g., from Squaring, create Square-rooting)

Canonize one predicate P! with respect {0 a more general one P2 {create a new concept f,

an operation, such that: P2(x,y) iff P1(f{x),{{y))]
Create a new operation g, which is the repealed application of an existing operation f.
The usual logical combinations of existing concepts x,y: xAy, xvy, ~x, etc.

Below is a similar list, giving the primary ways in which AM formulates new con jectures:
Notice that concept Cl is really an example of concept C2
Notice that concept C!l is really a specialization {or: generalization) of C2
Notice that C1 is equal to G2; or: almost always equal
Notice that Cl1 and C2 are relaled by some known concept
Check and update the domain/range of an existing operation
If two concepls are analogous, extend the analogy to their conjectures as well

In summary, we can say that AM has achieved its original purpose: to be guided
successfully by a large set of local heuristic rules, in the discovery of new mathematical
theories. Besides creating new concepts and noticing con jectures, AM has the key “ability”
of appearing to decide rationally what to work on at each moment. This is a resuit of the
agenda of tasks — containing associated reasons. Of course all of these abilities stem from
the quality and the quantity of local heuristic rules: little plausible move generators and
evaluators.

7.2.2. Current Limitations

Below are several shortcomings of AM, which hurt its behavior but are not believed to be
inherent limitations of its design. They are presented in order of decreasing severity.

Rl s Gl Ues S S5 00 R R MRt b i i e " A R I R S S i o S 4k AR A AN S -2 8 D el 0 ki e A e AR Ba S Tt S Y A M Sl U Rl St

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -155-

Perhaps the most serious limitation on AM’s current behavior arose from the lack of
constraints on left sides of heuristic rules. It turned out that this excessive freedom made it
difficult for AM to inspect and analyze and synthesize its own heuristics; such a need was
. not foreseen at the time AM was designed. It was thought that the power to manipulate
heuristic rules was an ability which the author must have, but which the system wouldn’
require. As it turned out, AM did successfully develop new concepts several levels deeper
than the ones it started with. But as the new concepts got further and further away from
those initial ones, they had fewer and fewer specific heuristics filled in (since they had to be
filled in by AM itself). Gradually, AM found itself relying on heuristics which were very
general compared to the concepts it was dealing with (eg, forced to use heuristics about
;- Ob jects when dealing with Numbers). Heunstics for dealing with heuristics do exist, and
~ their number could be increased. This is not an easy job: finding a new meta-heuristic is a
tough process. Heuristics are rarely more than compiled hindsight; hence it's difficult to
create new ones "before the fact”.

AM has no notion of proof, proof techniques, formal validity, heuristics for finding
couniterexamples, etc. Thus it never really establishes any conjecture formally. This could
probably be remedied by adding about 25 new concepts (and their 100 new associated
heuristics) dealing with such topics. The needed concepts have been outlined on paper, but
nui yet coded. It would probably require a few hundred hours to code and debug them.

The user interface is quite primitive, and this again could be dramatically improved with
just a couple hundred hours’ work. AM's explanation system is almost nonexistent: the user
must ask a question quickly, or AM will have already destroyed the information needed to
construct an answer. A clean record of recent system history and a nice scheme for tracking
down reasons for modifying old rules and adding new ones dynamically does not exist at
the level which is found, eg, in MYCIN [Davis 76]. There is no trivial way to have the
system print out its heuristics in a format which is intelligible to the untrained user.

An important type of analogy which was untapped by AM was that between heuristics. If
two situations were similar, conceivably the heuristics useful in one situation might be
useful (or have useful analogues) in the new situation (see [Koppelman 75)). Perhaps this
is a viable way of enlarging the known heuristics. Such "meta-level" activities were kept to
a minimum throughout AM, and this proved to be a serious limitation. My intuition tells
me that the "right” ten meta-rules could correct this particular deficiency.

The idea of "Intuitions” facets was a flop. Intuitions were meant to model reality, at least
little pieces of it, so that AM could perform (simulate) physical experiments, and observe the
results. The major problem here was that so little of the world was modelled that the only
relationships derivable were those foreseen by the author. This lack of generality was
.. unacceptable, and the intuitions were completely excised. The original idea might lead
- somewhere if it were developed fully. As with all limitations of AM, I leave this as an open
> suggestion for future research.

Several limitations arose from the constraints of the agenda scheme, from the choice of finite
set theory as the domain to work in, and from the particular model of math research that
was postulated. These will be discussed in the next few subsections.

»

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -156-

7.2.3. Limitations of the Agenda scheme

The following quibbies with the agenda scheme get less and less important. When you get
bored, skip to the next subsection.

Curtently, it 1s difficult to include heuristics which interact with one another in any
significant way. The whole fibre of the Agenda scheme assumes perfect independence of
heurstics. The global formula used to rate tasks on the agenda assumes perfect
supetposition of reasons: there are no “cross-terms”. Is this assumption always vahd?
Unfortunately no, not even for the mited domain AM has explored. Sometimes, two
reasons are very similar: "Examples of Sets would permit finding examples of Union" and
"Examples of Sets would permit finding examples of Intersection”. In that case, their two
ratings shouldn't cause such a big increase in the overall priority value of the task "Fillin
examplss of Sets”.

“ometimes, a heuristic rule will want to dissuade the system from some activity. Thus a
negane numeric coniribution te a task's priority value 1s desired. This is not figured into
the cuirent scheme. With a shght modification, the global formula could preserve the sign
(signum) of each reason's rating.

Tasks on the agenda list are ordered by their numeric priority value. Each reason’s
numeric value 1s kept, too. When new reasons are added, these values are used to
recompute a new priority for the task. Each reason's rating was computed by a little
furmula found nside some heuristic rule. Those formulae are not kept hanging around.
One big improvement n apparent intelligence could be attained by tacking on those lhttle
formulae to the reasons. When a new reason is added, the old reasons’ rating formulae
would be evaluated agamn. They might indeed give new numbers. For example, suppose
one reason was "Few examples of X are known". But by now, other tasks have meanwhile
inadvertantly filled in several examples of X. Then that little reason’s formula would come
up with a much lower value than it did originally. In fact, the value might be so low that
the reason was dropped altogether. If the formulae were kept, it might be good practice to
evaluate them for the top two or three tasks on the agenda, to see if they might change their
ordering Also, the top task’s priority would then be more accurate, and recall that its value
is used to determine the cpu time and list cell space quanta that the task is allowed to use
up At the moment, AM is not set up to store the little functions, and if modified to do so, it
uses up a lot more space than it can afford. Also, the top few jobs are almost never
semantically coupled (except by "focus of attention”), so the precise order in which they are
executed rarely matters.

Perhaps what 1s needed 1s not a single priority value for each task, but a vector of numbers.
At each cycle, AM would construct a vector of its current “interests’ and needs, and each
task's vector would be dot-multiplied against this global vector of AM’s desires. The
highest scorer would then be chosen. For example, one dimension of the rating could be
“safety”, and one could be "best possible payoff”, one could be "average expected payoff”, etc.
Sometimes, AM would have to break out of a stagnant situation, and it would be willing to
try riskier tasks than usual. This was not implemented because of the great increase in cpu
time 1t would cause. It 15, however, probably a better design than the current one. Even
more ntelligent schemes can be envisioned — involving more and more symbolic data being
stored with each task. Ultimately, this would be just the Enghsh reasons themselves; by that

- - S - - - R . SO N S SO R
‘_‘l w” .‘1"."1‘:\.-«(,,.-‘“.'\.‘."~ -3 ,‘-i"_\ff'._-u"_‘«.,. ™ dt_ e L L e, R R R R R T PN

ﬂ'."?'

TR

-

KA

-
f

,...~
i
v
LI

i

»
«
e

T oA
PP

£y A
i

g
v

Chapter 7 AM: Discovary in Mathamatice as Heurietic Search -157-

time, the task-orderer would have grown into an incredibly complex Al program itself (a
natural language program plus an interrelator plus...).

The agenda list should really be an agenda tree®, since the ordering of tasks is really just
partial, not total. If this is clear, then skip the rest of this paragraph. There are some
“legitimate” orderings of tasks on the agenda; if task X is supported by a subset of the
reasons which support Y, then typically the priority of X will be less than or equal to the
priority of Y. Two tasks of the form "Fillin examples of A", "Fill in examples of B" can be
ordered simply because A is currently much more interesting than B. But often, two tasks
will have no ironclad ordering between them: compare "Fillin examples of Sets” and "Check
generalizations of Union". Thus the ordering is only pattial, and it is the artifice of the
global evaluation function which embeds this into a linear ordering. If multiprocessors are

used, it might be advantageous to keep the original partial ordering around.

7.2.4. Limiting Assumptions

AM only "got off the ground” because a number of sweeping assumptions were made,
pertaining to what could be ignored, how a complex process could be adequately simulated,
etc. Now that AM is running, however, those same simplifications crop up as limitations to
the system’s behavior. Each of the following points is a ‘convenient falsehood’. Although
the reader has already been told about some of these, it's worth listing them all together
here:

* The only communication necessary from AM to the user is keeping the user
informed of what AM is doing. No natural language ability is required by AM;
simple template instantiation is sufficient.

* The only communication from the user to AM is an occasional interrupt, when the
user wishes to provide some guidance or to pose a query. Both of these can be
stereotyped and passed easily through a very narrow channel.?!

* Each heuristic has a well-defined domain of applicability, which can be specified
just by giving the name of a single concept.

¢ If concept Cl is more specialized than C2, then CI’s heuristics will be more
powerful and should be executea before C2's (whenever both concepts’ heuristics
are relevant).

» If hl and h2 are two heuristics attached to concept C, then it is not necessary to
spend any time ordering them.

* Heuristics superimpose perfectly; they never interact strongly with each other.

40 maybe an agenda Heap.

41 Eg, » sot of escape characters, so W means ‘W Ay did you do that?, tU means 'Uninteresting! Go on to
something else, oc.

B L T G o e e TS T Tt LAl P ik i S A e A S i SAL LR £t i Y FRAEIYLR
v [had

Chapter 7 AM: Discovery in Mathamatics a8 Heurstic Search -158-

« The reasons supporting a task can be mere tokens; it suffices to be able to inspect

them for equality. They need not follow a constrained syntax. The vaiue of a
reason is adequately characterized by a unidimensional numeric rating.

» The reasons supporting a task superimpose perfectly; they never interact with each

other.

* Supporting reasons — and their ratings — never change with time, with one
exception: the ephemeron ‘Focus of attention’.

« It doesn't matter in what order the supporting reasons for a task were added.

* There is no need for negative or inhibitory reasons, which would decrease the
priority value of a task.

* At any moment, the top few tasks on the zgenda are not coupled strongly; it is not
necessary to expend extra processing time‘to carefully order them.

* The tasks on the agenda are completely independent of each other, in the sense of
one task ‘enabling’ or ‘waking-up’ another.

* Mathematics research has a clean, simple model (see Section 7.26, page 162),

which indtcates that it is a search process governed by a large collection of heuristic
rules,

+ Elementary mathematics is such that valuable new concepts will be discovered fairly
regularly.

» The worth of each new concept can be estimated easily, after just a brief
Investigation.

« Contradictions will arise very rarely, and it is not disastrous to ignore them when

they do occur. The same ndifference applies to the danger of believing in false
con jectures.

« When doing theory formation in elementary mathematics, proof and formal
reasoning are dispensable.

* Even as more knowledge is obtained, the set of facets need never change.

* For any piece of knowledge sought or obtained, there is precisely one facet of one

existing? concept where that knowledge ought to be stored, and it is easy to
determine that proper location.

e
L]

P

> » Even as more concepts are defined, the body of heuristics need not grow much.

o

£3 az

L The only allowable exception 1s that 8 new pisce of information might require the craation of a brand new concept, and
E:-_.' then require storage somewhers on that concept.

v

=

. -

i il e R A i e S A i T

AL I wT W N e e DR AT TGT WK TR IR AR QAT X T T TR A TR TR B YL R R L e S AN SN SR A B A I

=

>r':' Chapter 7 AM: Discovery in Mathematics as Heuristic Search -159-

E » Any common-sense knowledge required by AM is automaticaily present within the
heuristic rules. So, e.g., no special spatial visualization abilities are needed.

s It is worth repeating here that the above assumptions are all clearly false. Yet none of them

[was too damaging to AM’s behavior, and their combined presence made the creation of

AM feasible.

L 7.2.5. Choice of Domain

s

T he genesis of mathematical creation is a problem whick should intensely interest
the psychologist. It is the activity in which the human mind seems to take least

- from the outside world, in which it acts or seems to act only of itself and on itself,

5 50 that in studying the procedure of mathematical thought we may hope to reach

e

what is most essential in man's mind.

- == Poincare’
£
;;Z‘: Here are some questions this subsection wili address:
N * What are the inherent limitations — and advantages — in fixing a domain for AM
to work in?
e * What characteristics are favorable to automating research in any given domain?
| * What are the specific reasons for and against elementary finite set theory as the
chosen starting domain?
3
{:j Research in various domains of science and math proceeds slightly differently. For example,
psychology is interested in explaining people, not in creating new kinds of people. Math is
not interested in individual entities so much as in new kinds of entities. There are ethical
? restrictions on physicians which prevent certain experiments from being done. Pohttcal
i experiments rarely permit backtracking, etc. Each field has its own peculiarities.
e If we want a system to work in many domains, we have to sacrifice some power.%3, Within a
£, given field of knowledge (like math), the finer the category we limit ourselves to, the more
specific are the heuristics which become available. So it was reasonable to make this first
= attempt limited to one narrow domain.

This brings up the choice of domain. What should it be? As the DENDRAL project

L illustrated so clearly®), choice of subject domain is quite important when studying how
- researchers discover and develop their theories. Mathematics was chosen as the domain of
. this investigation, because

1. In doing math resezr<h, one needn't cope with the uncertainties and fallability of

3 This is assuming » system of & given fixed size. [f this restriction 1sn't present, then a reasonable “general-purposse”

- system could be bu'lt as several systems linked by one giant switch.

] 44 seo [Feigenbaum et. al. 71] In that case, the choice of subject was enabled by {Lederbarg 64).
FolS

L

i

S T
\"" A
s Y

IV R 0 S S SR A pint LA~ Sa g i

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -160-

testing equipment; that is, there are no uncertainties in the data (compared to, e.g.,
molecular structure inference from mass spectrograms).

2. Reliance on experts’ introspections 1s one of the most powerful techniques for
codifying the judgmental criteria necessary to do effective work in a field; I
personally have had enough training in elementary mathematics so that I didn't
have to rely completely on external sources for guidance in formulating such
heuristic rules. Also, several excellent sources were available [Polya, Skemp,
Hadamard, Kershner, etc.).

3. The more formal a science is, the easier it is to automate. For a machine to carry out
research in psychology would require more knowledge about human information
processing than now is known, because psychology deals with entities as complex as
you and 1. Also, in a formal science, the { .nguages to communicate information can
be simple even though the messages themselves be sophisticated.

4, Since mathematics can deal with any conceivable constructs, a researcher there is not
limited to explaining observed data. Related to this is the freedom to investigate —
or to give up on — whatever the researcher wants to. There is no single discovery
which 1s the "goal”, no given problem to solve, no right or wrong behavior.

5. Unhike "simpler” fields, such as propositional logic, there is an abundance of heuristic
rules available for the picking.

The limitations of math as a domain are closely intertwined with its advantages. Having
no ties to real-world data can be viewed as a limitation, as can having no clear goal. There
is always the danger that AM will give up on each theory as soon as the first tough obstacle
crops up.

Since math has been worked on for millenia by some of the greatest minds from many
different cultures, it is unlikely that a small effort hkke AM would make any new inroads,
have any startling insights. In that respect, Dendral’s space was much less explored. Of
course math — even at the elementary level that AM explored it — still has undiscovered
gems (e.g., the recent unearthing of Conway’s numbers [Knuth 74)).

One point of agreement between Weizenbaum and Lederberg® is that Al can succeed in
automating an activity only when a "strong theory” of that activity exists. AM is built on a
detailed model of how humans do math research. In the next subsection, we'll discuss the
model of math research that AM assumes.

Before that, consider for a moment how few other fields of human endeavor have a good

model, and also enjoy all the advantages listed above: other domains of math, classical
physics,.. not many others.

7.2.6. Limitations of the Model of Math Research

|
- lf"l " .l

:. 5 See the quote at the front of the next subsection It is from [Lederberg 76}, 8 review of [Waizenbaum 76). This review
also exists as file WEIZEN.LED[pub,jmc]}@SAIL.

FA K4
r e

. R it B S T 0 e R R B TR Y A N SN RV A it ol |
e T T T I, R T R T T T TR TEF R T RTINS Rt ¢

-~ T T A R e e LA T R e T T B S R R C e S R R TR AL L A e S U Y B M i Wi T P S M i D L NV S S0 B 0 U M e W S FAR PR, Pall W L SO L e Bt

g
'l‘\".

Te e ™
L

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -161-

~:
s

Weizenbaum does point to projects in mathematics and chemistry where computers
o have shown their potential for assisting human scientists in solving problems. He
b correctly points out that these successes are based on the existence of "strong
theories” about their subject matter.

! == Lederberg

{,Z: AM, like anything else in this world, is constrained by a mass of assumptions. Most of these
o are "compiled” or interwoven into the very fabric of AM, hence cant be tested by
experiments on AM. Some of these were just discussed a few pages ago, in Section 7.2.4.

-

oY Another body of assumptions exists. AM is built around a particular model of how
mathematicians actually go about doing their research. This modei was derived from

P introspection, but can be supported by quotes from Polya, Kershner, Hadamard, Saaty,

:'_ Skemp, and many others. No attempt will be made to justify any of these premises. On the
next page is a simplified summary of that information processing model for math theory

.. formation:

&

o

-

St - - TR TR b LY A T A LR
M TR A SR B ACANE WSS E AN o S C DS WENINIE A Sk ipe pAR R EE gt B it it S R vl s it R D R VA A TVIv.

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -162-

MODEL OF MATH RESEARCH

1. The order in which a math textbook presents a theory is almost the exact opposite
of the order in which it was actually discovered and developed. In a text, new
definitions are stated with little or no motivation, and they turn out to be just the
ones needed to state the next big theorem, whose proof then magically appears.
In contrast, a mathematician doing research will examine some already-known
concepts, perhaps trying to find some regularity in experimental data involving
them. The patterns he notices are the conjectures he must investigate further,
and these relationships directly motivate him to make new definitions.

2. Each step the researcher takes while deveicping a new theory involves choosing
from a large set of "legal" alternatives — that is, searching. The key to keeping
this from becoming a blind, explosive search is the proper use of evaluation
criteria. Each mathematician uses his own personal heuristics to choose the “best”
altetnative available at each moment.

3. Non-formal criteria (aesthetic interestingness, inductive inference from empirical
evidence, analogy, and utility) are much more important than formal deductive
methods in developing mathematically worthwhile theories, and in avoiding
barren diversions.

4. Progress in any field of mathematics demands much non-formal heuristic expertise
in many different “nearby” mathematical fields. So a broad, universal core of
knowledge must be mastered before any single theory can meaningfully be
developed.

5. It 15 sufficient (and pragmatically necessary) to have and use a large set of informal
heuristic rules. These rules direct the researcher’s next activities, depending on
the current situation he is in. These rules can be assumed to superimpose
ideally: the combined effect of several rules is just the sum of the individual
effects.

6. The necessary heuristic rules are virtually the same in all branches of mathematics,
and at all levels of sophistication. Each specialized field will have some of its
own heuristics; those are normally much more powerful than the general-purpose
heuristics.

7. For true understanding, the researcher should grasp® each concept in several ways:
declaratively, abstractly, operationally, knowing when it is relevant, and as a
bunch of examples.

8. Common metaphysical assumptions about nature and science: Nature is fair,
uniform, and regular. Coincidences have meaning. Statistical considerations are
valid when looking at mathematical data. Simplicity and symmetry and synergy
are the rule, not the exception.

’v‘,"‘ I
2

‘ -
' l‘r‘ ‘J;zl W
D S Lt

*
s,

N T
e Pl N
»
 lerdy &y l‘]
L I

L

TR e
Fpotp by
£

".IQ

]
¥
LI

»

AR

46 Have access to, relate 1o, store, be sbis to manipulate, be able to answer qu- about

LA R)
)
L T PR

N i

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -163-

7.2.7. Ultimate powers and weaknesses

Consider now any system which is consistent with the preceding model of math research,
and whose orientation is to discover and deveiop new (to the system) mathematical theories.
This includes AM itself, but might also include a bright high-school senior who has been
taught a large body of heuristic rules.

What can such systems ultimately achieve? What are their ultimate limits? Answers to
ultimate questions are hard to come by experimentally, so this discussion will be quite
philosophical, speculative, and short. The model of math research hinges around the use of
heuristic rules for guidance at all leveis of behavior. It is questionable whether or not all
known mathematics could evolve smoothly in this way. As a first erder fixup, 1ie've
mentioned the r.eed to provide good mezta-heuristics, to keep enlarging the set of heuristics.
If this is not enough (if meta-meta-..-neuristics are needed), then the model is a poor one

and has some inherent limitations.?” If some discoveries can only te made non-rationally
(by random chance, by Gestalt, etc.) then any such system would be incapable of finding
those concepts.

Turning aside {rom math, what about systems whose design — as a computer program — is

similar to AM?® Building such systems will be “fun”, and perhaps will result in new
discoveries in other fields. Eventually, scientists (at least in a few very hard domains) may
relegate more and more of their "hack” research duties to AM-like systems. The ultimate
limitations will be those arising from incorrect (eg., partial) models of the activities the
system must perform. The systems themselves may help improve these models: experiments
that are performed on the systems are actually tests df the underlying model; the results
might cause revisions to be made in the model, then in the system, and the whole cycle
would begin again.

13, Final Conclusions
Before quitting, let’s summarize what's worth remembering about this thesis.

» It is a demonstration that a few hundred general heuristic rules suffice to guide an
automated math researcher as it explores and expands a large but incomplete
knowledge base of math concepts. AM serves as a living existence proof that creative
research can be effectively modelled as heuristic search.

a7 It Ptolemy had had sccess to s digital computer, all his data could have been made to fit (to any desired accuracy), st
by computing epi-cycles, spi-spi-cycles,.. to the needed number of epi's We in Al must constantly be on
guard against that error.

48 Having an sgends of tasks with reasons and reason-ratings combining to form s global priority for each task, having
units/modules/frames/Beings/Actors/concepts which have parts/slots/facets, etc. Heuristic rules are
tacked onto relevant concepts, and are executed {0 produce new concepts, new tasks, new facet entries.

- == g Lt v Sard] e Tl B - - -
T T R T ™
"‘ \H".' g- = F)\‘[‘Hh- ~" ~ -‘. w" L
= B N

M ST E ATV T U L e T e T LT T T TR T TR T T TR TR AR TR e T N TR TR E L TR RS R T AT W LR A TR E T T e X Tt Ty A0 AT T 3 T o T DA e T W e T T

IeE N

Chapter 7 AM: Discovery in Mathematics as Heuristic Search -164-

f?:"t"a'
LI 4

»

* The thesis also irtroduces a control structure based upon an agenda of small research
tasks, each with a hist of supporting reasons attached.

* The main limitation of AM was its inability to synthesize powerful new heuristics for
the new concepts it defined.

* The main successes were the few novel ideas it came up with, the ease with which a new

task domain was fed to the system, and — most importantly — the overall rational
sequences of behavior AM exhibited.

The greatest long-range importance of AM may well lie in the body of heuristics

assembled (Appendix 3), either as the seed for a huge base of experts’ heuristics, or as
a new crientation for mathematics education.

e T AT T I T R T T S R AT T R IR L T S R R AR Nt R wad Wl W 6o b e A & da BN A Bl § S 5N AN A S RN B8 O |

-165-

Appendix 1. Glossary of Technical Terms

The "jargon" of a field facilitates communication among practitioners of that field, but it too
often excludes novices. I have tried to soften the impact of each "buzz-word" when it was
first used, but the reader rzy need to frequently refresh his memory about the meanings of
certain terms.

This glossary is divided into two sections. The first contains primarily Mathematics terms,
strangely biassed because it just covers what is referenced in this thesis. The second
glossary, of Computer Science and Artificial Intelligence terms, suffers from the same tunnel
vision. They may suffice for reading this document, but they are certainly nof meant to be
used for more general purposes.

Appendix 11 Glossary of Math Terms

Abduction: In logic, a syllogism of the form "from A, conclude that B is probably true”. If
your mental frame for an automobile contains a hundred necessary features, and you see
something satisfying only 90 of them, you can abductively conclude it is probably an
automobile.

eV ier o |

Y
~

o

Cardinality: the concept of "number”. Two sets are of the same cardinality iff they have the
same number of elements.

Composition of two relations R and S: This is a new relation denoted RoS, and defined as
RoS(x) = R(S(x)). So ReS maps elements of the domain of S into elements of the range of
R. Notice that if R and S are both functions, then so is RoS. The intuitive picture of this
process is to operate on x with the relation S, and then apply R to the results.

LA |

Function: an operation f which associates, to each eiement x of some set D, an element f(x)
of some set R. D and R are the domain and range of f. Nectice that a function may be
considered a special kind of relation. For a relation f (on DxR) to be called a function, f
must satisfy two important constraints: (i) it must be always-defined on its domain; that is,
for all domain elements x¢€D, f(x) must exist. (i) f must be single-valued; that is, f(x) must
be a singleton.

Iff: if and only if; implies and is implied by; is equivalent to; <=>.

Integers: positive and negative whole numbers; ie. ...-2, -1, 0, 1, 2,..

Map: used as a verb, this word indicates the action of applying a function or a relation; e.g.,
> we say that squaring maps 7 into 43. Used as a noun, it is a synonym for function.

Mathematical concept: this is taken to mean all the constructipns, definitions, con jectures,
operations, structures, etc. that a mathematician deals with. Some examples: Set-intersection,
Sets, The unique factorization theorem, every entry listed in this glossary.

i P - o L Ny Y (g W M T A A A v i e ae e e . e
"‘h‘:'s-’:“t',."uf»"(‘;{w‘f.’»:.!‘u;.‘.—ﬁ'\«";"— e e e e D e e e e Y b T e e O
PP AL AL L G AT ST AR S AN AT L AN LA Yol 0 Sl AP N "INl D S A I S I N T . . R

RN
LR
T L

e i R v e ¢ e e s Ny T - TR, T R s R v % Lt ot el 2 ol TR b
FRPEIFLEEL SR B ol SL L R ol JFE sul o atebl N ah gl i gt AN LI M N it g i AT S AE R FTITITILS .

Appendix | AM Discovery in Mathematics as Heuristic Search -166-

Mathematical intuition: this is the mental imagery which can be brought to bear. Typically,
we transform the situation to an abstract, simplified one, manipulate it there, and re-
translate the results into the original notation. For example, our intuition about "ordering”
may involve the image of marks on a yardstick. We can then answer questions involving
ordering rapidly, using this representation. Three features of the intuitive image should be
noted: (i) it is typically fast and simple, (i1) it is opaque, one cannot introspect too easily on
"why it works", and (in) it is fallible, occasionally leading to wrong results.

Mathematical research: The fundamental idea here is that mathematics is an empirical
science, just as much as chemustry or physics. In doing research, the ultimate goal is the
creation of new, interesting iheories, but the techniques used include looking for patterns in
empirical data, inducing new conjectures, modelling some aspects of the real world, etc.
Although the final product looks like a smooth, formal development, magically flowing from
postulates to lemmas to theorems, the actual research process involved untold blind alleys,
rough guesses, and hard work. (Analogy: The process of painting is rarely itself artistic.)

Mathematical theory: to qualify as a theory, we must have (1) a basis of undefined primitive
terms, (i1) definitions involving these, (1ii) axioms involving all the primitives and defined
terms (iv) con jectures and theorems relating these terms. To be at all worthwhile, however,
the theory must also meet the fuzzy requirements that (v) there is some correspondence
between the primitives and some "real-world” concepts, between the axioms and some "real”
relationships, and (vi) some of the theorems are unexpected, hard tc prove, elegant,
interesting, etc.

Mersenne prime: a prime number which happens to be of the form 2P-1, where p is prime.
Natural numbers: non-negative integers; i.e., 0, i, 2, 3,..

No.: an abbreviation for "Number”.

Number: in the typical loose fashion of computer scientists, ! intend this to mean a non-
negative integer: i.e, a natural number.

Ordering: the concept of "before” and "after”. This distinguishes a list from a bag
(multiset). The formal axioms for ordering simply state the obvious properties of the
intustive 1mage of a list.

Prime numbers: natural numbers which have no divisors other than 1 and themself; e.g., 17,
but not 15 (=3x5). Primes are interesting because of the myriad times they crop up in
diverse theorems — from the Chinese Remainder Theorem (solving systems of linear
congruence equations), to the Law of Quadratic Reciprocity, to Fermat's Theorem (for all

integers n, for all primes p, nP is congruent to n (mod p)). The "secret” of thetr value lies 1n
the fact that all integers can be factored uniquely into a set of prime divisess. This "Unique
Factorization Theorem" lets us reduce questions about tntegers to questions about primes.

Prime pairs: two prime numbers whose difference is two; eg., 17 and 19.

Relation: an operation which associates, for each element of some set D, a set of elements E
= {e}, eo,..} of some set R. D and R are the domain and range of the relation. For example,

[T

Tt Ty g P v Ny
.
f

TG
@ .
N

Appendix 1 AM Discovary in Mathematics as Heuristic Search -167-

the relation "¢" associates to 5 the set of numbers {5, 6, 7, 8,.} ~ i, all integers which b is
less than or equal to. The domain and range of this relation are the integers.

Set-theoretic: having to do (in the context of this thesis) with elementary finite set theory,
and the primitive notions of mathematics (e.g., union, insert, predicate, con jecture).

Unity: a fancy way of referring to the natural number "1".

l: The relation "divides-evenly-into". Thus we say 26.

~: The operation of negation. "~X" is read as "not X".

v: Disjunction. "AvB" is read as "A or B",

A: Conjunction. "AAB” is read as "A and B".

®: Exclusive or. "AeB" is read as "A or B, but not both".

-: Implication. "A+B" is read as "If A then B".

o: Logical equivalence. "A#B" is read as "A if and only if B".

V: Universal quantification. "vX" is read as "For all X".

3: Existential quantification. "3X" is read as "For some X",

I O
LAY x4 X0
n

. * g k.,
AR
r .1 .l » ‘_

T TETETYTY
o

’n'.:“'d'[“ -
v A ety o
f
Lie
e &t AN

Y

Lot it
#

*y T
PN
xTale

s

&

.

"

«

r Ny ‘11
O
T

Ty
e

Ll

Appendix | AM Discovery in Mathematics as Heuristic Search ~168-

Appendix 1.2. Glossary of Al Terms

ACTORSs: A modular form of representation, useful for distributing of the task of control
among several components in a computer program. Each ACTOR is a black box, with no
parts or slots, but which does have some assertions (a "contract”) which he must honor. It
merely responds to a fixed set of messages, by sending out certain messages of his own.
These are delivered via a bureaucracy. See [Hewitt 76].

Al: an abbreviation for Artificial Intelligence.

Bag: A bag is a kind of list structure, a bunch of elements which are unordered, but one in
which multiple copies of the same element are permitted. One may visualize a paper bag
filled with cardboard letters. Technically, we shall say that a set is not considered to be a
bag. A bag is denoted by enclosure within parentheses, just as sets are within braces. So
the bag containing X and four Y’s might be written (X Y Y Y Y), and would be considered
indistinguishable from the bag (Y Y Y X Y).

BEINGs: A modular form of representation of knowledge, conceived as a collection of
cooperating experts. Each expert is modelled by one module, which consists of a list of
Question/Answering-program pairs. The set of questions is fixed for all the Beings in the
system. When any Being has a question, he broadcasts it to the entire system, and some
Being who recognizes it will take over control and try to answer it by running Ais
appropriate Answering-program. In the process of running this, some new questions may
arise. Notice that Beings distribute responsibility for control and for static knowledge. See
[Lenat 75b).

Bug: a flaw in a computer program. As Corey Sacerdoti put it, a bug refers to something
which is broken but not badly. :

Concept: within the context of this document, the word “concept” typically refers to a precise
frame-like data structure, a BEING. Semantically, each concept is meant to correspond to
one abstract entity that we would intuitively call a concept: an object, an operator, a
con jecture, etc. See "facet”.

Cooperating Knowledge Sources: Very often, in tackling a problem, one receives some hints
and some constraints from very different sources, phrased in very different languages, often
addressing different representations of the problem. For example, in trying understand a
human speaker, our memory of the previous discussion and knowledge of the speaker may
narrow down the possible meanings of what he is saying. Our ears, of course, register the
precise acoustic wave-forms he is uttering. Our English vocabulary forces us to interpret
imperfect signals as real words. Our eyes see his gestures and hi. lip movements, and give
us more information. All these different sources of information must be used, and yet they
all are talking in different "languages” to us. The most trivial solution is to keep all the
sources independent, and keep working until one of them can solve the problem all by itself.
A much better solution is to transform all their babblings into one canonical representation,
one single language. This way, all the knowledge sources can cooperate.

Coupled: two functional subsystems are causally connected; one influences the other. See the
entry for "Linear”.

. e e
IR

hd - % T L3 ugé e, haow B A adtt N ale S S0 e S BIRS. T o)
T R R T T R R T T T T L R e e T R R S T T R (S AN T e s

e e
o

-

S N

Appendix 1 AM Discovary in Mathematics as Heuristic Search -169-

CPU time: Central-Processing-Unit runtime (cpu time) is the number of execution cycles of
the computer that the AM program has used up. This is conveniently measured in seconds,
minutes, and hours, where one cpu minute is the amount of processing done in one minute
of real time, when AM has 100% of the machine, and is runninng without any input or
output.

CS: an abbreviation for Computer Science.

Execution: a program is actually used by running it on a particular set of input data. This
process is known as program execution.

Facet: Within the context of this document, the word "facet” denotes a slot of the kind of
data-structure known as “concepts” (qv). Thus "a facet of the Compose concept” really just
means a slot of a particular frame, a part of certain BEING, one single attribute/value pair
taken from the property hist of the Lisp atom named Compose. Semantically, each facet
holds information pertaining to a single aspect of the concept it is a part of; hence the
suggestive name: "facet”.

FRAMEs: A modular representation of knowledge. Each module is a list of Feature/Value
pairs. The value represents a default assumption which can be relied on until/unless new
information comes in about that feature. Each frame has whatever features (called "slots”)
seem appropriate. Whenever a situation S is encountered, the frame(s) for S are activated.
As new information 1olls in, it replaces the default information in various slots. Notice the
emphasis on distributing static knowledge (data), not necessarily control, in such a system.
See [Piaget 55) or [Minsky 75].

Function: a small, executable part of a program. When fed the proper kind of argument(s),
a function will "run” and uitimately produce some sort of value. Unlike pure mathematical
functions (see the previous glossary), a Lisp function can have side effects (qv).

Garbage collection: As a Lisp program executes, various list siructures (pointer networks)
are created. When the last pointer to a structure is removed, that structure has essentially
been irretrievably forgotten. If the operating system knew which storage cells were thus
"free”, it could re-cycle them, reuse them. The process of finding and liberating such
discarded lists is called garbage collection. This is performed automatically by the Lisp
language, whenever space is almost ali filled up.

Hack: A quick job thai produces what is needed, but not well. Introducing a heuristic which
was only used once, in a predetermined way (eg, to fix a particular bug), would be a real
hack.

Hand-crafting: the human programmer carefully designs his system in such a way that the
pieces just manage to mesh. For instance: he provides just the perfect set of axioms so that
his theorem-prover can solve a certain problem, or he modifies the program’s strategies so
that they efficiently manipulate the axiom set in just the right way.

Heterarchy: A kind of control structure for a computer program which is distinct from
hierearchy. Heterarchical structuring views the whole program as a collection of equal
partners, an unstructured set of functions. "Control” is viewed as a spotlizht, which can be

X
LVl

Appendix | AM Discovery in Mathematics as Heuristic Search -170-

flicked from one function to another. The functions can affect who does or doesn't get
control next, but there is no guarantee who will get control, or that control will revert back
to some function which once had it. Aside from the lure of its democratic flavor, it is
clearly a natural way to represent cooperating knowledge modules.

Hierarchy: This term refers to a kind of control structure for a computer program. The
typical hierarchical structure is one in which a function calls a subroutine, which processes
and then returns a value to that function. A program is viewed as a tree structure, with
hines indicating "calling”.

Interact: a dynamic mode of communication between a human and a computer program.
The human reacts to what the program is printing out on his terminal, and the program in
turn reacts to what the user types in. This may take the form of questioning and answering,
or interrupting and commenting.

Interestingness: Note that this is not a valid English word. In the context of AM, it refers to
a numeric value, computed by little Lisp programs stored in the "Interest” facets of various
concepts. Despite the danger of imbuing such a humble scheme with all the mystique of
what is and isn't interesting, it is felt that a sufficient component of that evaluation has been
captured to warrant the name. Pragmatically, it is of much more use to the user to see
“Interestingness of Compose has just risen” than to see a message like "G00034
incremented”.

Kiudge (or Kluge): This is a program feature which is an unfair shortcut around a specific
problem. One "kludgy" way of improving the algorithm of a given concept is to ask the user
for a better algorithm.

Linear: a system whose components, inputs, and outputs superimpose — i.e., don't couple.

Lisp: a LISt-Processing programming language. Primitive operations exist for manipulating
nested list structures. Since Lisp functions are also merely lists, it is easy to create and
modify entities which are then executed (qv).

Modular Representations of Knowledge in Al Systems: Knowledge is partitioned into
packets (called modules, frames, units, productions, Beings, experts, Actors) along lines of:
different applicabilities, expertise, purpose, importance, generality, etc. Each packet is
structurally similar to all the rest. Advantages: By having the knowledge discretized, pieces
can be added and/or removed with no trouble. The knowledge of the system is easily
inspected and analyzed. The structural similarity yields several advantages: a simple control
system suffices to “run” all the knowledge, the modules can intercommunicate easily, new
modules can be inserted without knowing precisely "who else” is already in the system. In
general, the less similarly-structured the modules are, the simpler the inter-communication
media must be. Modular representation is a natural way to implement cooperating
knowledge sources.

Number: in the typical loose fashion of computer scientists, I intend this to mean a non-
negative integer: i.e, a natural number.

Open research problem: a limitation of the AM system.

'''''''

v et St RS NE A A AR AR Rt s i A e e A A e e A S AR AN S LA RN MG L SR LA AN NAR E AL L EN EL L N AR BN RN |

&
v Appendix 1 AM Discovery in Mathematics as Heuristic Search -171-
(g Recur: Often, part of a definition will refer back to that very same definition. This may

lead to an nfinite circular loop, or it may terminate. The following definition of "is larger

than" is recursive, because the last line recurs:

WL
3

L

set R is larger than set S
it R={} but S§{}, or
P if neither is empty and

pr—

Remove-element(R) is larger than Remove~-element(S).

E:.j Recurse: a transitive verb which means "to swear again." It must be distinguished from
. “recur”, above.

. Side effects: while a function is executing, it may cause changes in the state of its
N environinent which persist even after the function has returned a value. This is like

hysteresis effects. For example, a function may create or destroy some list structure, define a
N new function, reset some variable, etc. Such activities are called side effects of the function.

e

Space: The memory of a computer is quite finite. Though it may be supplemented by slow
auxilliary devices (tapes, discs, etc.), the actual number of storage cells in the computer’s fast
“core” memory is a limiting factor in program oehavior. Storage space, or just "space”, refers
to these internal memory cells. When space is exhausted, the only remedy 1s to perform a
garbage collection (qv).

?

[N
[
LIS

e
'

-«

System: this can mean a computer program, and occasionally is just an another way of
referring to AM. In general, a system is any collection of entities related to form a
N meaningful whole.

7

————
"
]

Terminal: a communications device for passing information between a computer system and
a human. This could be a teletype, a TV screen and keyboard, etc. The terminal is usually
portable and remotely located from the computer.

o §

User: the human being who sits at a computer terminal and watches AM run (occasionally,
perhaps, interacting with AM).

P

s Py,
¥ oy v

h
}
il
£
3
{-
i .
i
TN
N
“‘
te
-
,"4
I
"“
A
5
"
£
(-
3
-
- ek e MY RT NP AR AR s oA R - L ML A d T, Mt e e A A~ e, -
""":’"‘ "r"’"""w'r'"' ‘}‘! l\) "h-. o Q¥ .; ' “‘:‘;."3-". U A Ny .-'r‘ﬁ-(ﬂ-.u -:’":“'h) -J" W 1" :.J‘"- n -“-'%’“ ./”-" YA 'a'.", PR i N T
R a0 40 TSl Al Y LR Y M 1 S 3 P AV o o N ;e P S A U R T D D R
% W o o ¥ P TR W Py v Cp M T T e s Lt O - . ' -
¥ W - 4'5’{:‘: AF_';_S‘..&‘.'.\"_:.._.‘n;{a&_ﬁl(-_.‘;_&'i‘hu‘na.";b‘;, G oe® TR0 S O A P L A, Y, N L SR IR 2L Y B CER S Py ey

* -y = "l - e e 2 e ain et dvace dbeck feas s, Snarian iuim b ghalt K dake B\ 4
et Sale i b EoLUR G G i » ¥ 0¥ e U RS S A ah ol a4 e it e it Rkt ab QS Aty e BN i i ol i A AL G I R I B S E - 2

L] s

P R

o W)

—— A d

ot W

~~~~~~~

.............. -

-172-

Tlppendi;; 2. AM's Concepts

The Lrst part of this huge appendix (Appendix 2.1.2 to 2.1.75) lists the set of knowledge
AM started with: its initial concepts. It is not very readable, nor is it central to any of the
ideas on which AM is based. The reader is therefore warned to proceed at his own risk
through this material.

Section 2 of this appendix contains a brief description of those concepts which were only
partially implemented in AM (e.g, "Destructive-op™). It was decided not to give each of
them a full "box" of their own.

The third part of this appendix lists a couple concepts as they were actually coded into
Lisp. The reader is shown which entry — or heuristic rule — each bit of Lisp code
corresponds to.

Finally, starting or page 224, a list is provided of some of the concepts which AM created.
This is intended not as an exhaustive catalog, but merely to show the breadth of what was
done by AM, the smart guesses and the lunacies. This list could have been pieced together
by wudying Appendix 5, vrerein some examples of AM in action are given. There the
reader may dynamically observe what kinds of concepts — and infer what kinds of entries
for their facets — AM was able to derive from its initial base.

Appendix 2.1. Initial Concepts

Each concept will be listed, followed by a description of the entries in each of its facets'.
For each such "slot”, a condensation is provided (in English, LISP, and math notation) of
all the knowledge initially supplied to AM about that facet of that concept.

If there is any unmentioied facet -for a concept, then it started out blank. Many of the
facets o1 the original concepts were left blank intentionally, knowing that AM would be able
to fill them in as well. After all, if you can fill in examples of any new concept, you ought to
be able to fill in examples of Sets!

The concepts are grouped semantically, much like the tree shown on page 105, like the
order in which heuristics are listed in Appendix 3. This section of the appendix is
prefaced by an index which is arranged alphabetically, since the primary use of it will
probably be as an encyclopedia. When the reader encounters a poorly-named or poorly-
explained concept somewhere in the text, he may wish to glance first at Chapter 5, page 107,
where very brief definitions of the concepts are also given alphabetically. If that
"dictionary” is insufficent, he can turn to the appropr.ate page in this appendix, and see the
same concept presented in much more detail.

! Each of these en'/es was supplied by hand, by the author.

i dine NS al e

Eait i L L



T TN T N T TN TR L T T Y Y VY T R TN T R T T T A R I U I R R ST AT
':‘: Appendix 2 AM  Discovery in Mathematics as Heuristic Search -173-
~ Appendix 2.1.1 Index to Initial Concepts
A
& ‘\"
o CONCEPT PAGE  CONCEPT PAGE
o
i s
-2 XY LI 175 Multiple-elements-Structure ...m.mmeen 210
Q Al but-the-first-element . ... ... e 201 No-multiple-elements-structure ............. 211
i All-but-the-last-element ... .. 202 Nonempty-structure 211
b ANY-CONCEPL cror e cve crerrees 174 Ob jec. 207
" Anything e Ob ject-equality 176
i Atom-cbj 8 Operaduon 177
Bag-Delete R4 QOrd-Structure 210
v Bag-Diff .. ..... Ordered-pairs ... . 213
- LRI Ty T S 182 Oset-Delets 185
N bag-Intersect 189 Oset-Diff 193
e Bag-Union .. 191 Oset-insert ... 181
g Bags ... 212 Oset-Intersect 187
o Canoniee . 196 Oset-Union ... 190
:?i:. Coalesee o 195 OSELS covereevsssmsssssssssssssessssssesassessessesssssssmsssesares 214
N Compose ... ........ 178 Parallel- join 199
s Con jectute 207 Parallel- join2 199
L N Constant-False .. 17 Parallel-replace .... . 167
i Constant-predicate 176 Parallel-replace2 197
Constant.True 176 Predicate 175
o Delete ... 183 Projection| 203
- Difference 192 Pro jection?2 203
- Empty-structure 211 Relation 206
= First-element ... 201 Repeat 198
() Identity 204 Repeat? 198
S Insert ...... 179 Restrict 204
- Intersect 186 Reverse-ord-pair 200
5 Invert-an-operation 205 Set-Delete 183
e Inverted-op 205 Set-Diff 193
RS LAST-RICMENT coerrrereertmnrsrsmsssersssrssinses 200 Set-insert . 180
List-Delete ....... 184 SEL-INErSECt wovmmnveiverersmsmmreseserssssscesssss 188
5 List-Diff ... 192 Set YJnion ... - 191
- List-insert ... 182 Sets ... 212
0 List-Inter sect 186 Structure e 209
3 List-Union 190 Structure-of-StrUCtUIeS .u...mmmmmissmssssresess 209
e Lists ... 213 Truth-value 208
® Logical-combination 206 Union 189
:{ Member 202 Unord-Structure 210
T""".
"9
1

.....................

...........




R N A A I & O

Appendix 2 AM  Discovery in Mathematics as Heuristic Search -174-

Appendix 2.1.9 Anything

Namae(s): Anything, Entity, Thing, ltem
Definitions:
Non-Recursive, Trivial, Quicks A () T
Specializations: Any=-concept, Non=concepts
Generalizations: none
Examples: Anything, Any-concept
Isa’s: Any~-concept
Worth: 100
Interest: 5 heuristics (see Appendix 3.1, page 229).2
Sugg: 5 heuristics
In-domain-of: Delets, lnsorts, Member, Projl, Proj2, Identity, Constant=pred.
In-range~of: First-ele, Last-ele, Member, Projl, Proj2, Identity.

Appendix 2.1.3 Any-concept

Name(s): Any=concept, Any-Being, Anybody

Definitions:
Non-Recursive, Opaque, Quicks: A (x) FMEMB(x,Concepts)
Non-Recursive, Opaque, Quicks A (x) GETP(x,Name)

Specializations: Aclive, Object

Generalizations: Anything

Examples: Anything, Any=-concept, Active, Object

Isa's: Anything, Any=concept

Worth: 100

View: to view any X as if it were a Y, find an op. whose domain contains? X,
and whose range is contained in Y, and apply that op. to the given X.

Fillin: 39 heuristics (see Appendix 3.2, beginning on page 230).%

Check: 20 heuristics

Interest: 21 heuristics

Sugg: 20 heuristics

2 In general, this sppendix will omit heuristics They will instead be presented in one big coilection, as the next appendix. For
each concept, we will however mention how many heurictics of each variety are present. The interested
resder may turn immediataly to Appendix 3 (¢ he desires, to see those ! suristic rules.

3 All four speciahizations of each of Delete (ep, Bag-delete) and Insert (e g, List-insert) are also listed here.

4 That is, the domain of the operation is DixD2xD3., and X is a subset of some Di, » specialization of Di

5 As usual, the heuric & sre listed in Appendix 3, not here. But the reader is forewarned thst this concept has $0 many
- houric.cs thet they are grouped by facet in the next appendix, occupying Appendices 3.2 | through
328, pages 230 o 251,
-,
-
1
» '_-':_' e A e s e VL T T e Tl e R -t




T e v Bt Siad S S - - ¥ s T ol s il i a Sl SR Rl Calitnhonts
R T T T R T N T R T T T T T T T T N Y R T L T A T ST P R NN T I N e el TN TR Tao W
.

Appendix 2 AM  Discovery in Mathematics as Heuristic Search -175-

Appendix 2.1.4 Active

Name(s): Aclive, aclivily, action

Definitions:
Sufficient, Non-Recursive, Quick: A (x) GETP(x,Algorithms)
Sufficient, Non=Recursive, Quick: A (x) GETP(x,Dom/range)

Specializations: Predicate, Relation, Operation

Generalizations: Any-concept

Examples: none.®

fsa’s: Any=-concept

In=~demain=of: Constructive, Destructive, Coalesce, Compose, Restrict

In-range=-of: Compose, Coalesce, Restrict.

Worth: 100

Fillint 7 heuristics.

Check: 4 heuristics

Interest: 3 heuristics

Sugg: 10 heuristics

Appendix 2.1.5 Predicate

Name(s): Predicale, sometimes: logical operation, Boolean function.
Definitions:
Nonrecursive quick opaque: A (P) Range(P) is Truth-value; i.e., {T,F}.
Generalizations: Aclive
Examples: Equality, Constructive, Destructive, Empty, Nonempty, Constant-pred,
the Defn entries of each concapt.7
In~domain-of: Canonize
Worth: 100
Fillin: 2 heuristics.
Sugg: 1 heuristic.
Interest: 1 heuristic.

WX
I"IJ,
T
lJl-'l

5

F
v Y

6 Recali that each active will be an example of an operation, pradicate, stc, hence need not be pointed to explicitly here

Thus the predicate ‘Empty’, while it exists in AM, is superflous, since the dafinition facet of ‘Empty-struc’ contains that
very predicate

w5
e

b i
1 1 LA i i 4
Al

B LA

.

L

k]
T,

T o

o
Lo
»
»

>

A
)
» &

oy
L

T

T




PRTRT VNGRS el B S bt td taf et Wi rult mal Su i Palh ¥ ot tall ol v L vh) Vol el S d vl el Aul vad sl i ol tul tak Vet g

Appendix 2 AM Discovery in Mathematics as Heuristic Search -176-

Appendix 216 Object-equality

Q Name(s): Equality, Object equality, Obj-equal, Equal, Same.

X Defiritions:

] Nonrscursive opague: A (x,y) EQUAL(x,y)

E Sufficient, vary quick, opaque: X (x,y) EQ(x,y)).

N Recursive slow: X (x,y) x and y are both identical atoms,

or x and y sre both empty structures,
S or x and y ars both nonempty structures and
- Equality.Defn(CAR(x),CAR(y)) and
Equality.Defn(COR(x),COR(y)).
Nonrecursive transform stow: X (x y) Identity.Defn(x,y).
Quick: X {x,y) y=Equality.Algs(x).
Domain/range: <Object Object = {T,FP
(Structure Structure < {TF}
Algorithms:
Nonrecursive quick: A (x) x.
Conjec: ‘Identity, restricted to Objects, is the same as Obj-Equality.’
Isa's: Predicate
Worth: 200
What: the Equality of two list structures; closely related to identity op.

Appendix 2.1.7 Constant-predicate

Name(s): Constant-predicate, Const pred, Logical constant function.
Definitions: none.

Domain/range: <Anything... Anything = {T,F}>

Isa's: Predicate

Specislizations: Constant=-True, Constant=False

Conjec: (Vx,Vy) Constant-pred.Defn(x)eConstari-pred.Defn(y).
Worth: 100

What: a predicate which always returns the same logical value.

e

Y

Loy
':-. I'}

L3

Appendix 2.1.8 Constant-True

E"’, Name(c): Constant=True, Constant T, Always=-T, sometimes: Always,
Definitions:

Nonrecursive, very quick: A {...) T.
Domain/range: <Anything... Anything = {T,FP

- ¢Anvthing.. Anything = {Th

. Generalizations: Constant=Predicate

e, Worth: 100

= What: a predicate which always returns True.

bt

.
il
.

" ~$l\
- A




-y ; M RN el S S T S T TR R U e Y o - VT LR P | - d e IT=w o Tl Bngl e B J R R S ] i artult
137.);\;*_3.;\;1:*(&"«‘.\1&.&;\ AGRELSL ALAE A AL S allol ST E S GEMDMEAT A FAT & PRIACE RS S AF R EEaChIG gt I Ry Bt e T RS

Appendix 2 AM  Discuvery in Mathematics as Heuristic Search -177-

Appendix 2.1.9 Constant-False

Name({s): Constant-False, Constant F, Always=F, sometimes: Naver.
Definitions:
Nonrecursive, very quicks X {...) F 8
Domain/range: <Anything... Anything = {T,F}>
<Anything... Anything = {FP
Genaralizations: Constant-Predicate
Worth: 100
What: a predicate which always returns False.

Appendix 2.1.10 eration

Name(s): Operation, sometimes: function, mapping.

Definitions: none.’

Specializations: Inverted-op, Composition, Canonization,
Coaslesced-op, Comtructivo-o,)w

:'“::; Generalizations: Active
e Examples: In.ert, Delete, Union, Intersact, Litterence, Compose, Canonize,
:: Coalesce, Identity, Projl, Proj2, First~ele, Last-ele, Ali~but~first-ele,
A All-but-last-eie, Restrict, Reverse=-ord=pair, Member, Invert, Repeat(2},
k Parallel=join(2), Parallel-replace(2).
in-domain=of: Invert, Parallei=join(2), Parallel~replace(2), Repeat(2).

In-ranga=of: Canonize, invert, Parallei=join(2), Parallel-replace(2), Repest(2)
Worth: 100

Fillins 7 heuristics.

Check: 3 heuristics

Interest: 11 heuristics

Sugg: 2 heuristics

Ty

A AT s
] DRI ' 1
.'r‘.b N

[t Sl L e
A T ]
. »
-'.‘.'l‘-

Fo
T 8 Actually, the valus returned is 'NIL', not Faise or F.
i 9 Recall that ali this means is that computstionally, any entity x ts considered to be an Operation iff it is in Operation.Exs, or

) i€t is an sxampls of soms Spacialization of this concept.

[ B

AR

10 The concepts of Constructive and Destructive operstions are not encoded as concepts yet. The distinction between
specislization of Operation snd Example of operstion is quite blurry. E.g, why not consider th class of
Inssrtion operations a whole specialization of Operation, instead of just an example? The decision as to what
status each operation would have was quite srbitrary, 'm afraid.

AL
IR
AL PTL L
ot

Ll




AR RE RS SR R St el n B mat S A i I A Wi SR R £ 4 S S AP 4 F I CARAEA PR T AR SN A A i g

Appendix 2 AM Discovery in Mathematics ¢ Heuristic Search

Appendix 2.1.11 Compgge

~178-

Name(s): Compose, Composition, sometimes: afterwards;
Definitions:
Daclarative slow: X (A,B,C) Vx, C(x)xA(B(x).
Sufficient Nonrecursive Quicks A (A,8,C) C hzs the Name ‘AcB’.
Sufficient, Slow: Are-squivalent(C,Compose.Aizs(A,B)).
Sufficient, Quick: C=Compose.Algs(A,B).
Domain/range: ¢Active Active = Active>
<Operation Active - Operatiom”
{Predicate Activa = Predicate>
(Relation Relation = Relation>
Algorithms: '2 '
Distributed: use the heuristics attached to Compose to guide the filling
in of various facets of the new cecmposition.
Generaslizations: Operation
isa’s: Operation
Worth: 300
Fillin: 9 heuristics.
Check: 2 heuristic.
Suggest: 2 heuristics.
interest: 11 heuristics.

" Note that while this entry would imply thet Operstionin-ran-of and Operationin-dom-of could both contain '‘Compose’ as

an entry, only the most gensrsl concept (is, ‘Active’; was ‘Compose’ in its In-dom-of and In-ran-of facats.

G{H(x))", or, more precisaly, '(APPLYB G ALGS (APPLYB H ALGS x))".

12 An algorithm for COMPOSE is » procedure for taking & pair of operations, ie. 8 pair of concepts G and H, and creating »
new sctive concept F which is defined to be their composition, whose Algorithms facet ccontaine A (x)

o S

v —— . ———gatnpr mm s w =

by

-

[ O

S

R g ]

-.n

-

s -




Vlﬂ. [.

v
= Ta

e 5
[

™

e
.

LN E e 3 1)
Ak

x

w

. ; T
A v
" ]
2 by el 4y
SRR,
P U

.

-k-

L
-----

Appendix 2 AM Discovery in Mathematics as Heuristic Search

Appendix Z.1.12 Inger];

-179-

Name(s): Insert, Insertion, sometimes: Add, Merge;
Definitions:
Quasi~recursive cases: A\ (x,A,B) [determine the type of structure that A and
B are, say S, then use S-insert.Defn(x,A,B)}.
Necessary, Nonrecursive, Quick: A (x,A,B) Member.Defn(x,B).
Necessary Declarative: A (x,A,B) 2¢B iff 2¢A or zsx,
Necesary, Daclarative: A (x,A,B) [(Va¢A)a¢B), and (Vbix ¢B)(b¢A), and x¢B]
Sufficient, Quick: B=insert.Algs(x,A).
Domain/range: <Anything, Structures = Siructures>
Aigorithms:
Quasi-recursive cases: A (x,A) [determine the type of structure A s,
say S, then use S=insert.Algs(x,A)].
isa's: Operation
Specializations: Bag-incert, Set=insert, List-insert, Oset-insert.
Worth: 100
Check: 1 heuristic.

.............
. e e

--------




B adia Bu Bt v b S B Rt A Sats ARG SR 26 A SN R S A S LA CARAR AL G E-LILA L SN AN RN A USRS S R A R S DA R

Appendix 2 AM Discovery in Mathematics as Heuristic Search -180- y

ix 2.1.13 - ‘

Name(s): Set-insert, Set insertion, somelimes: Insert, Tag.
Definitions:
Declarative Slow: X (x,A,B) [(Va¢A)(a¢B), and (Vbgx €B)(b€A), and x¢€B]
Recursive Slow: X (x,A,B) (As{} and Bx{x}, or else:
[AND: 2¢Member.Alg(A); Member.Dein(z,8);
Set-insert.Defn(x,Set-delete.Alg(z,A),Set=delete.Alg(z,B)) ])
Recursive: A (x,A,B) (As{} and Bx{x}, or else:
[AND: 2¢CAR(A); Member.Defn(z,B);
Set-insert.Defn{x,COR(A),Set-delete Alg(z,B)) ])
Declarative: A (x,A,B) (Vz) 2¢B iff 2¢A © zxx,

)l

pows o

50 e

Quick: BsSet-insert.Algs(x,A). ‘
Domain/range: <Anything, Sels = Sets> :
Aigorithms: '3 {

Non=recursive quick: A (x,A) {if Member.Dein(x,A) then A, else MERGE(x,A)}) ;

Non-recursive quick: A (x,A) (MERGE(x,A) and Elim~-adjacent-mult-slements(A)) g

Recursive: A (x,A) (if As{} then {x}, eise if Ae{x} then A, else
[2+-CAR(A); if zsx then A, else CONS(z,Set~insert.Alg(x,CDR(A))))).
Generalizations: Insert
Worth: 100

What:!? If x isn't slready in A, then add it and re=sort the set A,

¢
§
9 f
. ¢
3 .
d H
g
L 13 Actually, this opsration, lie all the other structural operations, are much more sophisticated then this simple presentation
3 implies In this case, if A is not supplied, AM chooses a random example of a Set and inserts x into that set. ;
k. If x is missing, then AM finds a random example of Anything and inserts it into A. .
14 The ‘What' facet doessn't reslly exist, but is occasionsily present in this Appendix for the aid of the reader. A fuller K
) English description of any concept can be obtained by looking in the alphabetical summary of concepts, in K
L Chapter 5, beginning on page 107. .
i z
3 -




- E < -z ~ T d 14 T W LTI T T, PR le gy
[ e Ve Vi V2 v © s 1 S Ml B8 Wi A 10 B il iy e B S Lo ol sak AL b r i s Ll VTR SUAIER L Sy AL Coll A DAk AR & A WA "N " AR AR
h

Appendix 2 AM  Discovary in Mathematics as Heuristic Search -i81-

Appendix 2.L.14 Oset-inser

Name(s): Oset-insert, Oset insertion, somatimes: Insert;
Definitions:

Delcarative Slow: X (x,A,B) [(Va¢A)(a¢B), and {Vbgx ¢B)(b¢A), and x=CAR(B)]
Recursive Slow: A (x,A,B) (Az[] and B=[x], or else:
[AND: z¢Membaer.Alg(A); Member.Defn(z,B);
Oset-insert.Defn(x,Oset-delete.Alg(z,A),Oset-delete.Alg(z,8)) J)
Non-recursive, Quick: A {x,A,B) (B=CONS(x,Oset-delete.Algs(x,A)).
Quick: A (x,A,B) (B=Oset-insert.Algs(x,A)).
Necessary Quick: A (x,A,B) (xxCAR(B)).
Necaessary, Declarative: A (x,A,B) (Vz) 2¢B iff 2¢A © zsx,
Domain/range: <Anything, Oseis = Osels>
Algorithms:

Non-recursive quick: X (x,A) (CONS(x,[if Member.Defn(x,A) then DREMOVE(x,A)'5,
else A)))

Non-recursive quick: A (x,A) (CONS(x,A) and DREMOVE(x,COR(A)))

Non-recursive quick: A (x,A) (CONS(x,DREMOVE(x,A))

Recursive: A (x,A) (if As[] then [x], else if Az[x..] then A, else ‘

CONS(x,0set-delete.Algs(x,A))).

Generalizations: insert
Worth: 100

What: Eliminate x from A and add x as the first element of the oset A. !

L

u_l'

-
U N Sy Sy

L ANL MLt ) R e e
Tt 2
Tl L ]

T
L

1&..!,?_'”(

P

- T
v

]

PR

o v
A

A S e
.]v’l.('lll
«

15 The INTERLISP function DREMOVE(x,A) destructively removes all occurrences of x from the list structure A.

y
IR !
1 I_. [\ &

~ryr
e

T

Ty
I
LN
[

'

Ea UK
. 2.

y .

Al

Wv ';'n'ml
Yk i
n
,“urnm?‘afls“
VL.

Il 1'

P

e

o

®

1

'f




o b 7 = Eai ool bkl - ‘TW‘-‘W‘—'
e U RRTLI LR s e T se ek i o gt pog vl AL\ A A Nall VAL WS in A ThoaLFA R i) E L A W RN I R i bt b g G AR R G A M

: Appendix 2 AM  Discovery in Mathematics as Heuristic Search -182-

E Appendix 2115 List-insert

Name(s): List~insert, List insertion, sometimes: Insert, sometimes: CONS;
Definitions:

Nonrecursive Quick: A (x,A,B) (BsCONS(x,A)).

Nonrecursive: A (x,A,B) (AsCDR(B) and xsCAR(B)).'®

Quick: A {x,A,B) (BsList=insert.Algs(x,A)).

Necessary Quick: A (x,A,B) (x=CAR{B)).

Necessary Quick: A (x,A,B) (A=sCDR(B)).
Domain/range: <Anything, Lists - Listsd
Algorithms:

Non-recursive quicks A (x,A) CONS(x,A).

Recursive slow: A (x,A) (if A= then <x), else

NCONC1 7 (List-insert Algs(x,All=but=last Algs(A)),CAR(A)).

Generalizations: Insert
Worth: 100
What: Add the element x onto the front of the List A,

kel

.

L

TV s

Appendix 2.1.16 Bag-insert

E Name{s): Bag-insert, Bag inserlion, sometimes: Insert;
Definitions: '
Nonrecursive Quick: X (x,A,B) (B=SORT(CONS(x,A))).
Quick: X (x,A,B) (BsBag~insert.Aigs(x,A)).
Domain/range: <Anything, Bags ~ Bags>
Algorithms:
Non-recursive quick: A (x,A) MERGE(x,A).
Non-recursive: A (x,A) SORT(CONS(x,A)).
Recursive slow: X (x,A) (if As() then (x), else
if CAR(A)¢!®x thea CONS(CAR(A),Bag-insert.Algs(x,COR(A))), elsa CONS(x,A)).
Generalizations: Insert
Worth: 100
What: Merge the element x into the Bag A.

s g ooy 1

16 Here's how this would reslly sppear in LISP: (LAMBDA (x A B) (AN [APPLYB OBJ-EQUAL ALGS A (APPLYB ALL-BUT-
FIRST-ELE ALGS B)} {[APPLYB OBJ-EQUAL ALGS x (APPLYB FIRST-ELE ALGS B)))).

17 This LISP function means 'A(S,2) add-the slement 2 1o the end of list 5. CDR means All-but-the-first-slement, CAR
means The-first-sfement.

s Here, ‘less then' means 'precedes alphsnumerically’, using ALPHORDER.

......




R N T T T T M T N A e T M N N U N Y L LRV IR TV UV T TR LV IV UTITRNCR TRTR T I T Y

Appendix 2 AM  Discovery in Mathematks as Heunistic Search -183-

Appendix 2.1.17_Delete

Namae(s): Delete, Deletion, Remove, sometimas, Subtract;
Definitions:
Quasi-recursive cases: A (x,A,B) [determine the type of structure A and
B are, say S, then use S-Delete.Defn(x,A,B)].
Slow!%: X (x,A,B) List-aelete.Defn(x,A,B)
Sufficient, Nonrecursive, Quick: X (x,A,B) NOT(Member.Defn(x,B)).
Sufficient, Quick: B=Delete.Algs(x,A).
Domain/range: <Anything, Structures -» Structures>
Algorithms:
Quasi~recursive cases: A (x,A) [determine the type of structure A is,
say S, then use S-Delete.Algs(x,A)].
Stow: X {x,A) List=delete.Algs{x,A).
Isa's: Operation
Specializations: Set-delete, List-delete, Oset-delete, Bag-delete.
Worth: 100
What: Remove (one occurrence of) x from (the front of) structure A,

Appendix 2.1.18 Set-Delete

Name(s): Set-Daslete, Set Deletion, sometimes: Delete;
Definitions:
Deciarative Slow: A (x,A,B) (VacA)(a¢B xor a=x) A {VbeB)(b¢A) A -x¢B
Recursive Slow: A (x,A,B) (A={} and Bs{}, or else A={x} and Bs{}, or eise:
[AND: z-Membar.Alg(A) until z4x; Member.Defn(2,B);
Set-Delete.Defn(x,Set-delete.Alg(z,A),Set-delete.Alg(z,B)) })
Quick: BaSet=Delete.Algs(x,A).
Domain/range: <Anything, Sets = Setsd
Algorithms:
Non-recursive quick: A (x,A) DREMOVE(x,A)
Non=recursive quick: X (x,A) (if NOT(Member.Defn(x,A)) then A,
else DREMOVE(x,A)))
Recursive: X (x,A) (if As{} then {}, else if Ax{x} then {}, else
> [z+CAR(A); if zsx then CDR(A), else CONS(z,Set-Delete.Alg(x,COR(A))))).
. Generalizationss Delete

A Worth: 100
;;-- What: remove the slement x from the set S, if it's there initially.

Y 3

LN
.

[

18 The List-dalete dafinitions and algorithms are relatvely slow, since v might occur anywhere 1n A, gnd it might occur mors
than once Special tricks are avalable to spesd up the other kinds of deletions. For Set-delets and Oset-
delete, we. can use DREMOVE, since deleting all occurrances of x is fine -~ thers can only bs at most one

v iy
Ty

*

)

4
LR

i‘ occurrence. For Bag-delets, we can walk down the bag and quit when any element s seen to be

A slphabetically-greater-than x. These speed-ups are the reason for maintaining four separate kind of deletion
[ opsrations.

.

-

o

o

.

L i "
L LS ’\‘r.'l'

-----




s "t LT P Y,

Appendix 2 AM  Discovery in Mathematics as Heuristic Search -184-

Appendix 2.1.19 Bag-Delete

Name(s): Bag-Delete, Bag Daletion, sometimes: Delale;
Definitions:
Recursive Slow: \ (x,A,B) (A=() and B=(), or else (Ax(x..) and B=CDR(A),
or else Bag-delete.Defn(x,COR(A),COR(B).
Quick: B=Bag=Delete.Algs(x,A).
Domain/range: (Anything, Bags ~ Bags>
Algorithms:
Non-recursive quick opaque?%: A (x,A) [z+(MEMBER(x,A);
RPLACA(z,CADR(z)); RPLACD(z,CDDR(Z))] :
Recursive: A (x,A) (if As() then (), else if CAR(A)sx then CDR(A), else :
CONS(CAR(A),Bag=Delete Aig(x,COR(A)))). ,
Generalizations: Delele
Worth: 100
What: remove one copy of x from the Bag A, if x was int there initially.

e

Appendix 2.1.20 List-Delete

Name(s): List-Delete, List Deletion, sometimes: Delete;

Definitions:
Recursive Stow: A (x,A,B) (A=<> and B=<), or else CAR(A)=x and COR(A)=B,

or else List-delete.Defn{x,COR(A),COR(B).

Quick: Halist-Delote.Algs(x,A).

Domain/range: <Anything, Lists - Lists> .

Algorithms:
Non-recursive quick opague: X (x,A) FRPLACD(z+(MEMBER(x,A),CODR(2)) E
Recursive: X (x,A) (if AsO then <O, else if CAR(A)sx then CDR(A), else

CONS(CAR(A),List=Delate.Alg(x,COR(AI)).

Generalizations: Delete

Worth: 100

What: remove the first copy of x from the List A, if x is in A,

I R e e E

R m m e e e oy

20 This slgorithm is Isbelled Opaque because it contains very tight 'snesky’ cods, implementing s highly non-standard linked N
dats structure deletion algorithm. The call on the Interlisp function MEMBER binds 2z to the tail of A,
beginning with the first occurrence of x. "




TR T TR TR AT E T

Appendix 2 AM Discovary in Mathematics as Heuristic Search -185-

Appendix 2.1.21 se -Dele €

Name(s): Oset-Delete, Oset Deletion, sometimes: Delete;
Definitions:
Recursive Stow: A (x,A,B) (A=[] and B=[}, or eise CAR(A)=x and CDR(A)=B,
or else Oset-delete.Defn(x,COR(A),CDR(B).
Recursive Slow: A (x,A,B) (A=[] and B=[], or else A=[x] and B=[], or else:
[AND: z¢Mamber.Alg(A) until 24x; Member.Defn(z,B);
Set-Delete.Cefn(x,Set-delete.Alg(z,A),Set-delete.Alg(z,B)) 1)
Necessary Quick: A(x,A,B) (CAR(A)sCAR(B) xor CAR(A)=x).
Quick: B=Oset-Delete.Algs(x,A).
Domain/range: [Anything, Osets = Osels]
Algorithms:
Non-recursive quick opaque: A (x,A) DREMOVE(x,A).
Non-recursive quick opaque: A (x,A) FRPLACD(z~(MEMBER(x,A),CDDR(z))
Recursives A (x,A) (if As[] then [}, else if CAR(A)sx then COR(A), else
CONS(CAR(A),Oset=Delete Aig(x,COR(A)))).
Non~recursive quick: A {x,A) (if NOT(Member.Defn{x,A)) then A,
else DREMOVE(x,A)))
Non-recursive quick: A (x,A) DREMOVE(x,A)
Recursive: A (x,A) (if As[] then [}, else if A=[x] then [], else
[2¢CAR(A); if z=x then CDR(A), else .
if 2>x then A, else Osei-Delete.Alg(x,COR(A)))]).
Generalizations: Delete
Worth: 100
What: remove the element x from the Oset A, if it's present there initially.

[ I
A

N

v ey M T
)

Y,
.

PN

N

I R S S R
R I S N o A

- - ALt Rty e *
R LG o) o N L
o W W W .

o e W Y T P e




Appendix 2 AM  Discovery in Mathematics as Heuristic Search

Appendix 2.1.22 Intergec;

Name(s): Intersect, Intersection, sometimes: Product;
Definitions:
Quasi~recursive.casazt A (A,B,C) [determine the type of structure A and
B are, say S, then use S-intersect.Defn(A,B,C)].
Slow: A (A,B,C) List-intersect.Defn(A,B,C)
Necessary, Nonrecursive: A (A,B,C) Member.Defn(x,C) iff
Membaer.Defn(x,A) and Member.Defn(x,B).
Quick: Cxintersect. Algs(A B),
Domain/range: <Structures Structures -» Structures)
Algorithms:
Quasi=recursive cases: \ (A,B) [determine the type of structure A and B are,
say 5,2! then use Selntersect.Algs(A,B)].
Slow: A (A,B) List=Intersect.Algs(A,B).
isa's: Operation
Specislizations: Set-intersect, Bag-intersect, List«intersect, Oset-intersect.
Worth: 100

"-Appendix 2.1.23 Lig];—InLergecL

v

T
o

Name(s): List-Intersect, List=intersaction, sometimes: intersect.
Definitions:
Recursive slow: A (A,B,C) if Az then CsC), else
it Member.Defn(CAR(A),B) then [CAR(A)sCAR(C) and
List-intersecl.Defn(CDR(A) List~delete.Aig(CAR(A),B),CDR(C)}], olse
List-intersect.Defn(CDR(A),B,C).
Quick: CslList=Intersect.Algs(A,B).
Domain/range: <Lists Lists = Lists>
Algorithmss
Non=recursive: A (A,B) [for each x in A (in order), do the following:
it Member.Defn(x,B) then List-delete.Alg(x,B), else List-delete.Alg(x,A).
Finally, return the value of ‘A’ as the result.
Recursive: A (A,B) if As¢> then ¢, else if Member.Defn(CAR(A),B)
then CONS(CAR(A),List-intersect. Aig(COR(A),List~delete.Alg(CAR(A),B))),
else List-intersect Alg(COR(A),B).
Generalizations: intersect
Worth: 100
What: Move along list A. Remove it (once) from B if it's there, else from A. Return A.

Tt

,,
F_- r;- -

') A
1o A

. 2y

21 s might be 'Sets’, or S can be ‘Liste’, etc.

———

H™
\.-‘\

,,,,,,,,




B x L X L W U LA T RS T T W N T T TR AT e T TA TR DA TR TR R TR RN T T TN T A PG TA TR TS TR T TR R GG R AR TR SWETRE L ST LR TR Lt TN T A

Lol

Appendix 2 AM Discovary in Mathematics as Heuristic Search -187-

Appendix 2.1.24 Oset-Intersec

Name(s): Oset~Intersect, Oset=Intersaction, sometimes: Iintersect.
Definitions:
| Recursive?®: X (AB,C) if A=[] then Cx[], eise
if CAR(A)¢%°B then [CAR(A)=CAR(C) and
Oset-intersect.Defn(COR(A),Oset~delote.Alg(CAR(A),B),CDR(C))], olse
Oset-intersect.Dein(CDR(A),B,C).
Quicks CxOset=Intersect.Algs(A,B).
Once Early Quick Opaque: A (A,B,C) if B is shorter than A,
then Oset-intersect.Defn(B,A,C).
Domain/range: <Osels Osets = Osetsd>
Algorithms:
Once Early Quick Opaque: X (A,B) if B is shorter than A,
then Oset-intersect Alg(B,A).
Non-recursive: A (A,B) [for each x in A (in order), do the following:
if x~€B then DREMOVE(x,A). Finally, return the value of A,
Non-recursive: A (A,B) [for each x in A (in order), do the following:
it x€B then Oset-delete.Alg(x,B), slse Oset-delete.Alg(x,A).
Finaily, return the value of ‘A’ as the resuit.
Recursive: A (A,B) if Ax[] then [, else it CAR(A)B
then CONS(CAR(A),Oset=intersect. Aig(COR(A),Oset=delete. Aig(CAR(A),B)}),
slse Oset-intersect Alg(CDR(A),B).
Generalizations: intersect
Worth: 100
What: Move along Oset A, eliminating elements not found in Oset A.

22 The difference betwesn this definition and the similar one for List-intarsect is that here we can use the very fast
DREMOVE algorithm stored in Oset-Delete Alg, whersas for lists it was necessary to use a slow List-delete
slgorithm.

a3 To save space, we may henceforth write ‘x€B' to mean ‘Member.Defn(x,B)".




Appendix 2 AM Discovery in Mathematics as Heuristic Search -188-

Appendix 2.1.25 Set-Intersec

Name(s): Set-intersect, Set-Intersaction, sometimes: Intersect.
Definitions:
Once Early Quick Opaque: X\ (A,B,C) if B is shorter than A,
then Set~intersect.Defn(B,A,C).
Recursive: A (A,B,C) if A={} then Cs{}, else
z=Some-memb.Alg(A);
If Member.Defn(z,B)
then [Member.Defn(z,C) ard Set-intarsect.Defn(Set-delete Alg(z,A),
Sei-delete.Alg(z,B),
Set-delete Alg(2,C))]
olse Set=intersect.Defn(Set-delete.Alg(2,A),B,C).
Nonrecursive Declarative: For all x, x¢€C iff x¢A and x¢B.
Quick: CxSet-Intersect.Algs(A,B).
Domain/range: <Sets Seis = Sets>
Algorithms:
Once Early Quick Opaque: A (A,B) if B ic shorter than A,
then Set-intersect Alg(B,A).
Non=raecursive: A (A,B) [for each x in A, do the following:
if x~¢B then DREMOVE(x,A). Finally, return the value of A.
Recursive: A (A,B) if A={} then {}, else if CAR(A)B
then CONS(CAR(A),Set-intersect. Alg(COR(A),Set-delete Aig(CAR(A),B))),
else Set-intersect. Alg(CDR(A),B).
Generalizations: Intersect
Worth: 100
Wk at: Eliminate any slements of Set A which are absent from Set B,




T T W W W T T T T R T T R T R T T E T R AR N R R TR LN R R VP I LR TR IR T TI TV IR T TR AT R T OIS SRR

Appendix 2 AM Discovery in Mathematics as Heuristic Search -}89-

Appendix 2.1.26 Bag-Intersect

Name(s): Bag-intersect, Beg-Intersection, somatimes: Intersect,
Definitions:
Once Early Quick Opaque: A (A,B,.C) if B ic shortar than A,
then Bag~intersect.Defn(B,A,C).
Recursive: A (A,B,C) if A=() then C=({), slse
2+CAR(A); If Member.Defn(z,B) then [Member.Defn(z,C) and
Bag-intersect.Defn(CDR(A)Bag-delote.Alg(z,B),Bag-delete.Alg(2,C))]
else Bag-intersect.Defn(COR(A),B,C).
Quick: C=Bag-Intarsect.Algs(A,B).
Domain/range: <Bags Bags - Bags>
Algorithms:
Once Early Quick Opaque: A (A,B) if B is shorter than A,
then Bag-intersect.Alg(B,A).
Non-recursive: A (A,B) [for each x in A, do the following:
if x€B then B~Bag.delete.Alg(x,B), else A+Bag-delete.Alg(x,A).
Finally, return the value of A,
Generalizations: Intersect
Worth: 100
What: the intersection of bags A and B should contain all common elements,
with each element occurring the minimum number of times it occurs in A or B,

Appendix 2.1.27 Union

Name(s): Union, Join, Unile, sometimes: Combine, Append, Sum.
Definitions:
Quasi-recursive cases: A (A,B,C) [determine the type of structure A and
B are, say S, then use S-Union.Defn(A,B,C)).
Necessary, Nonrecursive: A (A,B,C) For all x, x¢C iff x€A or x¢B
Quick: C=Union.Algs(A,B).
Domain/range: <Structures Structures = Siructuresd
Algorithms:
Quasi-recursive cases: A (A,B) [determine the type of structure A and B are,
say $,2%then use S=Union.Algs(A,B)).
Quasi-recursive cases: A (A,B) [determine the type of structure A and B are,
say S, then do S-insert.Alg(CAR(A),Union{CBR(A),B)].
Isa's: Operation
Specializations: Set-Union, Bag-Union, List=-Union, Oset-Union.
Worth: 100

28 5 might be 'Sets’, o S can be "Lists’, stc.




SRR A R R N e S A i SR R PRI P R A S R S R B R T R S R PR R b s B v S R L v Sl b Cal VRl IR L i o Anth o I Vgt o Bt lin B Sy I Bl S, 0 e it M B o e AV B A AN

Appendix 2 AM Discovery in Mathematics 2 Heuristic Search -190-

Appendix 2.1.28 List-Union

Name(z): List=Union, Append, Ncone, List-join, sometimes: Union,
Definitions:
Recursive u» oaw: X\ (A,B,C) if A=<> then CaB, else
CAR(A})=CAR(C) and List=union.Dain{CDR(A),B,COR(C}).
Quick: CeList=Linion.Algs(A,B).
Domain/range: <Lists Lists = Lisis>
Aigorithms:
Nonrecursive, Quick, Non-destructive, Opaque: A (A,B) (APPEND A B).
Nonrecursive, Quick, Destructive, Opaque: A {A,B} (NCONC A B).
Recursive: A (A,B) if A=2> then B, else
CONS(CAR(A),List=Union.Alg(CDR(A),B)).
Generalizations: Union
Worth: 100
What: Append list B to the end of list A.

|
Appendix 2.1.29 Oset-Union

Name{s): Oset-Union, Oset=join, sometimes: Union, Append.
Definitions:
Recursive slow: A (A,B,C) if As[] then C«B,
else CAR(A)=CAR(C} and
Oset-union.Dein[CDR(A),
Oset-delete.Alg(CAR(A),B},
Oset-delete.Alg(CAR{A),C)).
Quick: C=0set-Union.Algs(A,3).
Domain/range: <Osets Osels = Osels)>
Aigorithms:
Nonrecursive, Quick, Non-destructive, Opaque: A {A,B) (APPEND A B).
Nonrecursive, Quick, Destructive, Opaque: A (A,B) (NCONC A B),
Recursive: A (A,B) if As[] then B, else
CONS(CAR(A),0sat-Union.Alg{CDR(A),Oset-delete.Alg(CAR(A),B))).
Generalizations: Union
Worth: 100
What: Append onlo Oset A any new members of Ocet B.

A d )’,y - - - - -
L K PN L N
e T S L 2 e



RLCRE" a Ut su e, Bt e e Babtiey 2% Bt vt Sutind ik et 2 & 0. o T AR £ N LA i S gl M g} L aNEERA ES AN S SR A i e R S S E e Ry
- ",
"y Y

Appendix 2 AM Discovery in Mathematics s Heuris!x Search -191-

Appendix 2.1.30_Set-Union

Name(s): Set-Union, Set~join, sometimes: Union, Append.
Definitions:
Nonrecursive Declarative: A (A,B,C) Vx, x¢C iff x¢A or x¢B.
Recursive slow: A (A,B,C) if A={} then CsB, else CAR(A)C and
Sei=union.Defn(COR(A),
Set-delete.Alg(CAR(A},B),S«t~delete Alg(CAR(A),C)).
Quick: C=Set-Union.Algs(A,B).
Domain/range: <{Sets Sels = Sets>
Algorithms:
Nonrecursive, Quick, Destructive, (paque: 2 {A,B) (UNION A B).
Nonrecursive, Quick, Non-destructive, Opaque: \ (A,B)
(Self-intersect (APPEND A B)).
Recursive: A (A,B) if Az{} then B, else
Set~insert.Alg(CAR(A),Set-Union Alg(CDR(A),Set-delete. Alg(CAR(A),B))).
Recursive: & (A,3) if A={} then B, else
MERGE(CAR(A),Set=Union.Alg{CDR(A),DREMOVE(CAR(A),B))).
Generalizations: Union
Worth: 100
What: Merge into Set A any new membars of Set b.

Appendix 2.1.31 Bag-Uniog

Name(s): Bag=Union, Bag=join, sometimes: Union, Append.
Definitions:
Recursive slow: A (A,B,C) if Ax() then C=B, else CAR{A)¢C and
Bag-union.Dein(
Bag-delete.Alg(CAR(A),A),2®
Bag-delete.Alg(CAR(A),B),
Bag-delete.Alg(CAR(A),C)).
Quick: C=Bag=Union.Algs(A,B).
Domain/range: <Bags Bags - Bags>

Algorithms:

- Recursive: A (A,B) if Ax() then B, else

o k ag-insert.Alg(CAR(A),Bag-UnionAlg(CDR(A),Bag-deists. Alg(CAR(A},B))).
o Generalizations: Union

SA Worth: 100

What: Bag-union(A,B) contains any x belonging to either bag, with multiplicity of x
equal to the maximum of the multiplicily of the eloment x in A end ir B,

N
“_" .
LN

s Yas, this is really the same as COR(A), and in the cther concepts in this appendix the shorier form is the one used.
Here, wa decided to show the nice, symme‘ric form that AM actually containe.




o J—
-'.' P e

i T
- q< e Yty

T

[ g

T T I T T I T YT PR IFU R T PR LIRS Y‘T‘X“T‘T"ﬁ{

Agpendix 2 AM Discovery in Mathematics as Heuristic Search

Appendix 2.132 Difference

-1982-

Name(s): Difference, Structure-diffarenci., sometimes: Minus, Subtract, Complement.
Definitions:
Quasi-recursiva casas: \ (A,B,C) [determine the type of structure A and
B are, say S, then use S-Diff.Dsfn(A,B,C)].
Necessary, Nonrecursive: A (A,B,C) For all x, x€C iff x€A and ~x¢B
Quick: CsDifference.Algs(A,B).
Domain/range: <Structures Structures -» Structures>
Algorithms:
Quasi=recursive cases: A (A,B) [determine the type of structure A and B are,
say S, then use S-Diff.Algs(A,B)].
Quasi-recursive cases: A (A,B) [determine the type of structure A and B are,
say S, then do S~delete.Aig(CAR(B),Difference(A,COR(B)))].
Isa's: Operation
Specializations: Set-Diff, Bag=Diff, List-Diff, Oset=Diff.
Worth: 100

Appendix 2.1.38_List-Diff

Nome(s}: List=Differerce, List=diff.
Definitionz:
Recursive slow: A (A,B,C) if As¢> then Cx(d, else
It CAR(A)¢B then List=Ditf.Defn(COR(A) List-delete.Alg(CAR(A),B),C),
else CAR(A)CAR(C) and List=Diff.De{n({CDR(A),B,COR(C)).
Quick: CsList-Diff.Algs(A,B}.
Domain/range: (Lists Lists - Listsd
Algorithms:
Nonrecursive: A (A,B) for x in A (in order), if x is in B,
then use List~delete to remove =n x from A and B.
Recursive: X (A,B) if A=¢> then ¢, else
It CAR(A)¢B then List-Diff.Alg(COR(A),List-delate. Alg(CAR(A),B}),
olse CONS(CAR(A),List=Diff.Alg(COR(A),B)).
Generalizations: Difference
Worth: 100
What: Move x along A. If x is also in B, remove it from A and from B.

-

%
LA

«
4 -
ER%

wa W A Ty
LR T

WL W W
o 3."‘ N‘a \.'v- ;"" 3




Appendix 2 AM  Discovary in Mathematics as Heuristic Search -193-

Appendix 2.1.34 Qset-Diff

Name(s): Oset=Difference, Oset-diff.
Definitions:
Recursive slow: ) {A,3.5) if A=[] then C={}, else
If CAR{A)¢B then Cset-Diff.Defn(COR(A),Oset-delete.Alg(CAR(A),B),C),
olse CAR(A)=CAR(C) and Oset-Diff.Defn(CDR(A},B,COR(C)).
Quick: CsQset-Diff.Algs(A,B).
Domain/range: <Osets Osets = Oseots>
Algorithms:
Nonrecursive: \ (A,B) for x in A, if x is in B, then remove x from A and B.
Recursive: A (A,B) if Az[] then [], else
If CAR(A)¢B then Oset-Diff.Alg(CDR(A),0set-delete.Alg(CAR(A),B)),
else CONS(CAR(A),Oset=Diff.Alg(CDR({A),B)}.
Recursive: A (A,B) if As[] then [], else
It CAR(A)¢B then Oset-Dift.Aig(CDR(A),B),
alse CONS(CAR(A),Oset-Diff.Alg(COR(A),B)).
Genaralizations: Difference
Worth: 100
What: Moving along A, when an element also in B is encountered,
use Osei-delete to remove it from A and from B.

Appendix 2.1.35 Set-Diff

Name(s): Set-Difference, Set-diff.
Definitions:
Recursive slow: X (A,B,C) it A~{} then C={}, else
If CAR(A)¢B then Set-Diff.Defn(CDR(A),Set-delete.Alg(CAR(A),B),C),
olse CAR(A)=CAR(C) and Set-Dif{.Defn(CDR(A),B,COR(C)).
Quick: CsSet=Diff.Algs(A,B).
Declarative Nonrecursive: i (A,8,C) Vx, x¢C iff x¢A and ~x¢B.
Domain/range: <Sets Sets = Sets>
Algorithms:
Nonrscursive: X (A,B) for x in A, if x is in B, thes remove x from A and B.
Recursive: A (A,B) if Ax{} then {}, else
If CAR(A)¢B then Set-Diff.Alg(CDR(A),Sei-delete.Alg{CAR(A),B)},
else CONS(CAR(A),Set-Diff. Alg(CDR(A),B)).
Recursive: X (A,B) if As{} then {}, else
If CAR(A)¢B then Sei-Diff.Alg(CDR(2.),B),
else CONS(CAR(A),Set=Diff. Alg(CDR(A),B)).
Generazlizations: Difference
Worth: 100
What: Members of sat A which are not in Sat B.




" " T—
=

' ¥

P
LIS
Yo

T T~
 mn

%

«V,

»

TEe

™,

¥
a’x ke

-
PR

MO
v

Y T TN T T TR T T T T Y T U Y O R R N N T R R W T C T W D PO RO e e W e WP TR s

Appendix 2 AM  Discovery in Mathematics as Heuristic Search

Appendix 2.1.36 Bag-Dif

LARCRe i g il ol o bl

-194-

Name(s): Bag-Diffsrence, Bag-diff.
Definitions:
Recursive slow: A (A,B,C) if As() then Cx(), else
If CAR(A)¢B then Bag-Diff.Defn(CDR(A),Bag-delete.Alg(CAR(A),B),C),
else CAR(A):CAR(C) and Bag-Diff.Defn(CDR(A),B,CDR(C)).
Quick: C=Bag-Diff.Algs{A,B).
Domain/range: <Bags Bags - Bags>
Algorithms:
Nonrecursive: A (A,B) for x in A, if x is in B, then remove an x from A and B.
Recursive: A (A,B) if Ax() then (), else
If CAR(A)¢B then Bag-Diff.Alg(COR(A),Bag-delete.Alg(CAR(A),B)),
else CONS(CAR(A),Bag-Diff.Alg(CDR(A),B)).
Recursive: X (A,B) If Bx() then A, else
If CAR(B)¢A then Bag-diff.Alg(Bag-delete.Aig(CAR(B),A),CDR(B)),
olse Bag-dift.Alg(A,COR(B)).
Generalizations: Difference
Worth: 100
What: Move x along Bag B, remo~ing one copy of each x from Bag A.

-----

,w .(-'v_. e *uﬁ." R W

~nm e .._-,_- ERC I RN RS S

&- A R . o ST _, A v;\'&.n -&.A.@.- '\-J— A e S A b A

‘‘‘‘‘‘
......
- PR




Pt e S I s a i i TRl i e s S s At A UE Y SRR TS D Rl Ra Sl Rt |

Appendix 2 AM Discovery in Mathematics as Heuristic Search -195-

Appendix 2137 Coalesce

Name(s): Coalesce, Seif-apply, Condense, Collapse, Argument coincidence.
Definitions:
Declarative slow: \ (F,G) The domain of G has been collapsed, compared to F's,
by the removal of one domain component D, and an algorithm for G
is just a call on F, with iwo arguemenis the same. The only constraint
on this situation is that the domain component from which
duplicate argument is drawn is itself a specialization of D26
Necessary, quick: A (F,G) The length of each Domain/range entry for
F is one larger than the length of each entry on G.Dom/range.
Necessary, quick: A (F,G) The range of both F and G are equal.
Sufficient, slow: A (F,G) Are-equivalent(G,Coalesce.Algs(F)).
Sufficient, quick: A (F,G) G=Coalesce.Algs(F).
Domain/range: (Active = Aclive>
<Operation = Oparation)
<Predicate - Predicale>

Algorithms:
Distributed: use the heuristics attached fc Coalesce {o guide the filling
in of various facets of the new Coalesced concept.
Generalizations: Operation
Isa's: Operation
Worth: 300
Fillin: 4 heuristics.
Check: 1 heuristic.
Suggest: 2 heuristics.

20 vome examples of this. (1) Coalesce.Defn{TIMES,Square), because TIMES Domain/range contains <Number Number -

Number> and Square.Domain/range contains <Number 4+ Number>, and a definition of Squars « 'Tiaes(x,x)',
and clearly Number is o specislization of Number (s vacuous specialization). So Square is & sosescad farm
of TIMES. (ii) Coalesce.Defn(Insert,Self-insert), where the litter concept is defined as Insert(S,2). The
domain of Insert is Anything x Structure; the domain of the nsw operation is just Structure. This passes
Coslesce.Defnr because Structure is a specislization of Anything: if we can insert ANYTHING inte o structurs,
then certainly it is permissable to insert 8 STRUCTURE into a  structure. (i}
Coslesce.Defn(Equality,Constant-T) becsuse Equality is raflexive (xex always).

. p B = . L » T - LT A S A T
ey e e g e U . e e ~ T . e TR >
AT L e ');":zle‘.‘s".‘-' S T e e T L A B A RS L A AN £ Ot

Lo A P il o r rs

E«.;"-‘:‘:{._v g

T
P Al




-
.
-
s X

RAF

*

N

o

i

SR
ap——
ot

VLY
AR

kSl A Bl RS S S

‘
L

TRV

Appendix 2 AM Discovery in Mathamatics as Heuristic Search -196-

Appendix 2.1.36 Canonize

Name(s): Canonize, Canonicalize, Standardize, cometimes: normalize.
Definitions:
Stow: A (P1,P2,F) Pl and P2 are predicates over AxA,
and F is ar operation from A fo A,
and (Vx,y€A) P1(xy) itf P2(F(x),F(y)).?
Sufficient, slow: Are-equivalent(F,Canonize.Algs(P],P2)).
Sufficient, quick: F=Canonize.Algs{P1,P2).
Domain/range: <Predicate Predicate - Operation>
Algorithms:
Distributed: use the heuristics attached to Canonize to guide the filling
in of various facets of the new canonization,
Generalizations: Operation
Isa's: Operation
Worth: 200
Fillin: 6 heuristics.
Suggest: 5 heuristics.

7 Some examples of this. (i) PlsSame-length, P2eEquality, Fslength, AsLists. (i) PleReversed-st-top-level, P2«Reversed-
ot-sli-lovels, FeRoverse-sach-slement, Aslists. (iii) PlsReversed-at-top-level, P2sReversed-at-ali-levels,
FeHash-each-slement, AsLists. () Pi=Congruent-triangles, P2sidentically-equsl, FeTranslate-and-rotste-to-
;undard-Fpooimn, AeTriangles. The typicsl use for ths concept is: given P2, find P1 and F, Or: given P1 and

2, find F.

.
R R L ST LT G A U DT N R A N, S U, S R A A

" 'R Y - 4 e B AN W e e e T ’ - hd - - = - - ., m e = = e = e a J W wm m w m 4 m wm w4 a  ow
LIS I -“-':."‘-E',,\“ o L T S T e T T L I R T R LT T AN e s e e N e T Tt T LT LT e e et et
A

-----

Ly g g




17

RS g’ gaat matelie b S sant. S Ba ok S Yin Sl AL AR B S U U R AR A T T T W T T R AR N T SN

-----------

Appendix 2 AM  Discovary in Mathematics as Heuristic Search

Appendix 2139 Parallel-replace?

L avth aive. gia auh e Gio Mt SRR AR = e ol Rl

-197-

Name(s): Parallel-replace2, Map-replace2, Parallel-substitue.
Definitions:
Quick: G=Paraliel-Replace2.Aigs(S1,52,F).
Domain/range: <Type-of-structure Type-of-structure Operation - Operation>
Algorithms:
Nonrecursive: A (S1,52,F,G) G is an operation whose domain is S1xS2 and
whose range is Range(F). For any siruclures s1€S], £2¢52,
G(s1,52) is compute by replacing each element x of sl by the
value of F(x,62). Notice this means that F must be an operation
with a domain/range entry of the form <D $2 -3 R>, where R is
unconstrained, but D is either ‘Anything’ or == if $1 is
of the form ‘Structure-of-E's' == E,
Non-recursive quick: A (S1,52,F) if F(x,y) doesn't depend on y,
then just do Parallel-replace.Algs(S1,F).
Spacializations: Parallel-replace
Isa's: Operation
Worth: 100

member x of S1 by F{x,52).

What: create a new operation, which takes 2 structures S1 and $2, and replaces each

Appendix 2.1.40 Parallel-replace

Name{s): Parallel-replace, Map-replace, Parallel-substitute, MAPCAR.
Definitions:
Quick: A (S1,F,G) G=Parallel-Replace.Algs(S1,F).
Domain/range: <Type-of-structure Operation = Operstion>
Algorithms:
Nonrecursive: A (S1,F,G) G is an operation whose domain is S1 and
whose range is Range(F). For any structure s1¢Sl,
G(sl) is compuled by replacing each element x of s1 by the
value of F(x). Notice this means that F must be an operation
with a domain/range entry of the form <D -» R>, where R is
unconsirsined, but D is either 'Anything' or =~ if S| is
of the form 'Structure-of=E's' «~ E.
Generalizations: Parallel-replace2
Worth: 100
Sugg: 2 heuristics.2®
t What: create a new operation, which takes a structures S|, and replaces each
member x of S| by F(x).

28 These actually deal with substitution operations, the RESULTS of applying Paraliel-replace end Parallel-replace2.

etm,



SRR MW S R T S TATTIOT RN ELE TN LE IR TONINT

I

P

()
[F AT Sy

Appendix 2 AM  Discovary in Mathematice as Heuristic Search -198-

’ Appendix 2.1.41 Repeat2

Name(s): Repeat2, Map-repeat2, iterate2, Map2, MAP2CONC.
Definitions:
iy (uuicks X (S1,52,F,G) GuRepeat2.Algs(S1,52,F).
Domain/range: <Type=-of-giructure Type-of-structure Operation = Operation>
5 Algorithms:
Nonracursive: A (S1,52,F G=Repeat2(S1,52,F) is an operation whose
] domain is S1x52 and whose range is Range(F).
XN For any structures s1€S1, s2€S2,
G(s1,52) is computed by the following algorithm:
y+~CAR(sl); s1«CDR(s1);
while s! do: y+F(y,s2,CAR(s1)); s1+~CDR(s1);
Finally, reiurn y.
Nolice this teans that F must be an operation whose domain/range
has the form <sl S2 sl = sl>.
Non=recursive quick: X (51,52,F) if F(x,y,2) doesn't depend on z,
then just do Repeat.Algs(S1,F).
Specializations: Repe.
Isa’s: Operation
Worth: 100
What: create a new operation, which takes 2 structures S1 and $2, and repeats
F(x,y,x2) along the members x,y of Si.

¥ il
2w

bl

ix 2.1. epe

Name(s): Repeat, Map, iterate, Sequence.
Definitions:
- Quicks X (S1,F,G) GsRepeat.Algs(SiF).
Domain/range: <Type-of=-siructure Operation ~ Operation>
Algorithms:
Nonrecursive: A (S1,F) Repeat(S1,F)=G is an operation whose domain
is S1 and whose range is Range(F). For any structure s1¢S1,
-y G(s1) is computed by the foliowing algorithm:
- y+~CAR(s!1); s1+CDR(s1);
while si dot y~F(y,CAR(s1)); s1<CDR(s1);
Finally, return y.
Notice this means that F must be an operation whose domain/range
has the form <si sl = sb.
Generalizations: Repeat2
- Worth: 100
¥ What: croate a new operation which repesis F all the way along sn S1.

¥

L)
L

e oo
L




LTI A T T A Ue AN SR AR B, Sala W oA e R e B S AR MEREPO BN - el TR R DD Rl RS R R andreati o et wul et e Ui gUUR L AW AL S A e A IEER Y

Appendix 2 AM  Discovery in Mathematics as Heuristic Search -199-

Appendix 2.1.43 Parallel-join2

Name(s): Parallel-join2, Map=join2, Parallel-union2, MAP2CONC.
Definitions:
Quick: A (S1,52,F,G) G=Parallel=join2.Algs(51,52,F).
Domain/range: (Type-of-structure Type=-of-structuras Operalion - Operation>
Algorithms:
Nonrecursive: A ($1,52,F,G) G is an operation whose domain is SixS52 and
whose range is Range(F). For any structures s1€Si, s2€52,
G(sl,s2) is compute by appending together the vaiues of F(x,s2),
for each element x in s1. So F has to be an operation
with 8 domain/range entry of the form <D $2 = R>, where R is
a type of structure, but D is either ‘Anything’ or == if S1 is
of the form 'Structure-of-E's’' =~ E.
Non=recursive quick: A (S1,52,F) if F(x,y) doesn't depend on y,
then just do Parallel=join.Algs(S1,F).
Specializations: Parallel=join
Isa's: Operation
Worth: 100
What: create a new operation, which takes 2 structures S1 and $2, and joins
together F(x,s2) for each member x of S1.

Appendix 2.1.44 Parallel-join

Name(s): Parallel-join, Map=join, Parallel=union, MAPAPPEND, MAPCONC.
Definitions:
Quick: A (S1,7,G) GsParallel=join.Algs(S1,F).
Domain/range: <Type-of=-structure Operation ~ Operation>
Algorithms:
Nonrecursive: \ {S1,F,G) G is an operation whose domain is S1 and
whose range is Range(F). For any structure s1¢S1,
G(s1) is compuied by appending together the values of F(x),
for each xésl. Notice this means that F must be an operatinn
with a domain/range entry of the form <D - R>, where R is
s type of structure, and D is either ‘Anything’ or == if S is
of the form 'Structure~of-E's' == E.
Generalizations: Parallel=join2
Worth: 100
What: create & new operation, which takes a structure S1, and joins together
F of each mamber of S1.

. _ el m mm mmp — —a = P -
e A IR S T LS L i N et B AT T N T e R AT T T e LT T LT T S LT T T T T T e LT LI
v e T A e R R A A e S s e e R R N DI T NN NN I o .

P Py



E.f
F I

Appendix 2 AM Discovery in Mathematics as Heuristic Search -200-

Appendix 2.1.45 Reverse-ord-pair

Name(s): Reverse-ord-pair, Revercve ordered pair, Switch CAR and CADR.
Definitions:
Nonrecursive quick: A (P,Q) First.Alg(P)sFinal.Alg(Q),
and Final.Alg(P)sFirst.Alg(Q).
Quick: A (P,Q) QsReverse-ord-pair.Algs(P).
Domain/range: <Ordered=pair =¥ Ordered=pair>
Algorithms:

Nonrecursive: A (P) Q+P; FirstAlg(QFinal. Alg(P))%®; Final.Alg(QFirst.Alg(P)); Q. !
Nonrecursive quick opaque, nondestructive: A (P) LIST(CADR{(P),CAR(P).
Nonrecursive quick opaque, destructive: A (P) z«Last~alo(P);
FRPLACA(CDR(P),CAR(P)); FRPLACA(P,2); P.

Nonrecursive quick opaque, nondestructive: A (P) REVERSE(P).
Nonrecursive quick opaque, destructive: A (P) DREVERSE(P).

Isa's: Operation

Worth: 100

What: turn the orderad pair <x,y> into the ordered pair <y,x>.

Appendix 2146 Last-element

Name(s): Last-element, Final member.
Definitions:
Recursive: A (S,x) 2+Firsi~element.Alg(S), and S+Delete.Alg(z,$),
and if Empty=struc.Defn(S) then x=2, else Last-element.Defn(S,x).
Quicks A (S,x) xsLast-element.Algs(S).
Domain/range: <Ordered=structure = Anything>
Algorithms:
Recursive: A (S) z«First-slement.Alg(S), and S+Delete Aig(z,S),
and if Empty=struc.Defn(S) then z, eise Last-element.Alg(S).
Nonrecursive quick opaque: A (S) CAR(LAST(S)).
Isa's: Operation
Worth: 100

Whats find thz %ial member of the ordered structure $.3°

29 The expression First Alg(Ax) will result in » RPLACA: the first element of A will be removed, and in its place x will
sppear. Thus First Alg(<a b ¢ d>, ) will return as its valus the new iist <z b ¢ d>.

0 Actually, this concept is much more sophisticeted. If Last-slementAlgs is called with TWO asrguments, S and v, then the
intention is tsken to be to REPLACE the last element of S by the elemsnt v. Thus that last element is
deleted, and v is added st the end of S. This is done by: FRPLACA(LAST(S),v}. To review: Last-

slementAlg(A,x) resets the final member of A o x, while Last-element Defn(A,x) merely tests whether the
last member of A is x.

' -_4-0-':;;-6‘\_"5{:;' I B R T T N




AR SRR Rl B ST R Sl GBS A S Y, |

Appendix 2 AM Discovary in Mathematics as Heuristic Search -201-

Appendix 2.1.47 First-element

Name(s): First-element, Initisl member, Head, Front element, CAR.
Definitions:
Recursive: A (S,x) z+-Last-element.Alg(S}, and S+Delete.Alg(2,S),
and if Empty=struc.Defn(S) then xsz, else First-element.Defn(S,x).
Quicks A (S,x) x=First~eloment. Aigs(S),
Domain/range: <Ordered=structure = Anything>
Algorithms:
Racursives A (S) z=Last=element. Alg(S), and S+-Delete.Alg(2,S),
and if Emply=struc.Defn(S) then 2, else First-element. Alg(S).
Nonrecursive, very quick, opague: A (S) CAR(S).
Isa's: Operation
Worth: 100
What find the initisl member of the ordered structure $.5!

Appendix 2.1.48 All-but-the-first-elemen

Name(s): Rear, All but the first element, All-but=first, COR, Tail, sometimes: back.
Definitions:
Nonrocursive: A (S,R) List-delete.Defn(CAR(S),S,R).
Nonrecursive: A (S,R) List-insert.Defn(CAR(S),R,S).
Nonrecu:sive: A (S,R) CDR(S)sR,
Quick: A (S,R) R=Rear.Algs(S).
Domain/range: <Ordered-structure = Ordered-structure>
Aigorithms:
Nonrecursive, very quick, opaques A (S) CDR(S)
Nonrecursive: A (S) z-Firsi=ele.Aig(S); List-delete.Algs(z,S).
isa's: Operation
Worth: 100
What: remove the initial member of the ordered structure S.

3 Actusily, this operstion’s aigorithm, if fed two arguments S and v, will replace the first element of S by v, using
FRPLACA(S,v). So this single concept contsins both CAR and FRPLACA knowledge. This is not shown
sxpliitly in the entries for First-slementAigs.

..........
D e e S I S e LAY

.
......




" et
.....

Appendix 2 AM Discovary in Mathematics as Heuristic Search -202-

endix 2.1.49 All-but-the-last-eleme

Name(s): Ali-but-the-last-element, All-but-last, sometimes: front.
Definitions:
Quicks A (S,R) RsAll=but-lastAlgs(S).
Domain/range: <Ordered-structure — Ordered-structure>
Algorithms:
Nonrecursive, very quick, opaque: A (S) FRPLACD{LAST(S),NIL).
isa’s: Operation
Worth: 100
What: remove the final element {from the ordered structure S.

Appendix 2.1.50 Member

Name(s): Some-element, Random member, Any element of, Member, In, Some=membaer.
Definitions:
Recursive: X (x,5) Nonempty=-struc.Defn(S) and
if First-ele.Defn(S,x) then True,
else Member.Defn(x,All-but~first-ele.Alg(S)).
Nonrecursive quick opaque: A (x,5) MEMBER(x,S)).
Sufficient, very quick, opaque: A (x,S) FMEMB(x,$)}.
Quicks A (S,x) xsMember.Algs(S).
Domain/range: <Structure = Anything>
Algorithms:
Nonrecursive opaque: A (S) CAR(RAND-PERMUTE(S)).
Nonrecursive quick opaque: X (S) CAR(S)).
Recursive slow: if S is empty then fail, otherwise if S=(x) then x,
alsa if RAND(0,1)=1 then First=ele.Alg(S),
eise Member.Alg(All=but-last.Alg(S)).
isa's: Operastion
Worth: 100
What: find a random member of the structure S.

» - v
.....




T T T N T T TR R TR R TR IO TN U S T TR TR T SR R TR IO EARAATATAE LI

Appendix 2 AM Diecovery in Mathematics as Heuristic Search -203-

Appendix 2.1.51 Projection]

Name(s): Projectionl, First~argument, Projl.
Definitions:

Nonrscursive quicks A (x,y,..,2) 2=x

Quicks A (x,y,...q,2) 2xSome=-element. Algs(x,y,..q).
Domain/range: <+D Anything..Anything = 'D» 82
Algorithms:

Nonrecursive quick: A (x,y,..q) x.
Isa's: Operation
Specializations: identity.
Worth: 100
V/hat: accept a bunch of arguments and return the first one.

Appendix 2.1.52 Projection2

Name(s): Projection2, Second-argument, Proj2.
Definitions:

Nonrecursive quick: A (X,y,.,2) 29y

Quick: A (x,y,..q,2) 2=Some=element.Algs(x,y,..q).
Domain/range: <Anything «D Anything..Anything = ‘D"
Algorithms:

Nonrecursive quick: A (x,y,..,q) ¥.
Isa's: Operation
Specializations: identity.
Worth: 200
What: accept a bunch of arguments and return the second one.

& —

ol

-ty

aho
. H
1Y R

P )
LI}

“
Pl 3

., “,‘ »

g
Y

ki
-l

ToAL L
wr .

LR

32 This means that 'D* ¢can be anything, so long s it's the same in both pleces in the domsin/range templste. Thus this
inchudes <Sets Anything Anything «+ Sets>.

bl L
1_"1. RAAY

¥

b A
el

Ao i
e

..........
.............

' (4
“
.
'
5
1
.
.
K
x
.
¥
.
L3
.
J -
»
N
N
3
'i
||
:
N
v
*a
.
«
.
by
'
.
.
t
“u
y
.
y
v
.
N
«
'
N

........
...............




PETe e R R W W LT TR TN TR TR T T AT T TR TR T PO TS TR TR T

=
N
' Appendix 2 AM Discovary in Mathematics as Heuristic Search -204-
Appendix 2.1.53 Identity
: Name(s): Identity, identity-operation, no=op, Self, no change.
[ Definitions:
Nonrecursive: A (x,y) Equality.Defn{x,y)
. Nonrecursive transform: A (x,y) Projl.Defn(x,x,y)
o Nonrecursive transform: A (x,y) Proj2.Defn{x.,y)
Sufficient, vary quick, opaque: X (x,y) EQ{x,y)).
. Quicks A (x,y7 ysidentity. Algs(x).
= Domain/range: <Anything = Anything>
i <Object = Object>
- - ¢Structures = Structures>
7{:.: <Active < Actlive>
- Algorithms:
. Nonrecursive quicks A (x} x.
g:f Nonrecursive transforms: A (x) Projection].Aigs(x,x).
i Nonrecursive transform: A (x) Projection2.Algs(x,x).
) Conjec: ‘Identity, restricted to Objects, is the same as Obj-Equality.’
Generalizations: Projection], Projection2.
NS Worth: 100
What: the identity operation, closely related to Equality.

Appendix 2.1.54 Restrict

£ Name(s): Restrict, Constrain the domain/range of an active.
Definitions:

Nonrecursive: A (F,G) The domain/range of G are more restrictive®3
than that of F, and G.Defn is just a call on F.Defn,
Sufficient, Quicks X (F,G) GuRestrict. Algs(F).
Domain/range: <Active ~» Actived
<Operation = Operation)
<Predicate ~» Predicate’

Y
o
Faal |

-
[

Algorithms:
Distributed: use the heuristics attached to Restrict to guide the filling
in of various facets of the new Restricted concept.
Plus: an explicit little program for making the subctitution
in the Domain/range facet, which is the essence of this concopt.

i
v

f

v

o

w,
L
.

Isa's: Operation
Worth: 200
Fillins 3 heuristics.

33 That s, one (or more) component of the G.Domain/range entry is a proper specislization of the corresponding F.Dom/ran
{- entry, and ail the other components match up equally.

-----------




Appendix 2 AM  Discovery in Mathematics ss Heuristic Search -205-

Appendix 2.1.55 Invert-an-operation

Name(s): Invert, Find the inverse of an operation.
Definitions:
Declarative slow: A (F,G) The domain of G is the range of F, plus &l the
domain components of F except one, D; the range of G is then D.
The value of G.Defn{xl,...,r,.,d) must be the same as the value
the value of F.Defn{xl1,..d,.,r), for any xl1,..d, and r.
Necessary, quick: A (F,G) The length of each Domain/range entry for
F is the same as the length of each eniry on G.Dom/range.
Necessary, quick: X (F,G) Taken as SETS, a domain/range entry from F
and one from G are actually Equal.
Sufficient quick: X (F,G) G has the Name 'F~inverse'.
Quicks A (F,G) Gsinvert.Algs(F).
Domain/range: <Operation = Operation>
<Operation - inverted-op>
Algorithms:
Distributed: use the heuristics attached fo invert to guide the filling
! in of various facets of the new Inverted goncept.
Isa's: Operation
Worth: 300
Fillin: 1 heuristic.
Suggest: | heuristic.

Appendix 2.1.56 Inverted-o

Name(s): Inverted operation,inverse, sometimes: converse.

Definitions:
Declarative slow: A (F) For some known operation G, Invert.Defn(G,F).
Necessary, quick: A (F) The range of F is one single known concept.
Sufficient quick: A (F) F has the Name ‘G-inverse’ for some G.

Generalizations: Operation

In-domain=of: invert.3*

In-range-of: invert

Worth: 200

34 This just means that such opsrations sre themseives easily invertable.

........




i k4 !'.l

Appendix 2 AM  Discovery in Mathematics as Hautistic Search

.

Appendix 2.1.57 RQhejat1

-206-

Name(s): Relation, relationship.

Definitions: none,

Generalizations: Actlive

Specializations: Logical-combination

Worth: 100

View: To view an operation F ac a relation, consider it as the set of all ordered
pairs, a subset of Dom(F)xRan(F), containing <x,y> iff F.Defn{x,y).

NOTE: This concept exists in only rudimentary foriz in AM at the moment.

Appendix 2.1.58 Logical-combination

Name(s): Logical Combination, Boclean relation.

Definitions: none.

Generaslizations: Relation.

Examples: Conjoin, Disjoin, Imply, Nogat035

Worth: 200

Chack: | heuristic

Interest: 3 heuristics

Sugg: 2 heuristi-«

NOTE: This cons.pt exists in only rudimentary form in AM at the moment,

.........

35 These aren't coded separstely s concepts in AM, yet.

AR e m e m [ P N I I A R I N A S .
L N I.M'-"-).'\v-'v.u’.-f.i\’ R N N N P T A Y

- .
Y

o oy e L e L ".’




CRPCR N fe R SHCA-RP IO i ) Ehrie® bl ™% i S Vit PRCID SRR ) iy b T i iy N, PR, 54 Ll N T g i e B e v v Bt i B B G i e B St Ke e L S il Gl Ve Rl i B il e A S S T
W
&5
LN
A \-\'
v , M : . .
i+, Appendix 2 AM  Discovery in Mathematics as Heuristic Search -207-

Appendix 2.1.59 jec

Name(s): Object, static concept, Passiva
| Definitions: none.3° |
Specializations: Structure, Atom=obj, Conjectur037
Generalizations: Any-concept

Examples: none.

Isa's: Any-concept

In-domain-of: Object-equality

Worth: 100

{No heuristics)°®

Appendix 2.1.60 Conjecture

Name(s): Conjecture, Conjec, Hypothesis, Guess, Observation, Thesis, Belief.
Definitions:

Nonrecursive, Quick: A (x) Mzich x with <CCONJEC: ..>
Generalizations: Object
In-domain-of: Provosg, Disprove, Tasi l
In-rangu-ci: none°, :
Worth: 200,

36 Recall that all this means is that computationally, sny entily x is considered to be an Object iff it is an example of soms
Specialization of this concept Thus the iist (3 A NIL) is an object, because it is » List, snd List is one
Specialization of Structure, ard Structure is 3 Specislization of Object.

37 This should be ‘Statement’, and that concept should have Conjecture as » specialization, along with Theorem, Falsehood,

etc. This was never fully implemented in the AM code, however

B 38 The paucity of heuristics hers attests to the little that structures, statements, and atoms have in common. They are
£ merely non-sctives. There is much that does not apply to any of them (ses the Active and Operation
EN concepte), but very few rulss of thumb spplicsbls to all 3 of them.
=% -
;{;_‘:—_ 33 at the moment, none of these three concepts is in AM.
‘:‘.: 4 Conjsctures are procuced by heuristic rules, not mechanically by running some Active concept.
S ™ 4 -
9

ol

b

N

e

71
L]

v

]
y
. ¥
r
T
"
h'
K
v
»
.
'
'
B
v
f
s
A
T
¥




T TR T TN NI NN OWY WU I VITU R W NS TV IR LS S i - i I TN [ O T Y T R WL PO g W YA O G AT T U R U LWL

Appendix 2 AM  Discovary in Mathematics as Heuristic Search -208-

Appendix 2.1.61 Ato

2 Name(s): Alom, Atomic object, sometimes: element,
. Definitions:

Nonrecursive, Quick, Opaque: A (x) ATOM(x)
Specializations: Truth-valus, Variable?!, Identifier.
Generalizations: Object
In-domain=of: UNPACK; NthCHAR
In-range-of: MKATTOM, PACK;

View: To view any structuire S as an atom, apply PACK to it.
Worth: 100. 92

Appendix 2.1.62 IIHIh"Xﬂth

Name(s): Truth value, Logical constant, T/F, {T,F}.

Definitions: none. 3

, Examples: True (T,Y,Yes), False (NIL,F,N,No).

Generalizations: Atom=obj

In~domain-of: Negation
In=range-of: all predicates; the Defn facet of each concept.

é View: to view anything x as a truth value, do: A (x) NOT(Equallty.Doin(x,NlL)).‘“
Worth: 100,

T

3

—

4l Many of the nouns in this box are not implemented as concepts in AM; e g, Varisble, identifier, UNPACK, MKATOM,.. o

42 Tha sbeence of any hauristice here just emphasizes the fact that liters! constants, identifiers, variables, 7, stc. have very
little in common that ALL objects don't share.

43 Since no definition is provided, AM never generalized or specislized this concept, looked for new exsmples of it, stc. H
44 Thus, as in Lisp itself, sn entity is sssocisted with Falas iff it is noll, and with True iff it is anything else in the world,

oo 7

T
w

o, :3\.! N x\."..‘»-l.;;\. ﬂ:’ﬁ; : »

x..a"\ ™




o g ar st sl g SRR A A g R iy~ G s LR . TR oo ¥ it Sl TRl R Sl 4 R o 42 ok U Bl S AR M R B e B R S RS S
ERNY

Appendix 2 AW Discovary in Mathematics as Heuristic Saarch ~209-

Anpendix 2.1.63 Structure

-

Name(s): Structure, Data=si..- wre, sometimes: 5 List=structure.
Definitions:
Necessary, Non=Recursive, Quick, Opague: \ (x) LISTP(x)
Specializations: Ord=-struc, Unord=struc, Empty-struc, Non-empty=-struc,
Multiple-slements=struc, No-multiple-olements=struc, Struc-of=strucs.
Generalizations: Object
In=domain=-of: insert, Delete, Mamber, Empty, Nonemply, Difference, Union, Intersect,
Parallel-replace(2), Parallel-join(2), Repeat{2).
In-range-of: Insert, Delete, Difference, Union, intersect.
View: To view any entity x as & structure, insert x into an empty structure.
Worth: 200
Fillins 2 heuristics.
Interest: 2 heuristics

Appendix 2.1.64 Structure-of-Structure

Name(s): Structure-of-structures, struc-of-strucs.
Definitions:
Recursive: X ($) Empty=-struc.Defn{S) or
[Structure.Defn(S) and z+Member.Alg(S) and Structure.Defn(z) and
Structure-of=Structures.Defn(Delete.Algs(z,5))).
Declarative PC: A (S) Structure.Defn(S) and (Vx¢S) Structure.Defn(x).
Specializations: none. %

Generalizations: Structure
Worth: 300

a5 That is, the user might srroneously type ‘List-structure’ when he really means any kind of structure.

46 AM specialized this by replacing esch of the two calls on ‘Structure Defn’ inside Struc-of-strucs.Defn by & call on the
definition of a single type of structure, thereby creating, ¢ g, Bag-of-Sets, List-of-Osets, Bag-of-Primes,
etc. Thess specishized concepts were then kept sround so, e.g, the sample traces in Chapter 6 and in
Appendix 5 sometimes refer to them. Also, this concept and s specislizations can be discovered
indepsndently by AM, using heuristic rule number 232 (ses Appendix 3) to form a new interesting type of
structure.

')
‘

W

Al S SR 20 O il
T

s G
IR L S D]

T

‘“]a;"

bl
-
!




Ip—n;.’ S R R e AT AU o A AU 2R AR RS SRR A R L Rl B o B S 00 i W & S ) Tl by B Fa &S ¥ 5y Ep LSl DAL S S S 75 S e i SV bk S STk el 0 D Cah Nl Sl R

Appendix 2 AM  Ducovery in Mathematics as Heuristic Search -210-
3 Appendix 2.1. =Jtructur
1 {::: Name(s): Ord=struc, Ordered Siructure, sometimes: List-structure.
L Dsfinitions: none
] Specializations: Osels, Lists
] F Generalizations: Structure
‘;', In-domain~of: First-ele, Lasi-ele, All-but-first-ele, All=but-last-ale.
Inrange=-of: Ali-but-first=ele, All=but=last-ele.
L View: To view any unord-struc as an ord=struc, do nothing to it, or permute it.
i Worth: 200
) Fillin: 2 heuristics.
- Check: 2 heuristics.
: % Interests 1 heuristic
@ Appendix 2.1.66 Unord-Str e

- Name(s): Unord=struc, Unordered Structure, sometimes: Collection
Definitions: none

Specializations: Sets, Bags.

: Generalizations: Structure

L " View: To view any ordered=siruc as an unord-struc, SORT it.
Worth: 200

Check: 1 heuristic.

————_ o
P
e

Appendix 2.1.67 Multiple-elements-structure

p Name(s): Multiple-elements=structure, Mult-ele~-struc, sometimes: Lists.
Definitions: none

’l::} Specializations: Liuts, Bags

e Generalizations: 5tructure
In-domain=of: nene.d’

I!_Z View: To view «uny nonmuit=struc as a muit=struc, do nothing fo it,

£ or: copy some elements inside it a random number of times.
Worth: 200

F" Fillin: 1 heuristic.

fun

e

[

a7 There are many specis! functions which ¢an only make sense for multiple-sles structures, e g, Remove-1-occurrence(x,S),
versus Remove-all-occurrances(x,S). Such operations have not yet been coded and sdded to AM.

JE—
TV




ol %A IR 3 e fn e D et Bt i S K g il A S AN A el

Appendix 2 AM Discovery in Mathematics as Heuristic Search -211-

Appendix 2.1.68 No-multiple-elements-structure

Namae(s): No-Multiple-elements-structure, Nonmuit=strue, sometimes: Sets.
Definitions: none

Specializations: Sets, Ordered-sets

Generalizations: Structure

View: To view any mult-struc as a nonmult-struc, eliminate muitiple elements.
Worth: 200

Appendix 2.i.69 Empty-ctructure

Name(s): Empty=-structure, Empty struc, sometimes: phi, NIL.
Definitiuns:

Nonrecursive quick opaques A {x) NULL(x)

Nonrecursive: A (x) Structure.Defn(x) and NOT(Member.Alg(x)).
Generalizationss Structure
View: To view any structure as an empty=structure, repeatedly spply Delete.
Worth: 100

Appendix 2.1.70 Nonempty-structure

Name(s): Nonemply=structure, Nonempty struc, sometimes: structure
Definitions:

Nonrecursive quick opaque: A (x) LISTP(x)

Nonrecursive: X (x) NOT(NOT(Member.Alg(x))).
Generalizations: Structure
Inerange=-of: Insert
View: To view any structure as an Nonempty=structure, Insert it into itseif.
Worih: 100




Appendix 2 AM Discovary in Mathematics as Heuristic Search -212-

endix 2.1.71 &€

Name(s): Set, Class, Collection

Definitions: 48

Recursive: A (S) (S={} or Set.Definition (Set-Delete.Alg(Member.Alg(S),S)))

Recursive quick: A (S) (S={} or Set.Definition (CDR(S)))

Quick: A (S) (Mateh S with {..} )
Intuitions: none at prc:ont.“
Specializations: Set-of-structures™®
Generalizations: Unordered-Siruclure, No-multiple-elements=Structure
In-domain=of: Set-union, Set-intersect, Set-difierence, Set-insert, Set=-delole
In~range-of: Set-union, Set-intersect, Set-difference, Set-insert, Set~delete
View: To view any structure as a Set, do: A (x) Enclose=in-braces(x)

To view any predicate as a Set, do: A (P) S«{}.

Forall x in Examples(Domain(P)): if P(x) then Set-insert.Aig(x,S).

Worth: 400
Sugg: | hauristic.
interest: | heuristic.

Appendix 2.1.72 Ba

Name(s): Bag, sometimes: Multise!, sometimes: Collaction.
Definitions:
Recursive: X (S) (S=( ) or Bag.Definition(Bag~delete.Alg(Member.Aig(S),S)))
Recursive quick: A\ (S) (S=( ) or Bag.Definition (CDR(S)))
Quicks A (S) (Mateh S with (..) )
Specializations: Bag-of-structures®?
Generalizations: Unordered=Structurs, Multiple=elements=Structure
Worth: 400
in-domain-of: Bag-union, Bag~intursect, Bag-differance, Bag-insert, Bag-delete
In=range-of: Bag-union, Bag~intersect, Bag~difference, Bag-insort, Bag-delete
] View: To view any structure as a Bag, do: A (x) Enclose=in-parens(x)

a3 A surprising idea, which fell out naturally while designing the aniries for the definition facets of Sets, Bags, etc,, is that
the differences between these structures is not in their definition 80 much as in the particular operators
which work on them. Thus all 4 kinds of structures sppesr 10 have syntactically similsr concepts, sven
including their definitions. The resder must exsmine, eg., the definition of Bag-insert and Set-insert to
discover the real differences betwesn the Set and Bag structures which AM knows about.

49 Several nice intuitions ware originally provided, then scrapped when ALL intuitions were excised from AM.
% This concept was synthesizad by AM, but was then left ‘permanently’ in place.




= ;E.g:' q" l.,‘. r;'_"’:rn:f,"iw‘ 'J I‘ o
LI R UL

Pt

Appendix 2 AM  Discovary in Mathematics as Heuristic Search

Appendix 2.1.78 L1

-213-

Name(s): List, List=structure, Vector, Tuple, n-tuple, Sequence, Ordered=bag
Definitions:
Recursive: A (S) (Sx< > or List.Definition(List-Delete.Alg(Membs-.Alg($),S)))
Recursive quick: A (S) (Ss< > or List.Definition (CDR(S)))
Quicks A (S) (Match S with ¢.> )
Generalizations: Ordered=-Structure, Multiple=elements=-Structure
Specializations: Ordered-pairs
Worth: 400
In=domain~of: List-union, Lisi~intersect, List~diffsrance, List-insert, List-delete.?!
In-range=of: List=union, List=intersect, List-difference, List=insert, List-delete
View: To view any structura as a List, do: A (x) Enclose=in-angle=-brackets(x)

Appendix 2.1.7 rdered-pairs

Name(s): Ord-pair, Opair, Ordered pair, 2-tuple, sometimes: i/s pair, pair.
Definitions:
Declarative: X (S) There exist x snd y such that S=<x,y>.
Nonrecursive opaque: List.Definition (S) and CDR(S) and Null{CDDR(S)).
Nonrecursive siows A (S) List.Definition(S), and SO, snd z«Member.Alg(S),
and SeList=delete.Alg(z,S), and S4<>, and y~Member.Alg(S),
and List-delete.Defnly,$,®). -
Nonresursive quicks A (S) (Match S with ¢ex,«y> )
Generalizetions: Lists
Worth: 200
in-domain-of: Reverse=-ord-pair
In-range-of: Reverse-ord-pair
View: To view any entily x ss an ordered pair, consider the pair <x,x>.
View: To view an example of an active concept F as an ord=pair, construct the
peir whose first element is a list of the arguments to F
[or: THE argument to F, if there is only one), and whose
second element is the value of F on those arg(s).
View: To view an {ordered) structure S as an Opair, consider the pair whose
first element is some member of (the first member of) S, and
whose second slement is all the remaining members of S.
View: Transform the ordered structure (a b..c) into the Opair (a b) or (a ¢).

51 There are many special functions which car, enly make sense for lists, « _, this one: 'Between(x,5)" which raturns s list of

sll alemente lying sfter ihe first occurrence of x in S, but before the second occurrance. Such eperations

nave not yet been coded and sdded to AM.




e AP e E AR AN S S AT G SR RIS RS SUS ATE o8 SUF S I AL A S Al € L g S a¥ Al Q¥ S ¥ Real d fok 6o AR Br 2 S SNt Su i i Bat o R b 00 Bas b it Tp i liav B ati ]

Appendix 2 AM Discovery in Mathematics as Heuristic Search -214-

Appendix 2.1.75 e

Name(s): Oset, Oset-siructure, Ordered-set, sometimes: Set.
Definitions:
Recursive: A (S) (S=[ ] or Oset.Definition(Oset=Delete.Alg(Member.Alg(S),S)))
L Recursive quick: A (S) {S=[ ] or Oset.Definition (CDR(S)))
E Quick: X (S) (Match § with [..] )

Generalizations: Ordered-Structure, No~muitiple-elements=Structure

e i

] Worth: 400

< In=domain=of: Oset=union, Oset-intersact, Oset-differance, Oset-insert, Oset-delete
3 In=range-of: Oset-union, Oset-intersect, Oset-difference, Oset=insert, Oset-delete
View: To view any struciure as a Oset, do: X (x) Enclose=-in=square=-brackets(x)

Appendix 2.2. Concepts never fully implemented

The following concepts were designed "on paper” before AM was coded, but were never put
into AM — at least not fully. Future work on AM may include their coding, insertion into
AM, and debugging. An asterisk () means that a crude, rudimentary version of the
concept was coded and placed in AM, but had little impact on its behavior.

Statement:: would inciude con jectures, theorems, axioms, hypotheses, conclusions,
relationships.

Prove, Disprove, Proof, Counterexample, Theorem, Techniques for proving existence,
Techniques for establishing universal conjectures,..: altogether about two dozen
concepts were designed.

Mathematical Induction, including double induction.

Mathematical theory, system, basis, foundation, axiom, isomorphism,...

. Cause and effect: their relation to theory formation.

Variable, Assignment, Binding, Quantification, Scope,..: a dozen concepts along these lines.

Constant, Identifier, PNAME/P2NAME,..: AM never really needed any non-opaque
] information about these, although future expansion of the system should probably
3 include the coding and insertion of these concepts.

Inverse-coalesce: Given an active concept F(x), replace some occurrences of x in F.Defn
by "y", thereby making a new operation which is a function of x and y.

P

ﬁ;’

-

o Negate, Conjoin, Disjoin, Imply,.: These logical operators and relationships had too little
3 semantic information to make 1t necessary to encode each one into a concept.

L

. () Constructive, Destructive: these two predicates would judge any operation.

ERS

- e THENTERSE LN T e T Tatat o™ SV R L T LT “ DR AT

. YA ?‘ ---- A W1 ol RN S e B
e . - ,;Z-%ﬁ-;;,x”-‘\; ‘.‘ \‘-‘"\*T.. _",,\ ENIORR N »:' e _s\ ‘, 2 S.s WA

-t - - - S, » P

_\-x: LS
st . [ » -,.. L . "o
PR P o R AL L3 ot ] T -l




Appendix 2 AM  Discovary in Mathematics as Heuristic Search -215-

() Non-concept: All entities which are not concepts. There was nothing to say about them, as
a whole.




a

Appendix 2 AM Discovery in Mathematics as Heuristic Search 216~

Appendix 2.3._Concepts and Heuristics as coded in LISP

The reader may wish to inspect the actual LISP encoding of concepts and their facets —
including heuristic rules. For that reason, a few pages are excerpted from the AM program
and shown below.

The facets of a concept are stored as properties on its property list. Each facet has a rigid
format that it must adhere to; that format varies from facet to facet.

Two concepts have been selected: Compose, which is larger than the typical concept, and
Oset-structure, which is a smaller and simpler concept.

Appendix 2.3.1. The ‘Compaose’ Concept

Here is the property list of the atom "COMPOSE", when AM starts up. The reader should
look for (and find!) parallels between the complete entries below and the abbreviated
summaries on page 178. For that reason, after each entry, the corresponding summary line
is repeated (in a box).

EINGIN52 (COMPOSE Compose Composition (Afterwards))

Appearance on page 178:

Name(s): Compose, Composition, sometimes: afterwards;

DEFN (TYPE NEC&SUFF PC DECLARATIVE SLOW (FOREACH X IN (DOMAIN BA2)

RETURN (APPLYB53 BA1 ALGS (APPLYB BA2 ALGS X)
DEFN-SUFF [[TYPE SUFFICIENT NONRECURSIVE QUICK
(AND (ISA BA1 *ACTIVE)
(ISA BA2 *ACTIVE)
(ISA BA3 *ACTIVE)

(ARE-EQUIV BA3 (ALREADY-COMPOSED® BA1 BA2]
[TYPE SUFFICIENT QUASIRECURSIVE SLOW (ARE-EQUIV BA3
(APPLYB "COMPOSE ALGS BA1 BA2)%8
(TYPE SUFFICIENT QUASIRECURSIVE QUICK (EQUAL BA3
(APPLYB 'COMPOSE °ALGS BA1 BA2]]

Appearance on page 178:

52 This is short for "English name”, and is the facet called "Name(s)" averywhere else in this thesis.

53 The function "APPLYB" indicates that a concept's facet is 1o be accessed and then exscuted (APPLYB C F x y..) means:

sccese an entry on facet F of concept C, and then run it on the arguments x,y,..

54 This LISP function checks 10 see whether the two operations have been composed before.

55 The arguments to Compose.Defn (and to ComposeAlgs as well) are called BA1, BA2,. Thus we would write each
definition of Compose as ") (BAl BA2 BA3) ."

<
L T e T

FUVARARAY

Sy gy e v go

O

P v

[



S - [ T~ T T T = < T T T T } ol i aa i o g i talils o ARV St BAw |
W‘l—}“&l’\-’?\?‘-ffiﬁ”‘:r“f'f“."‘(."v"\“‘f'-':"'.»\"‘(f,‘,‘f‘:‘. PR O 0 1 W P U B A S e e il i AR AT s A R ISat o p F gl Anat QIR o okl il S S Rt
ALt

NS
W

Appendix 2 AM Discovery in Mathematics as Heuristic Search . -217-

Definitions:
Declarative slows A (A,B,C) Vx, C(x)=A(B(x).
Sufficient Nonrecursive Quick: A (A,B,C) C has the Name ‘AcB’.
Sufficient, Slow: Are-equivalent(C,Compose.Algs(A,B)).
Sufficient, Quick:s CsCompose.Algs(A,B).

D-R ((OPERATION ACTIVE OPERATION)
(RELATION RELATION RELATION)
(PREDICATE ACTIVE PREDICATE)
(ACTIVE ACTIVE ACTIVE))

FILLINL (PROGN (ARGS-ASA COMPOSE F1 F2) (CADAR (CON-MERGE-ARGSS® F1 F2)))
D-R-FILLINI [PROGN (ARGS-ASA COMPOSE F1 F2)
[SETQ RANI (LAST (ANY1OF (GETB F1 'D-R] (* RANI is the range of F1)
[SETQ DOM] (ALL-BUT-LAST (ANY1OF (GETB F1 'D-R]
[SETQ RAN2 (LAST (ANY1OF (GETB F2 'D-R] (x RAN2 is the range of F2)
[SETQ DOM2 (ALL-BUT-LAST (ANY1OF (GETB F2 'D-R]
[SETQ X (MAXIMAL RAN2 DOM] 'FRAC-OVERLAP)
(NCONC! (LSUBST DOM2 for X in DOM1) RAN1)

7
0
1

m
>3
!

Appearance on page 178:

Domain/range: <Active Active = Active>
<Operation Active = Qperation>
{Predicate Active - Pradicate>
<Relation Relation = Relation>
Fillins 2 (out of a total of 9) heuristics.
In Appendix 3, these are heuristics numbers 175 and 176.

ALGS ((TYPE QUASIRECURSIVE INDIRECT CASES [PROGN

(COND
((NULL BAIl)
(APPLYB 'COMPOSE
. 'ALGS
o (RAND-MEMB (EXS®7 ACTIVE))
S BA2 BA3 BA4))®®
-
L~
L
9 56
ACH This is a LISP function, opaque to AM, which analyzes the Domain/range facets of the two operations F} and F2, snd
NN sees how (if at all) the range of Fi can be made to overlap the domain of F2. Note that F2 is applied
v AFTER F1. The LISP ccds for this function is presented on page 221.
o Y n
..:{"._“» 57 The function "EXS” ripples outward from its srgument, collecting examples as it goss.
;»:“:-: 58 Note what this clause says: if ComposeAlgs is ever called with its first argument missing, randomly select an Active to
fl:;"-‘% use as that constituent of the composition.

.- . - . e I T
R L R N T S R S N L. _{f‘,,gfh'f,\:’:-\"{‘\,“’ ARV ‘\*.
L e e e L R T LR i S L AN S LA AR WL AR

a s . A




m“:‘(':"u"«‘\?fi:{’7“.“'“’.‘"‘:‘\"{“’:"{ [ R R A e L Ir G I Lt B0 AV o G S A g s~ Wt o R AV v e NS WML (R RS R R g I TR U IR R WSV

P e Py s TR

Appendix 2 AM Discovery in Mathematics as Heuristic Search -218-

Pl

859
((ALREADY-COMPOSED BA1 BA2) (# Note: this sets GTEMP12) GTEMP12)
((AND BA1 BA2 (IS-CON®® BA1) !
(IS-CON BA2) .
(ISA BAl "ACTIVE)
(ISA BA2 "ACTIVE)
{SETQ GTEMP11 (CON-MERGE-ARGS BAl BA2 GTEMP12)))
(* GTEMP12 is now the name of the new composition)
(CREATEB®! GTEMP12)
[SETQ GUP1 (COND ((ISAG CS-B 'COMPOSE) CS-B) (T "COMPOSE]
(x GUP1 is now the KIND of concept which GTEMP12 is to be an exampls of.
This will usually be "COMPOSE" or some variant of it. )

[INCRB®? GTEMP12 "DEFN
(LIST 'TYPE 'APPLICATION '0F GUP1

(APPEND (LIST *APPLYB (Q% COMPOSE) (Q ALGS) (KWOTE BA1) (KWOTE BA2))
(FIRSTN (LENGTH (CAAR GTEMP11)) BA-LIST)
(+ Another way to fill in an entry for GTEMP]12.Defn)
(COND
([SETQ GTEMP308 (CAR (SOME (EXS COMPOSE)
(FUNCTION (LAMBDA (C)
(MEMBER (LASTELE (GETB GTEMP12 *DEFN))
(GETB (LASTELE C) DEFN)
(FORGET-CONCEPT GTEMP12)

(CPRINIS 8 GTEMP12 turned out to be equivalent to GTEMP308 DCR)®?
GTEMP308)
(T (INCRB GUP1 EXS (NCONC! (GEARGS GUP1) GTEMP12))
[SOME (RIPPLE GUP] "GENL)
(FUNCTION (LAMBDA (G)
(SOME (GETB G 'D-R)
(FUNCTION (LAMBDA (D)
(AND (ISA BA1 (CAR D))
(ISA BA2 (CADR D))
(INCRB GTEMP12 *UP®® (CADDR D))
(INCRB (CADDR D) ’EXS GTEMP12]
(+ This last INCRB says that if an operation f maps onto range C,
and we apply f and get a new Being, then that Being ISA o)t
(INCRB GTEMP12 "IN-RAN-OF GUP1)
(INCRB BA2 "IN-DOM-OF GUP1)

L]

e ik VIR

oo b Y R, e

LT RER RN IR N i e e il SNAAP AT STl

59 Similsr to last case. takes care of missing second argument. The ampersand, "&", indicates an omission érom this listing.
60 An sbbreviation for (APPLYB 'ANY-CONCEPT 'DEFN BA1); ie, test whether BAl is a bons fide concept or not.

6 CREATEB is a function which ssts up & new blank dats structurs for a new concept,

62 The function cali (INCRB C F X) means: add entry X to the F facet of concept C.

63 The LISP function "Q" is like a doubls quots; after one evaluation (Q X) returns 'X; after one more evaluation, 'X returns
X; after a final avaluation, we get the VALUE of X.

64 A conditions! print statement. If the verbosity level is high enough (>8), this message is typed out to the user. Note the
intermixing of varisbles (e¢g., "GTEMP308") and undefined atoms (e.g, "squivsient”). CPRINIS examines
sach srgument, and if it is undefined, it quotes it.

IR TOPL T T i T skt 57 R AT EM B

¥ I""

v

4
65 The ISA’s facet is called "UP" in the LISP program. >
66 This is » streamlined, spacialized version of the more general heuristic rule number 154; see page 259. ;*
-
!T
il
»
.L
j o
H e




T WU I TR SR T ST W ST ALY R T R T R T T S Y T TR Ll b ooy nabivad ek i ek R T3S b S Lo apls sk, And B ST el el N B vp LAMEL TRl ED S SHE SR B |

4

Appendix 2 AM Discovary in Mathematics 2s Heuristic Search -219-

(INCRB BA1 "IN-DOM-OF GUP1)
(x Now see if the composition GTEMP12 shares any ISA’s entries with

either constituent operation: BA1 or BA2)%
[MAPC [INTERSECTION (SET-DIFF [UNION (GETB BA1 *UP) (GETB BA2 'UP] .
(GETB GTEMP17? "UP]
(FUNCTION (LAMBDA (2)
(COND
((DEFN Z GTEMP12)
(INCRB Z 'EXS GTEMP12)
(INCRB GTEMP12 *UP Z]
(COND

[(GETB GTEMP12 'UP)
(SETB GTEMP12 '"GUP (COPY (GETB GTEMP12 °UP]
(T (INCRB GTEMP12 "UP 'OPERATION)
(INCRB "OPERATION 'EXS GTEMP12)))
& (+ A similar search now for GENL/SPEC of the composition)
(SETB GTEMP12 'D-R (CAR GTEMP11))
{INCRB GTEMP! 2 ALGS
(LIST *TYPE "NONRECURSIVE *APPLICATION *OF GUP1 (CADR GTEMP11))
& (¢ Code for synthesizing a Defn entry for GTEMP12)
{SETB QTEMP12 '"WORTH
(MAP2CAR (GETB BAl "WORTH) (GETB BA2 'WORTH) 'TIMES1000))
(GS-CHECK®® GTEMP12])]

Appearance on page 178:

Algorithms:
Distributed: use the heuristics attached o Compose to guide the filling i
in of various facets of the new composition,
(The heuristics referred to are shown in Appendix 3.6, on page 263.)
Fillin: 5 (out of a total of 9) heuristics.
Chack: | heuristic (out of a total of 2)

UP (OPERATION)
Appearance on page 178:

Isa's: Operation

TR
-l

e
.t

e T
1‘r;“l“g.-
-.n‘-.w

67 this next MAPC is thus the LISP sncoding of heuristic rvie numbsr 177; see page 263.

8 This is general-purpose function for testing that there is no hidden cycle in the Generslization network, that no two

concepts are both ganerslizetions and specislizetions of sach other, unless they are tagged ss Leing
squivalent to sach other.

lal

L A 0 P
e de

™
o

™

T
P




R L A e PR R T R e L L SR LR At et Al b et & EA LA AL AV IS Sriarh Ryt A sk E NN o e iRt RPN FRTITEINSTIERNT RNV

Appendix 2 AM Discovery in Mathematics as Heuristic Search -220-

WORTH (300)
Appearance on page 178:

Worth: 300

INT®® [(MATRIX (1 2 3) (4 5))

(COND [(INTERSECTION (MAPAPPEND (GETB BA2 'D-R) 'LAST)
(MAPAPPEND (GETB BA1 'D-R) 'ALL-BUT-LAST))
300

(IDIFF 400 (ITIMES 100 (IPLUS (LENGTH (GETB BA1 'D-R))
(LENGTH (GETB BA2 'D-R]
(REASON (* In some interpretation, Range-of-0p2 is 1 component of Domain-of-op1)))
(COND [[MEMB [CAR (LAST (CAR (GETB BA2 'D-R] !
(ALL-BUT-LAST (CAR (GETB BA1 'D-R]
400
(IDIFF 1000 (ITIMES 100 (LENGTH (CAR (GETB BAl 'D-R]

(REASON (# In canonical interpretation, Range-of-op2 is a component of Domain of op1)))
(COND [(INTERSECTION (GETB CS-B TIES) )
(UNION (GETB BA! TIESXGETB BA2 TIES))) ;
100 )

(ITIMES 100 [LENGTH (INTERSECTION (GETB CS-B TIES)
(UNION (GETB BA1 TIESXGETB BA2 TIES)) 1
(REASON (# This composition preserves some good properties of its constituents))])
(COND [(SET-DIFFERENCE (GETB CS-B TIES) ;
3 (UNION (GETB BA! TIESXGETB BAZ2 TicS)))
; 100

e cm e retaen gy = = o

4 (ITIMES 100 [LENGTH (SET-DIFFERENCE (GETB C$-B TIES)
(UNION (GETB BA1 TIESXGETB BA2 TIES)) .
i (REASON (* This composition has some new props, not true of either constituent))]) 7
| (COND [(OR (GREATERP (GETB BA1 "WORTH) 500)) »
(GREATERP (GETB BA2 "WORTH) 500)) j
300 }
(IQUOTIENT (ITIMES (GETB BAl 'WORTH)(GETB BA2 'WORTH)) t
1000) f
’ (REASON (+ Opl and/or Op2 are very interesting themselves)))) |
(COND [[IS-ONE-OF [CAR (LAST (CAR (GETB BAZ 'D-R] i
E (ALL-BUT-LAST (CAR (GET8B BA1 'D-R)] E

1 350

(IDIFF [ITIMES 100 (IDIFF
{LENGTH (CAR (GETB BA! 'D-R]
(LENGTH (RIPPLE [IS-ONE-OF
[SETQ TMP4 (CAR (LAST (GETB BA2 'D-R] -
(ALL-BUT-LAST (CAR (GETB BA1 'D-R] )

] "GENL] ]
{ (ITIMES 50 (LENGTH (RIPPLE TMP4 *GENL] i
L (REASON (* In canonical interpretation, Range-of-0p2 is a specialization of a component h
of Domain-of-0p1))) {

69 Note that slthough the Fillin and Suggest heuristics are blended into the relevant facets (e.g, into the Algorithms for E

COMPOSE), the INTERESTINGNESS type heuristics are kept separate, in this facet. .

:

p

------------ T Wt A K A e T T a T e W W T T Tl W w,t,".*.'d_"'j-;.v",,'\,‘,.,'4 R
d AR TR : ’ h; :‘. AL .""(:?'-z."’f":‘-*‘:-" Tn ,-".‘A")'{c“r"f"',‘h.ﬁ ’)“" ;_-_"_-_L_-“’._’.-_',_y P A '."".‘ AT NN £ AT AP (%
..... =0 .




Appendix 2 AM  Discovery in Mathematics as Heuristic Seatch -221-

(COND [[MEMB [CAR (LAST (CAR (GETB BAl 'D-R) .
‘ALL-BUT-LAST (CAR (GETB BA2 'D-R] v
450 ‘
(IPLUS 300 (COND ([MEMB [CAR (LAST (CAR (GETB BA!l 'D-R
(ALL-BUT-LAST (CAR (GETB BA1 'D-R]
10)
(T 250))
(COND ([MEMB [CAR (LAST (CAR (GETB B/i2 'D-R]
(ALL-BUT-LAST (CAR (GETB BA2 *D-R]
11)
(T 250)) .
(ITIMES 70 (LENGTH (RIPPLE [CAR (LAST (CAR (GETB BA1 'D-R] "GENL]
(REASON (% In canonical interpretation,
Range-of-opl is one component of Domain-of-op2))

&
(COND [[ISA [CAR (LAST (CAR (GETB BA! 'D-R)}
2 (ALL-BUT-LAST (CAR (GETB BA2 'D-R]
50
(IPLUS 50 (COND ([ISA [CAR (LAST (CAR (GETB BA1 *D-R]
(ALL-BUT-LAST (CAR (GETB BA1 'D-R)
10)
(T 100)
(COND ([ISA [CAR (LAST (CAR (GETB BA2 'D-R}
) (ALL-BUT-LAST (CAR (GETB BA2 'D-R]
11
(T 100))
(ITIMES 50 (LENGTH (RIPPLE [CAR (LAST (CAR (GETB BA! 'D-R] *GENL]
(REASON (% Range-of-opl is a specialization of a component of Domain-of-0p2)

!

Appearance on page 178:

interest: 11 heuristics.
The heuristic rules encoded above are shown in English on page 265.

Here is the code for CON-MERGE-ARGS, the function which decides how to overlap
the domain/range facets of its two arguments, Fl and F2:

(CON-MERGE-ARGS
{LAMBOA (F1 F2 F12 PGMI SCHK SAPL DOM! DOM2 RAN RAN2 TIL DOM3)
(SETQ RAN1 (LAST (CAR (GETB F1 'D-R}
(SETQ DOMI (Ll?Al;JF )()CAR (GETB F1 'D-R))
|
[SETQ RAN2 (LAST (CAR (GETB F2 'D-R)
(SETQ DOM2 (LDIFF (CAR (GETB F2 'D-R))
RAN2))
[SETQ DOM3 (AND (CDR DOM1)
(LIST (CADR (MIN2 (APPEND RAN2 RAN2 RAN2
RAN2) DOM1 'FRAC-OVERLAP]
(« As DOMi and RANi are located, Switching of Args may be required, inside PGM1)
(AND (MEMB (CAR DOM3) DOM2) (SETQ DOMS3 NiL))

R e T TN O U O )
LY TS N » -
S R e TN R L, TP P
. P e R A S SR e " M S ™ e s 2




R AL R N R . At UL, - DR AR S € M S CES Bt it o P e T Ua ol SpUh Rl W MRS R D B St B

Append.x 2 AM  Discovary in Mathematics as Heuristic Search -222-

(SETQ GTEMP20 (LENGTH DOM2))
[SETQ SAPL (NCONC (LIST "APPLYB (KWOTE F1) (Q ALGS))
(MAPCAR (SUB-ONCE 'X
(SETQ GTEMPIS (COND
((IS-ONE-OF (CAR RAN2) DOMI))
[{SETQ SCHK (ONE-ISAG DOM! (CAR RAN2}
((SETQ SCHK (AND (SETQ TIL (EXS (CAR RAN2))
(CAR (SOME DOM1 (FUNCTION (LAMBDA (D)

(INTERSECTION
TIL
(EXS D)
DOM1)
(FUNCTION (LAMBDA ()
(COND
((EQZX)
)X)

(T (SETQ GTEMP20 (ADD1 GTEMP20))
(CAR (FNTH BA-LIST GTEMP20)
(v SCHK is a flag which means that {2 maps us into an element of RAN2 v/hich is not guaranteed !
o priori to be an element of DOMI, hence & check for this applicability 2/ £1 will then have to bs made) I
(COND i
((FMEMB 'X SAPL) :
(SETQ DOM3 (REM-ONCE GTEMP18 DOMI)) :
(SETQ GTEMP7 (APPEND DOM3 DOM2)) !
[COND :
[(NEQ (LENGTH GTEMP7) i
(LENGTH (SELF-INT GTEMP7))) i
(CPRIN1S 8 CRLF CRLF AM can later coalesce the D-R of F12 DCR) :
[ADD-CANDS (LIST (LIST (LIST *APPLYB (Q COALESCE) (Q ALGS) (KWOTE F12)) |
(IPLUS 100 (QUO (DOTPROD (FIRSTN 2 (GETB £1 'WORTH))
(GETB F2 '"WORTH)) 2000)) |
(LIST (SPLIST There is an overlap in the new combined |
domain of the operation F12) .
(SWHY 8 (Thers is an obvious overlap in (@ GTEMP7),the new combined domain of (@ F12] {
T he next piece of this function is the heuristic rule numbered 186 in Appendix 3. z
([SOME GTEMPZ (FUNCTION (LAMBDA (X) h
(IS-ONE-OF X (CDR (FMEMB X GTEMP?7) {
(CPRIN1S 10 CRLF CRLF AM may later coalesce the D-R of F12 DCR) t
[ADD-CANDS (LIST (LIST (LIST *APPLYB (Q COALESCE) (Q ALGS) (KWOTE F12)) i
(KQUO (DOTPROD (FIRSTN 2 (GETB F1 "WORTH)) !
(GETB F2 "WORTH)) 2500)) }
(LIST (SPLIST Thers may be an overlap '
in the new combined domain of the operation F12] ;
(SWHY 10 (There is a subtle overlap in (8 GTEMP7),the new combined domain of (& F12)
{SETQ PGM1 (LIST 'PROG |
(LIST "X) X
{LIST 'SETQ X I
(NCONC (LIST 'APPLYB (KWOTE F2) (Q ALGS)) §
(FIRSTN (LENGTH DOM2) (LIST 'BA| 'BA2 'BA3) '
(LIST 'RETURN
(COND
(SCHK (LIST "AND
(LIST 'APPLY. (Q DEFN) (KWOTE SCHK) %)
SAPL))
(T (LIST "AND 'X SAPL}
(LIST (LIST (APPEND DOM2 DOM3 RAN1)) PGM1))
(T (¢ Composing is not possible) NIL)) .

i
)
!
1.
i
1
v
¥

e R T T S AP
P AN R W i AR T Y -

~
P S
ORI ERE R o S P




T = D it tor SRR 020 SR L e SR AR AL e e 24 2 i B o 2 e R A bih AR AL R EALARALS L ELEHEL AR RN AESEGR A

3
a

Appendix 2 AM Discovery in Mathematics as Heuristic Search -223-
Appendix 2.3.2. ! !

Here is the actual property list of the data-structure corresponding to the Osets concept:

ENGN (0SET Oset Oset-structure OSET-STRUC, Ordered-set (Set))

DE_F_N (TYPE NEC&SUFF RECURSIVE TRANSPARENT [COND
((EQUAL BA1 (OSET ) T)
(T (APPLYB "OSET 'DEFN (APPLYB "OSET-DELETE "ALGS
(APIF;LYB 'SOME-MEMB "ALGS BA1)
BAl))
(TYPE NEC&SUFF RECURSIVE QUICK [COND
((EQUAL BAL (OSET ) T)
((CRDI;)BAI) (APPLYB "OSET "DEFN (RPLACD BA1 (CDDR BAL)))
(T NIL
(TYPE NEC&SUFF NONRECURSIVE QUICK (MATCH BA1 WITH ('OSET §)))

GENL  (ORD-5TRUC NO-MULT-ELES-STRUC)

WORTH (a00)
IN-DOM-OF (0SET-JOIN OSET-INTERSECT OSET-DIFF OSET-INSERT OSET-DELETE)

IN-RAN-OF (0SET-JOIN OSET-INTERSECT OSET-DIFF OSET-INSERT OSET-DELETE)
VIEW (STRUCTURE (RPLACA BA1 *0SET))

Compare this with the way that the "Osets” concept appeared, on page 214 of Appendix
2.5: .

* Name(s): Oset, Oset-structure, Ordered-set, sometimes: Set.
Definitionss
Recursive: A (S) (S=[ ] or Oset.Definition(Oset=Delete.Alg(Member.Aig(S},$));
Recursive quicks A (S) (Ss[ ] or Oset.Definition {COR(S)))
Quicks X (S) (Match S with [..])
Generalizations: Ordered-Structure, No-muitiple-elements=-Structure
Worth: 400
in-domain=of: Oset=union, Oseteintersect, Oset=difference, Oset-insert, Oset-delete
in-range=of: Oset=union, Oset=intersect, Oset-difference, Oset<insert, Oset-delate
View: To view any structure ss s Oset, dos A (x) Enclose=in=square=brackets(x)

g i - - o m o m e
! RTI IR e ] S T I R IV Y I I S IPA A LIV AR VL R N VR R N I Y] PN o SAF IS SN S S G N SN S PR
- “'.“‘4":4‘, EE IR el -“\-"‘.u"‘_u’_ LW e e WS ,{h,ﬁ".n.qirngn.;cﬁ‘ﬁy.-r_‘.“‘-lh_,‘;“a,-{,‘lihl ,I;rf.-(‘.,n. e Ta ¥ sl (i RiCAS

. R




= aVRTasB ash anll pue ghe yhu gt pvte ST 0- U GRSy b i Sull v w Al Dol W U & i 3, T O wpd. 280 <4 Sl 7 SE R op Sa i At R R S I e SR i e 2L U SIS S0 AN N ;_'_‘T':"-T:S".:_'

N

\

N

4

1

{

Appendix 2 AM Discovery in Mathematics as Heuristic Search -224- ;\
Appendix 2.4. ne eate ;’

L3

#

The list below is meant to suggest the range of AM's definitions; it is far from complete, and N
most of the omissions were real losers. The concepts are listed in the order in which they ;
were defined.”® In place of the (usually-awkward) name chosen by AM, I have given either .
the standard math/English name for the concept, or else a short description of what it is. N
h

Sets with less than 2 elements (singletons and empty sets). J

Sets with no atomic elements (nests of braces).

Singleton sets.

Bags containing (multiple occurrences of) just one kind of element.
Superset (contains).

Doubleton bags and sets.

Set-membership.

Dis joint bags.

Subset.

Dis joint sets.

Singleton osets.

Same-length (same number of elements).

Same number of left parentheses, plus identical leftmost atoms.
Count (find the number of elements of a given structure).
Numbers (unary representation). :_

Chee v

s

M Gt BT RS SRR Pt S 1

Add.
Minimum. P
SUBI (A (x) x-1). =
Insert x into a given Bag-of-T's (almast ADD1, but not quite). 7
Subtract (except: if x<y, then the result of x-y will be zero’"). &
Less than or equal to. i
Times. !
Union of a bag nf structures. . .’.’
& (the ampersand represents the creation of several real losers.) ;
Compose a given operation F with itself (form FoF). Y
Insert structure S into itself. i
Try to delete structure S from itself (a loser). A
Double (add ‘%’ to itself). y:
Subtract ‘%’ from itself (as an operation, this is a real zero’?). E
Square (TIMES(x,x)). |
Union structure S with itseif. X
Coalesced-replace: replace each element s of S by F(s,s). by
Coalesced- join2: append together F(s,s), for each member s¢S. :}
Coa-repeat2: create a new op which takes a struc S, op F, and repeats F(s,t,S) all along S. r‘
Compose three operations: A(F,G,H) Fo(GoH). 3
Compose three operations: A(F,G,H) (FeG)oH. .
70 Ses Appendix 5.2, p. 284, for a detailed trace of how these concepts wers discaversd. Or ses Section 6.1, p. 115, N
for a briefer version of the same development.
71 This is "natural-number subtract™, in the same spirit of naming es we find for "Integer division".
72 & naturs! zero? ;J

L

'l

. ‘t' ‘l ‘i

T et e LT A =

A AR S A

', RS
s

.
-
o . L N S T N o N




ogtuteitlarh carsabEL FEUR AR A SRS S S M NEWT AN RTINS D AT L LR AT AR S TRy
ﬁ \

b A

Appandix 2 AM  Discovary in Mathematice as Heuristic Search -22%-

& (lcts of losing compositions ¢7< uted, eg. Self-inserteSet-union.)

ADD"/(x): all ways of representing x a3 the sum of a bunch of nonzero numbers.
GoH, s.t. H(G(H(x))) is always defined (wherever H is), and G and H are interestirg
InsertoDelete.
Deleteolnsert.

SizecADD"!. (A (n) The number of ways to partition n)
Cubing

&

Exponentiation.

Halving (in natual numbers only; thus Halving{15)s=7).
Even numbers.

Integer square-root.

Perfect squares.

Divisors-of,

Numbers-with-0-divisors.

Numbers-with-1-divisor.

Primes (Numbers-with-2-divisors).

Squares of primes (Numbers.with-8-divisors).

Squares of squares of primes.

Square-roots of primes (a loser).

TIMES™!(x): all ways of representing x as the product of a bunch of numbers (>1).
All ways of representing x as the product of just one number (a trivial notion).
All ways of representing x as the product of primes.

All ways of representing x as the sum of primes.

All ways of representing x as the sum of two primes.

Numbers uniquely representable as the sum of two primes.

Products of squares.

Multiplication by 1.

Multiplication by 0.

Multiplication by 2.

Addition of 0.

Addition of 1.

Addition of 2.

Product of even numbers.

Sum of squares.

Sum of even numbers.

& (losers: various compositions of 3 operations.)

Pairs of perfect squares whose sum is also a perfect square (xzoyz-zz)
Prime pairs (p,p+2 are prime).




)

-226-

Appendix 3, AM's Heuristics

p— ]

Infallible rules of discovery leading to the solution of all possible mathematical
problems would be more desirable than the philosophers’ stone, vainly sought by
the alchemists. Such rules would work magic; but there is no such thing as magic.
To find unfailing rules applicable to all sorts of problems is an old philosophical
dream,; but this dream will never be more than a dream.

«= Polya

To the extent that a professor of music at @ conservatoire can assist Ais students
in becoming familiar with the patterns of harmony and rhythm, and with how they
combine, it must be possible to assist students in becoming sensitive to patterns of
reasoning and how they combine. T he analogy is not far-fetched at all

== Dijkstra

This appendix lists all the heuristics with which AM is initially provided. They are
organized by concept, most general concepts first. Within a concept, they are organized into
four groups:

* Fillin: rules for filling in new entries on various facets.

* Check: rules for patching up existing entries on various facets.

» Suggest: rules which propose new tasks 1o break AM out of stagnant loops.

» Interest: criteria for estimating the interestingness of various entities.

Each heuristic is presemed in English translation. Whenever there is a very tricky, non-
obvious, or brilliant translation of some English clause into LISP, a brief note will follow
about how that is coded. Also given (usually) are some example(s) of its use, and its overall
importance. Concepts which have no heuristics are not present in this appendix.

Hundreds of heuristics were planned on paper but never coded (eg., those dealing with
proof techniques, those dealing with the drives and rewards of generalized message
senders/receivers), and whole classes of rules were coded but never used by AM during any
of its runs (eg, how to deal with contradictions, how to deal with Intu’s facets). Such
superfiuous rules will not be included here. They would raise the total number of heuristic
rules from 242 to about 500,

The rule numbering in this Appendix is referred to occasionally in other appendices. The
total number of rules coded in AM is actually higher, since many rules are present but
never used, and since many rules listed with one number here are really several rules in
LISP (e.g., see rules 87 and 129).




i I A i i AT P S TNt o TE e L at b G B R* i 4% o K224 SOAL K Budiiiy L5 o FCak ool Wk Vo R Na3 Ka LR i AR SR R T vk iy i\ iy 1 2 e T e TN UL s NE VS FUTE Uate T L8
S %

Appendix 3 AM  Discovary in Mathematics as Heuristic Search -227-

It would be advantageous to have a cross-indexing of the body of heuristics along several
dimensions (a multiple sorting by a small set of key parameters): sorted by interest, by
relevance (the current arrangement), by cost, by payoff, by frequency of usage, etc. This is
left as a starred excercise for the interested reader.

YA AN

T
>
v

PRk




T N T T T T T e TN T T T T T R T TR TR TR PR TR oy R R Y R T T T G e e e e v v

&

Appendix 3 AM Discovery in Mathematics as Heuristic Search -228-
k Appendix 3.1. Heuristics for dealing with Anythin
All these rules deal with any item X, be it concept, atom, event, etc. These rules are about
i as general — and as weak — as one can imagine.
P Anything . Suggest
, 1. If AM has recently referanced entity X,
2 Then boost the priority of any tasks involving X.

2. If the user has recently referred to X,
n Then boost the priorily of any tasks involving X.

3
W o
"

The above two rules simply reaffirm the idea of "focus of attention”. The boost in ratings is
only slight, and only temporary (it decays toward zero exponentially with time). Besides this

,, gradual decline in task ratings, the rule below explicitly modulates this boosting, so that
Y infinite loops can be = »ided.

% 3. it AM has recently dealt with X with poor results,

:- Then lower the priority rating of all tasks involving X.

4, If AM just referenced X and almost succeaded, but not quite,
Then look for a very similar entity Y, and retry the activity with Y in place of X,

-.‘.]
. T,

There is a separate precise meaning for “almost succeed”, "similar entity”, and “retry" for
each kind of entity and activity that might be involved. For example, if the activity were a
task (say to fill in examples of Odd-primes) and the entity X were a concept (in this case,
Odd-primes), then a ‘similar entity’ might be the concept Odd-numbers, and in that case the
result of this rule would be a new task {to fill in examples of Odd-numbers). If the failure
occurred while AM was trying to access the examples facet of Primes, with X=Examples,
then a ‘similar entity’ might be the Boundary-examples facet, and the above rule would
suggest that AM access instead the Boundary-examples facet of Primes. Of course, this rule
is so weak that it is not often of much help.

T3

“Ny

s
o

1

5. If space is running out, and AM has not referenced X for a long time, and X is taking up a lot of
space, and no important conjectures reference X,
Then X may be forgotien and its space liberated. Probably the user should be informed of this,
at least tersely.

NG

{ Just a general-purpose directive for emergency garbage-collection.




Pl N a i il g Bl o A e (R a0 QAN |

?Y\T":ﬂ:?:w LI 2T R AL AR AR e B R R i R N P AT L A A S el Bl B i il i 4 S ST il Sy Aol US o ¥ e i
>
LA

o
iy

Appendix 3 AM  Discovery in Mathematice as Heuristic Search -229-

Anything . Interest

6. Any entity X is interesting if it is referre. to in several in'hrmin; conjectures.

7. Any entity X is interesting if it is relsted (via & rare, interesting relation) to another entity
which srose in a very different way and is not obviously tied to X.

Unexpected connections are worth closer examination, typically. X might be ‘related to’ Y
because F(X)=Y (for some very interesting operation F), because Y(X) is true (for some
rarely-satisfied predicate Y), because some con jecture involving X is syntactically identical to
the same con jecture involving Y, etc.

8. Enlity X is (tentatively) interesting if there is an analogy in which X corresponds to Y, and Y
has turned out to be very interesting.

9. If entity X is an example of concept C, and X satisfies some festures on C.int,
Then X is interesting, and C's Interestingness festures will indicate & numeric rating for X.

This is practically the definiton of the Int facet. Below is a much more ususual rule:

10. If entity X is an example of concept C, and X satisfies absolutely none of the features on C.int,
and X is just about the only C which doesn't satisfy something,
Then X is interesting because of its unusual boringness.

Since most singletons are interesting because all pairs of their elements are Equal, the above
rule says it would be interesting actually to find a singieton for which not all pairs of its
members were equal. While it would be interesting, AM has very little chance of finding
such a critter.

il
LA

ig
1
vl

BRSO S )
ety | ‘elelal
. ) ‘3 SRR SE)




:
lI o, By

AN .. £

i atd

O

;

”
-,
Stedr

.

3

"

R L T Sl Tl o oS s el Tan ol o et mk Pt ol vek il Al My f Shpdils S % waft Saie i B n Sl e B Al ne UL MR USRS B2 o SER R SRR S SaS RS G Cal il o L SR R SR Rt L)

Appendix 3 AM Discovary in Mathamatics as Heuristic Search -230-

Appendix 39. Heuristics for dealing with Any-concept

This concept has a huge number of heuristics, For that reason, I have partitioned off —
both here and in AM itself' — the heuristics which apply to each kind of facet.

Appendix 3.2.1. Heuristics for any facet of Any-concept

The first set of heuristics we'll look at are very general, applying to no particular facet
exactly.

Any-concept . Fillin

1 1. When trying to fill in facst ¥ of concept C, for any C and F,
If C is analogzous to concept X, and X.F has some entries,
Ther iry to construct the analogs of those eniriss, and sse if they are really valid antries for
CF.

Recall that "C.F" is shorthand for “facet F of concept C". This rule simply says that if an
analogy exists beiween two concepts C and X, then it may be strong enough to map entries
on X.F into entries for C.F. Note that F can be any given facet. There is an analogy
between Sets and Bags, and AM uses the sbove rule to turn the extreme example of Sets —
the empty set — into the extreme kind of bag.

Any-concept . Suggest

12. If the F facet of concept X iz blank,
Then consider trying to fill il in.

The above super-weak rule will result in a new task being added to the agenda, for every
blank facet of every concept. It is more of a legal move generator thzn a plausible move
proposer. The rating of each such task will deperid on the Worth of the concept X and the
overall worth of the type F facet, but in all cases will be very small. The "emptiness” of a
facet is always a valid reason for trying to fill it in, but never an a priori important reason.

So the net effect of the rule is to slightly bias AM toward working on blank — rather than
aon-blank — farets.

13. While trying to fill in facet F of concept C, for any C and F, if C is known to be similar to some
other concept D, except for differance d,
Then try to fill in C.F by selecting items from D.F for which d is nonexistent,

This rule is made more specific when F is actually known, and hence the format of d is
actually determined. For example, if C=Reverse-at-all-levels, F=examples, then (at one
particular moment) a note is found on the Cen jecs facet of concept C which says that C is

! Thus the LISP program has a separate concept called "Exemples-of-any-concept”, another concept called "Definitions-of-
any-concept”, etc.

-------------
T ]




Appendix 3 AM  Discovery in Mathematics as Heuristic Search -231-

just like the concept D»Reverse-top-level, except C also recurs on the nonatomic elements of
its argumants, whecreas D doesn't. Thus d is made null by choosing examples of D for
which there are no nenatomic elements. So an example like ‘Reverse-top-levsl(<a b ¢>)=<c b
#>’ will be sclected and wiil lead to the proposed example ‘Reverss-at-all-levels(<a b c>)=<c
b &>, which is in fact valid,

1 4. Afler dealing with concept C,
Siightly, temporarliy boost the priority vaiue of each existing task which involves an Active
toncept whose domain or range is C.

This is done efficiently using the In-dom-of and In-ran-of facets of C. A typical usage was
after checking the just-filled-in examples of Bags, when- AM slightly boosted the rating of
filling in examples of Bag-union, and this task just barely squeaked through as the next one
to be chosen. Note that the rule reinforced that task twice, since both domain and range of
Bag-union are bags.

Any-concept . Check

15. When checking facet F of concept C, (for any F and C,)
Prune away at the entries there uniil the facet’s size is reduced to the size which C merits.

The algorithm for doing this is as follows: The Worth of C is multiplied by the overall
worth of facet type F. This is normalized in two ways, yielding the maximum amount of list
cells that C.F may occupy, and also yielding the maximum number of separate entries to
keep around on CF. If either limit is being exceeded, then an entry is plucked at random
(but weighted to favor selection from the rear of the facet) and excised. This repeats as long
as CF is oversized. As space grows tight, the normalization weig™:s decline, so each
concept’s allocation is reduced.

16. When checking fecet F of concept C,
Eliminate redundant entries.

Although it might conceivably mean something for an entry to occur twice, this was never

5 desirable for the set of facets which each AM concept possessed.

Any-concept . Interest

s

}‘ The interest feaiures apply to tell how interesting a concept is, and are rarely subdivided by
N relevant facet. That is, most of the reasons that Any concept might be interesting will be
AN given below.

;“;\ﬁ\'s

ﬁ_ﬂ 17. A concapt X is interesting if X.Conjecs containe soma interesting entries.

b

o 18. A concept is interesting if its boundary sccidentslly coincides with snether, weli=known,
oK interesting concept.

L

S

@

b

e

2k

o

AEN

o , » e v e e e A AL
G, S N RS L e e DNt s




FL"C(

R LS B T - E T . SN A S S AT I S E i L P RN e ol R s

Appendix 3 AM  Discovary in Mathematics as Heuristic Search -232-

The boundary of a concept means the items which just barely fall into (or just barely miss
satisfying) the definition of that concept. Thus the boundary of Primes might include 1,2,3,4.
If the boundary of Even numbers includes numbers differing by at most | from an even
number, then clearly their boundary is all numbers. Thus it coincides with the already-
known concept Numbers, and this makes Even-nos more interesting. This expresses the
property we intuitively understand as: no number is very far from an even number.

18. A concept is interestirg it its boundary accidentally coincides with the boundary of another,
very different, imaresting concept.

Thus, for example, Primes and Numbers are both a little more interesting since the extreme
cases of numbers are all boundary cases of primes. Even numbers and Odd numbers both
have the same boundary, namely Numbers. This is a tie between them, and slightly raises
AM’s interest in both concepts.

20, A concept is interesting if it is == accidentally == precisely the boundary of some other,
interesting concept.

In the case mentioned for the above rule, Numbers is raised in interest because it turns out
to be the boundary for even and odd numbers.

21. A concept is boring if, after several attempts, only a couple examples are found,

Another rule indicates, in such situations, that the concept may be forgotten and replaced by
some con jecture.

22. Concept C is interesting if some normally=inefficient operation F can be efficiently performed
on C's.

Thus it is very fast to perform Insert of items into lists because (i) no pre-existence checking
need be done (as with sets and osets), and (ii) no ordered merging need be done (as with
bags). So "Lists” is an interesting concept for that reason, according to the above rule.

23. Concept C is interesting if each example of C accidentally seems to satisfy the otherwise=
rarely satisfied predicate P, or (equivalently) if there is an unusual conjecture involving
o

This is almost a primitive affirmation of intererestingness.
24 Concept C is interesting if C is closely related to the very interesting concept X.

This is intererestingness by association. AM was interested in Divisors-of because it was
closely related to TIMES, which had proven to be a very interesting concept.

25. Concept C is interesting if there is an analogy in which C corresponds e Y, and the analogs of
the Interest features of Y indicate that C ie intsraesiing.

This might have been a very useful rule, if only there had been more decent analogies
floating around the system. As it was, the rule was rarely used to advantage. It essentially
says that the analogs of Interest criteria are themselves (probably) valid criteria.




AT TR T N AT T TR T IR IS PR R TN T S OGS OV AR NTRAN e N S PR e N PR T SRS £ ok A

Appendix 3 AM Discovery in Mathematics as Heuristic Search -233-

26. A concept C is interesting if one of ils genaralizations or specislizations turns out to be
unexpectedly very interesting. '

"Unexpected” means that the interesting property hadn't already been observed for C. If C
is interesting in some way, and then one of its generalizations is seen to be interesting in
exactly the same way, then that is "expected”. It's aimost more interesting if the second
concept unexpectedly /acks some fundamental property about C. At least in that case AM
might learn something about what gives C that property. In fact, AM has this rule:

27. If concept C possesses some very interesting property lacked by one of its specializations S,
Then both C and S becoms slightly more interesting.

In the LISP program, ths is closely linked with rule 104.

28. If & concept C is re-derived in # new way, that makes it more interesting.
If concepis Cl and C2 turn out to be equivalent concepts, then merge them. The combined
concept is now more interesting than either of its predecessors.

The two conditionals above are really the same rule, so they aren’t given separate numbers.
C! and C2 might be conjectured equivalent because their examples coincide, each is a
generalization of the other, their definitions can be formally shown to be equivalent, etc.
This rule is similar in spirit to rule number 114.

Appendix 3. st X ets of Any-c

The following heuristics are used for dealing with the many kinds of examples facets which
a concept can possess: non-examples, boundary examples, Isa links, etc.

Any-concept , Examples , Fillin

29. To fill in examples of X, where X is a kind of Y (for some more genersl concept Y),
Inspect the examples of Y; some of them may be examples of X as well,
The further removed Y is from X, the less costeaffective this rule is.

For the task of filling in Empty-structures, AM knows that concept is a specialization of
Structures, so it looks over all the then-known examples of Structures. Sure enough, a few of
them are empty (satisfy Empty-structures.Defn). Similarly, for the task of filling in examples
of Primes, this rule would have AM notice that Primes is a kind of Number, and therefore
look over all the known examples of Number. It would not be cost-effective to look for
primes by testing each example of Anything, and the third and fina! clause in the above
" rule recognizes that fact.

] 30. To {ill in non-examples of concept X,
- Search the specisiizations of X, Look at all their non-examples. Some of them may turn out to
- be non-examples of X ss well.

This rule is the counterpart of the last one, but for non-examples. As expected, this was less
useful than the preceding positive rule.




b R A R L AR R I N A S L I L A A AR TR D R R S L A S S A S A DS R R S L6 BN L300, PR Y

-,( "’(;".r' . ‘.._," v' f -("-"'Kn".l \(‘iJ'.
»

Appendix 3 AM Discovery in Mathematics as Heuristic Search -234-

31. if the current task is to fill in examples of any concept X,
Then one way to get them is to symbolically instantiate a definition of X.

That rule simply says to use some known tricks, some hacks, to wring examples from a
declarative definition. One trick AM knows about is to plug already-known examples of X
into the recursive step of a definition. Another trick is simply to try to instantiate the base
step of a recursive definition. Another trick is to take a definition of the form "A (x) x isa
P, and <sub-expression>", work on mstannatmg just the sub-expression, and then pop back
up and see which of those items are P's.

32. If the current task is to fill in non-examples of concept X,
Then one fast way to get them is 1o pick any random item, any example of Anything, and check
that it fails X.Defn.

This is an affirmation that for any concept X, most things in the universe will probably not
be X’s. This rule was almost never used to good advantage: non-examples of a concept X

were never sought unless there was some reason to expect that they might not exist. In those
cases, the presumption of the above rule was wrong, and it failed. That is, the rule

succeeded iff it was not needed.?

33. To fill in examples of concept X,
If X.View tells how to view a Z as if it were an X, and some examples of Z are known,
Then just run X.View on those examples, and check that the results really are X's.

Thus examples of osets were found by viewing other known examples of structures (e.g.,
examples of sets) as if they were osets.

34, To fill in examples of concept X,
Find an operation whose range is X,2 and find examples of that operation being applied.

To fill in examples of Even-nos, this rule might have AM notice the operation ‘Double’.
Any example of Double will contain an example of an even number as its value: e.g.,, <3-6>
contains the even number 6.

35. If the current task is to fill in examples of concept X,
One bizarre way is to specialize X, adding a strong constraint to X.Defn, and then look for
examples of that new specialization,

Like the classical "insane heuristic™, this sounds crazy but works embarassingly often. If I
ask you to find numbers having a prime number of divisors, the raie at which you find
them will probably be lower than if I'd asked you to find numbers with precisely 2 dlvxsors
The variety of examples will suffer, of course. The converse of this heuristic — for non-
examples — was deemed too unaesthetic to feed to AM.

2 Catch-227

3 or st least INTERSECTS X Use the In-ran-of facets and the rippling mechznism to find such an operation.

4 A herder task might be sasisr to do. A stronger theorem might be easier to prove. This is calied "The Inventor's Paradox”,
on page 121 of [Polys 57])

-,, ’-, .

- - L
I " " "
- =t ""n',-' fp i S T N N T

. g g

Oy Yy g w e oy

- gt v g g wnneg

e

vy -

Mk = g ey

LERY |

Y

. e

»

t

LM f .'\.'.a'.:..".‘.‘.'x‘\‘.7'.'~'.“.'Vc
e -




Appendix 3 AM Discovery in Mathematics as Heuristic Search -235-

36. To fill in examples of X,
One inefficient method is 1o examine random examples of Anything, checking each by running
X.Defn to see if it is an X. Slightly better is to ripple outward from X in all directions,
testing ail the examples of the concepls encountered.

This is blind generate-and-test, and was (luckily) not needed much by AM.

37. To find more examples of X (or: ic find an exireme exampls of X), when a nice big example is
known, and X has a recursive definition,
Try to plug the known example into the definition and produce a simpler one. Repeat this until
an example is produced which satisfies the base-step predicate of the definition. That
entily is then an extreme (boundary) example of X,

For example, AM had a definition of a set as

"Set(S) if S={} or if Set(Remove.random-element(S))." When AM found the big example
{A,B{{C},DL{{{E}}},F} by some other means, it used the above rule and on he recursive
definition to turn this into {A,B,{{{E}}},F} by removing the randomly-chosen third element.
{A,B,F} was produced next, followed by {B,F} and {F}. After that, {} was produced and the
rule relinquished control.

38. To find examples of X, when X has a recursive definition,
One method with low success rate but high payolf is to try to invert that definition, thereby
creating a procedure for generating new examples.

Using the previous example, AM was able to turn the recursive definition of a set into the
program “Insert-any-random-item(S)", which turns any set into a (usually different and
larger) new set. Since the rules which AM uses to do these transformations are very special-
purpose, they are not worth detailing here. This is one very managable open problem,
where someone might spend some months and create a decent body of definition-inversion
rules. A typical rule AM has-says:

"Any phrase matching ‘Removing an x and ensuring that P(x)' can be inverted and turned
into this one: ‘Finding any random x for which P(x) holds, then inserting x'." The class of
definitions which can be inverted using AM’s existing rules is quite small; whenever AM
needed to be able to invert another particular definition, the author simply supplied
whatever rules would be required.

o 39. While filling in examples of C,

o if two constructs x and y are found which are very similar yet only one of which is an example
4 of the concept C,
B Then one is a boundary example of C, and the other is a boundary non-example,

p 2 sand il's worth cresting more boundary examples and boundary non-examples by slowly
e transforming x and y into each other.

:'rv‘;'\'

:Z}J::‘_ Thus when AM notices that {a} and {a,ba} are similar yet not both sets, it creates {a,b},
Lo

{b,a}, {a,a} and sees which are and are not examples of sets. In this way, some boundary
items (both examples and non-examples) are created. The rules for this slow transformation
are again special purpose. They examine the difference between the items x and y, and
suggest operators (e.g., Deletion) which will reduce that difference. This GPS-like strategy
has been well studied by others, and its inferior implementation inside AM will not be
detailed.

MECMBUARNLH N

AR

DS
- !

L B

T

P
D ™
wedy

o e i
A

" Epuhgely A0
ST

R o
l‘.l
¥

P
E

e
A

Ao

1
]
S




T TR T LT A TI VR AT RTIR TR TS TR UL

Appendix 3 AM  Discovery in Mathematice as Heuristic Search -236-

40, If the main task now is to fill in example:. of concept C,
Consider all the examplas of "first cou:ing” of C. Some of them might be examples of C as
well.

By "first cousins”, we mean all direct specializations of all direct generalizations of a concept,
or vice versa. That 1s, going up once along a Genl link, and then down once along a Spec
link (or going down one hink and then up one link).

41. if the main task now is to fill in boundary (non=)examples of concept C,
Consider all the boundary (non-)examples of "first cousins” of C. Some of them might lie on
the boundary of C as well.

If they turn out not to be boundary examples, they can be recorded as boundary non-
examples, and vice versa.

A2, To fill in Isa links of concept X, (that is, to find a list of concepts of which X is an example),
Just ripple down the tree of concepls, applying a definition of each concept. Whenever a
definition fails, don't waste time trying any </ its specializations, The Isa's of X are then
all the concepts tried whose definitions passed X.

When a new concept is created, e.g, a new composition, this rule can ascertain the most
specific Isa links that can be attached to it. Another use for this rule would be: If the Isa
link network ever got fouled up {(contained paradoxes), this rule could be used to straighten
everything out (with 2 logarithmic expenditure of time).

Any-concept . Examples . Suggest

43. If some (but not most) examples of X are also examples of ¥ (for some concept Y),
and some (but not most) examples of Y are also examples of X,

Create 2 new concept definad as the intersection of those two concepts (X and Y). This will be >

a specialization of both concepts.

If you hapen to notice that some primes are palindromic, this rule would suggest creating a
brand new concept, defined as the set of numbers which are both palindromic and prime.
AM never actually noticed this, since it represented all numbers in unary. If pushed, AM
will define Palindrome(n) to mean that the sequence of exponents of prime factors is

symmetric; thus 2325171113133 is paiindromic in AM’s sense because the sequence of its
exponents (3 8 1 1 8 3) is unchanged upon reversal. In this sense, the only Prime
palindromes are the primes themselves (or: just 2, depending upon the precise definition).

44, If very few examples of X are found,
Then add the following task to the agends: "Generalize the concept X", for the foliowing
reason: "X's are quite rare; s slighlly less restrictive concept might be more
interesting”.

Of course, AM contains a precise meaning for the phrase "very few". When AM looks for
primes among examples of already-known kinds of numbers, it will find dozens of non-
exarnples for every example of a prime it uncovers. "Very few" is thus naturally
implemented as a statistical confidence level. AM uses this rule when very few examples of
Equality are found readily.




")

i

T
Ty
BN

e

v cint o G T
O
ama?ala e %a

A
&l

l‘v"fg o

LA
y AN NN Y

RN VS 2 AR TR IR SRS RL R L L R AL Al Al AL E Rt £ 4 4 1FE CUPLINE AW IRE RS ot MU /U Palias
<

Appendix 3 AM Discovery in Mathematics as Heuristic Search -237-

" 45, If very many examples of X are found in a short period of time,
Then try to create a new, specialized version of X,

This is similar to the preceding rule. Since numbers are easy to find, this might cause us to
look for certain more interesting subclasses of numbers to study.

46. If there are no known examples for the interesting concept X,
Then consider spending some time looking for such examples.

I've heard of a math student who defined a set of number which had quite marvelous

properties. After the 20th incredible theorem about them he'd proved, someone noticed that
the set was empty. The danger of unwittingly dealing with a vacuous concept is even worse
for a machine than for a human mathematician. The above rule explicitly prevents that.

47. If the totality of exsmples of concept C is too small to be interesting,
Then consider these reactions: (i) generalize C; (ii) forget C completely; (iii) replace C by one
conjecture.

This is a good example of when a task like “Fill in gsneralizations of Numbers-with=1=-divisors"
might get proposed with a high-priority reason. The class of entities which C encompasses
is simply too small, too trivial to be worth maintaining a separate concept. When C is
numbers-with-1-divisor, C is really just another disguise for the singleton set {1}. The above
rule might cause a new task to be added to the agenda, Fill in generalizations of Numbers-
with=1=divisor. When that task is executed, AM might create the concept Numbers-with-
odd-no-of-divisors, Numbers-with-prime-number-of-divisors, etc. Besides generalizing that
concept, the above rule gives AM two other alternatives. AM may simply obliterate the
nearly-vacuous concept, perhaps leaving around just the statement "1 is the only number with
one divisor". That conjecture might be tacked onto the Conjecs facet of Divisors-of. The
actual rule will specify criteria for deciding which of the three alternatives to try. In fact,
AM really starts all three activities: a task will always be created and added to the agenda
(to generalize C), the vacuous concept will be tagged as "forgettable”, and AM will attempt
to formulate a con jecture (the only items satisfying C.Defn are C.Exs).

48. If the totality of examples of concept C is too large to be interesting,
Then consider these three possible reactions: (i) specislize C; (ii) forget C completely; (iii)
replace C by one conjeciure.

This is analogous to the preceding rule, but is used far less frequently. One common use is
when a disjunction of two concepts has been formed which is accidentally large or already-
known (eg.,, "Evens u Odds" would be replaced by a con jecture).

49, After filling in examples of C, if some examples were found,

Look at all the operations which can be spplied to C's (that is, access Cin-dom=-of), find those
which are interesting but which have no known examples, and suggest that AM fill in
examples for them, because some items are now known which are in their domain,
namely C.Exs.

This rule had AM fill in examples of Set-insertion, as soon as some examples of Sets had
been found.

50. After filling in examples of C, if some examples were found,
Congider the task of Checking the examples facet of concept C.

o - P I R N . - P I R I N -
e mgn LR IV R 54 LY . TN Tab Lol Bl e St o Sl Sals RaF Rt S B L R N A Rl R A St W SIS
:).-":n‘)"‘Jw"_.’(:.(c-(q.'t._rr-:.g_’il‘_“",“ﬂ:y..)',‘:‘;&{f-’,ﬁu P o ."‘:-"!.‘_-.c&-l‘_-r&t o, u_i‘r(‘ et IO AR ISR AP A

» - S
AN 'a 4 4 . i




m ‘“‘2 KN Y

it
y

)
.
W

oG i 3

Ty

T

AA S,

N T Y T Y L Y VL VL R L L N VL T Y L T TN AN TN T YR NN T TN T Y LY I T R I R PO NS TR O T L TR LY P IO I R U R TR AR TR AR W TR
)

Appendix 3 AM  Discovery in Mathemstics as Heuristic Search -238-
This was very frequently used during AM’s runs.

51. After checking examples of C, if many examples remain,
Consider the task of ‘Filling in some Conjecs for C',

This was used often by AM. After checking the examples of C, AM would try to
empirically formulate some interesting con jecture about C.

52. After successfully filling in non-examples of X, if no examples exist,
If AM has not recently tried to find examples of X, then it should do so.
if AM has recently tried and failed to find examples, consider the conjecture that X is vacuous,
emply, null, slways-False, Consider generalizing X.

53. After trying in vain lo find some non-examples of X, if many examples exist,
Consider the conjecture that X is universal, always=True. Consider specializing X.

54, After successfully filling in examples of X, if no non-examples exist,
If AM has not recently tried to find non~examples of X, then it should consider doing so.
If AM has recently iried and failed to find non-examples, consider the conjecture that X is
universal, always-True. Consider specializing X.

55. After irying in vain to find some examples of X,
If many non-examples exist,
Consider the conjecturs that X is vacuous, null, empty, always=False. Consider generalizing X.

Any-concept . Examples , Check

56. If the current task is to Check Examples of concept X,
and (Forsomae Y) Y is a generalization of X with many examples,
and all examples of Y (ignoring boundary cases) sre also examples of X,
Then conjecture that X is really no more specialized than Y,
and Check the truth of this conjecture on boundary examples of Y,
and see whether Y might itself turn out to be no more specialized than one of its
generalizations.

This rule caused AM, while checking examples of odd-primes, to con jecture that all primes
were odd-primes.

57. If the current task is to Check Examples of concept X,
and (Forsome Y) Y is a spezialization of X,
and all examples of X (ignoring boundary cases) are also examples of Y,
Then conjecture that X is really no more general than Y,
and Check the truth of this conjecture on boundary examples of X,
and see whether Y might itcelf turn out to be no more general than one of its specializations.

I n1s rule is analogous to the preceding one for generalizations.

R O N N T T UL I TN ]

......
Y

M A" ak W 6 ¥Q_ MY

e

Ll

RS o

. PRI T A PRI T A B A IV PN At u . “* T a® . B i AT I Y T TR Jal Sl
ML ‘_w._-;.-‘i_fl_w.‘w‘.q..’_r-,?‘-«.w‘.). e T T e e e T e e e e AT T A B T R P
A Y L gt wla e, A, = =T = - et AP




P C O S o BTN (i A Pua St W pACE B A s ok i S S E e S M e R L A e L S R R A e

Appendix 3 AM  Discovery in Mathematics as Heuristic Search -239-

58. When checking boundary examples of a concept C,
ensure that every scrap of C.Defn has been used.

1t 1s often the tiny details in the definition that determine the precise boundary. Thus we
must look carefully to see whether Primes allows | as an example or not. A definition like
“numbers divisible only by | and themselves” includes 1, but this definition doesn't:
"numbers having precisely 2 divisors”. In the LISP program, this rule contains several
hacks (tricks) for checking that the definition has been stretched to the fullest. For example:
it the aefintion is of the form "all x in X such that..", then pay careful attention to the
boundary of X. That is, take the time to access X.Boundary-exs and X.Boundary-non-exs,
and check them against C.Defn.

59. When checking examples of C,
Ensure that each example satisfiec C.Defn, and each non~example fails it. The precise member
of C.Defn to use can be chosen depending on the example.

As described earlier in the text, definitions can have descriptors which indicate what kinds
of arguments they might be best for, their overall speed, etc.

60. When checking examples of C,
If an entry e is rejected (i.e, it is seen to be not an example of C after all), then remove e
irom C.Exs and consider inserting it on the Boundary non-examples face! of C.

There is a complicated® algorithm for deciding whether to forg * e entirely or to keep it
around as a close but not close enough kind of example.

61. When checking examples of C,
After an entry & has been verified as a bone fide example of C,
Check whether e is also a valid example of some direc: specialization of C,
It it is, then remove it from C.Exs, and consider adding it to the examples facet of that
specislization, and suggest the task of Checking examples of that specislization.

62. When checking examples of C,
If an entry e is rejected,
Then chack whether e is nevertheless a valid example of some generalization of C.
It it is, consider adding it to that concept's boundary-examples facet, and consider adding it te
the boundary non-examples facet of C.

This is similar to the preceding rule.
63. When chacking non-examples of C, including boundary non-examples,

Ensure that each one fails a definition of C. Otherwise, transfer it to the boundary examples
facet of C,

5 Not ne.essarily sophisticated. First, AM accesses the Worth of C From this it determines how many boundary non-
examples C deserves {o keep sround (and how many total hist cells it merits). AM compares these quotas
with the current number of (and size of) entries already listed on Cbdy-non-exs. The degree of need of
snother entry there then sets the "odds” for insertion versus forgetting. Finally s random number is
computed, and the odds datermine what range it must lie in for ¢ to be remembered.

R N T TP . st r T I TP L e R i LT T Ta T e
e Tt e S P L P - P IS . FE R e e T S e e R




L

L)

e ra

e

Appendix 3 AM Discovary in Mathematics as Heuristic Search -240-

64. When checking no~-examples of C, including boundary non-examples,
After an entry 4 has been verified as a bons fide non-example of C,
Chack whethur e is also 8 non-example of some direct generalization of C.
If it is, then remove it from C.Non-Exs, and consider adding it to the non-examples facet of
that generalization, snd suggest the task of Checking examples of that generalization.

65. When checking (boundary) non-examples of C,
It an entry e is rejected, that is if it turns out o be an example of C after all,
Then check whether e is nevertheless a non-example of some spacialization of C.
If it is, consider adding it to that concept's boundary non-examples facet.

This is similar to the preceding rule.

Appendix 3.2.3. Heuristics for the Con jecs facet of Any-concept

Any-concept . Conjecs ., Fillin

When the task is to look around and find con jectures dealing with concept C, the following
general rules may be useful.

66. if there is an analogy from X to C, and & nice item in X.Conjecs, formulste and test the
analogous conjecture for C.

Since an analogy is not much more than a set of substitutions, formulating the ‘analogous
con jecture' is almost a purely syntactic transformation.

67. Examine C.Exs for regularities.

What mysteries are lurking in the LISP code for this rule, you ask? Nothing but a few
special-purpose hacks and a few uitra-general hacks. Here is a slightly more specific rule for
you seekers:

68. Look at C.Exs, Pick one alement at random. Write down statements true about that example e.
Include a list of all concepts of which it is an example, all interests features it satisfies,
otc.

Then check each conjecture on this list against all other known examples of C. If any example
(except a boundary example) of C violates a conjectura, discard it.
Teke all the surviving conjectures, and eliminate any which trivally follow from other ones.

This is a common way AM uses: induce a conjecture from one example and test it on all
the rest. A more sophisticated approach might be to induce it by using a few examples
simultaneously, but I haven't thought of any nontrivial way to do that. The careful reader
will perceive that most of the con jectures AM will derive using this heuristic will be of the
form "X is unexpectedly a specialization of Y", or "X is unexpectedly an example of Y", etc.
Indeed, most of AM’s con jectures are really that simple syntactically.

69. Formulate a parameterized conjecture, a "template”, which gets slowly specialized or
instantisted into a definite conjecture.




Appendix 3 AM  Discovery in Mathematics as Heuristic Search -241-

AM has only a few trivial methods for doing this (e.g., introduce a variable initially and
find the constant value to plug in there later). As usual, they will be omitted here, and the
author encourages some research in this area, to turn out a decent set of general rules for
accomplishing this hypothesis template instantiation. The best effort to date along these
lines, in one specific sophisticated scientific field, is that of META-DENDRAL [Buchanan].

Any-concept . Conjecs . Check

70. If a universal conjacture (For all X's, ..) is contradicted by empirical data, gather the data
together and try to find s regularity in those exceplions.
If this succeeds, give the exceptions a name N (if they aren't already a concept), and rephrase
the conjecture (For all X's which are not N's..). Consider making X=N 2 new concept.

1
Again note how “active” this little checking rule can be. It can patch up nearly-true
con jectures, examine data, define new concepts, etc.

71. After verifying a conjecture for concept C,
See if it also holds for related concepls (e.g., a generalization of C).

There are of course bookeeping details not explicitly shown above, which are present in the
LISP program. For example, if conjecture X is true for all specializations of C, then it must
be added to C.Con jecs and removed from the Con jecs facets of each specialization of C.

Any-concept . Conjecs . Suggest

72. 1t X is probably related to ¥, but no definite connection is known,
it's worthwhile looking for a specific conjecture tying X and Y together.

How might AM know that X and Y are only probably related? X and Y may play the same
role in an analogy (eg., the singleton bag "(T)" and "any typical singleton bag" share many
properties), or they may both be specializations of the same concept Z (e.g, two kinds of
numbers), or they may both have been created in the same unusual way (e.g, Plus and
Times and Exponentiation are all creatable by repeating another operation).

Any-concept . Conjecs . Interest

73. A conjecture about X is interesting if X is very interesting.

74. A nonconstructive existence conjecture is intoresting.

Thus the unique factorization theorem is judged to be interesting because it merely
guarantees that some factoring will be into primes. If you give an algorithm for that
factoring, then the theorem actually loses its mystique and (according to this rule) some of
its value. But it increases in value due to the next rule.

.t A=
o AT ",
L R e e e




P
¥
» o

"

"

Ler
ol

£
T
LI

—
ren

g 8

s
a l. 1

,.m
L

LR
1

AT

.....

Appendix 3 AM Discovery in Mathematics as Heuristic Search -242-

75. A constructive existence conjecture is interesting if it is frequently used.

76. A conjecture C about X is interesting if the origin and the verification of C for each
specialization of X was quite independent of each other, and preceded C's being noticed
applicable to all X's.

This would be even more striking if proof techniques were known, and each specialized case
had a separate kind of proof. Many number theory results are like this, where there exists
a general proof only for numbers bigger than 317, say, and all smaller numbers are simply
checked individually to make sure they satisfy the con jecture. Category theory is built upon
practically nothing but this heuristic.

Appendix 3.2.4. Heuristics for the Analogies facet of Any-concept

Any-concept . Analogies . Fillin

77. To fill in sonjectures involving concept C, where C is analogous {o D,
Consider the analogue of each conjecture involving D.

78. It the current task involves a specific analogy, and the request is to find more conjectures,
Then consider the analog of each interesting conjecture about any concept involved centrally
in the analogy.

That is, this rule suggests applying the preceding rule fo each concept which is central to
the given analogy. The result is a flood of new conjectures. There is a tradeoff (explicitly
taken into account in the LISP version of this rule) between how interesting a con jecture
has to be, and how centrally a concept has to fit into the analogy, in order to determine
what resources AM should be willing to expend to find the analogous con jecture. Note that
this is not a general suggestion of what to do, but a specific strategy for enlarging the
analogy itself. If the new con jecture is verified, then not only would it be entered under
some Con jecs facet, but it would also go to enlarging the data structure which represents the

analogy.

79. Let the analogy suggest how {o specialize and generalize each concept into what is at least
the analog of a known, very interesting concept.

Like the last rule, this one simply says to use the analogy itself as the "reason™ for exploring
certain new entities, in this case new concepts. When the BagseNumbers analogy is made,
AM notices that Singleton bags and Empty bags are two interesting, extreme specializations
of Bags. The above rule then allows AM to construct and study what we know and love as
the numbers one and zero. The analogy is flawed because there is only one “one”, although
there are many different singleton bags. But just as singletons and empty bags have special
properties under bag opei.tions, so do 0,1 under numenc operations. This was one case
where 2n analogy paid off handsomely.




.....

Appendix 3 AM Discovery in Mathematics as Heuristic Search -243-

80. If it is desired to have an analogy between concepts X and Y, then look for two already-known
analogies between XeZ and Z«Y, for any Z.
If found, compose the two analogies and see if the resultant analogy makes sense.

Since the analogies are really just substitutions, composing them has a familiar, precise
meaning. This rule was never really used by AM, due to the paucity of analogies. The user
can push AM into creating more of them, and ultimately using this rule. A chain from
XeZeYeX can be found which presents a new, bizarre analogy from X to itself.

Any-concept . Analogies . Suggest

81. If an snalogy is strong, and one concept has a very interesting universal conjecture C (For all
x in B...), but the analog conjecture C' is false,
Then it's worth constructing the set of items in B' for which the conjecture holds. It's perhaps
even more interesting to isolate the set of exceplional slements.

With the AddeTimes analogy, it’s true that all numbers n>1 can be represented as the sum
of two other numbers {each of them smaller than n), but it is not true that all numbers (with
just a couple exceptions) can be represented as the product of other (hence smaller)
numbers. The above rule has AM define the set of numbers which can/can’t be so
represented. These are just the composite numbers and the set of primes. This second way
of encountering primes was very unexpected — both by AM and by the author. It expresses
the deep fact that one difference between Add and Times is the presence of primes only for
multiplication. At the time of its discovery, AM didn’t appreciate this fully of course.

82. If space is tight, and no use of the analogy has ever been made, and it is very old, and it takes

up a lot of space,
Then it is permissable to forget it without a trace.

83. if two valuable conjectures are syntactically identical, and can be made identical by a simple
substitution, then tentat vely consider the analogy which is that very substitution.

Thus the associative/commutative property of Add and Times causes them to be tied
together in an analogy, because of this rule.

84. If an analogy is very interesting and very complete,
Then spond some {ime refining it, looking for small exceptions. if none are found, see whether
the two situations are genuinely isomorphic.

85. If concepts X and Y are analogous, look for enalogies belween their specializations, or
between their generalizations,

This rule is not used much by AM, although the author thought it would be.

- e




Appendix 3 AM Discovery in Mathamatics as Heuristic Search -244-
Any-concept . Analogies . Interest

86. An analogy which has no discrepancies whatsoever is not as interesting as a slightly flawed
analogy.

87. An analogy is interesting if it associates (for the first time) two concepts which are each
unusaily fully filled out (having many conjectures, many examples, many interest
features, etc.).

Appendix 3.2.5. Heuristics for t enl/Spec facets of Any-concept

Any-concept . Genl/Spec . Fillin

88. To {ill in specializations of X, if it was very easy to find examples of X,
Grab some features which would indicate than an X was interesting (some entries from
X.Interest, or more remote Interest predicates garnered by rippling), and conjoin them
onto the definition of X, thereby creating s new concept.

Here’s one instance where the above rule was used: It was so easy for AM to produce
examples of sets that it decided to specialize that concept. The above rule then plucked the
interestingness feature "all pairs of members satisfy the same rare predicate” and con joined
it to the old definition of Set:. The new concept, Interesting-sets, included all singletons
(because all pairs of members drawn from a singleton satisfy the predicate Equal) and
empty sets.

89. To fill in generalizations of concept X,

Take the definition e, and replace it by a generalization of e. If @ is a concept, use @.Genl; if
e is a conjunction, then remove a conjunct or generalize® a conjunct; if @ is a
disjunction, then add s disjunct or generalize a disjunct; if @ is*negated, then specialize
the negate; if @ is an example of E, then replace @ by "any example of E"; if e satisfies
any property P, then replace o by "anything satisfving P"; if @ is & constant’, then
repiace o by a new variable (or an existing one) which could assume vaiue e; if e is a
variable, then enlarge its scope of possible bindings.

This rule contains a bag of tricks for generalizing any LISP predicate, the definition of any
concept. They are all syntactic tricks, however. ‘

90. To fill in generalizations of concept X, If some conjecture axists about "all X's and Y's" or “in
X or Y", for some other concept Y,
Create s new concept, a generalization of both X and Y, defined as their digjunction.

s 18, TacCuUr.

7 Of course it's unfikely that a concept is defined simply as & constant, but the preceding footnots shows that this little
program can be entered recursively, being fed s sub-axpression of the definition.
]




CaRirnaraAaT ol B a® o Mt agt fapw b g e e et av S0 NI R i it Rt e b it T i A A La i I s N SRR D s AL AN S A i R A R i A e LA

Appendix 3 AM  Discovery in Mathematics as Heuristic Search -245-

This rule contains another trick for generalizing any concept, although it is more
meaningful, more semantic than the previous rule’s tricks. Many theorems are true about
numbers with 1 or 2 divisors, so this might be one reasonable way to generalize Numbers-

with-1-divisor into a new useful® concept.

91. To fill in generalizations of concept X,
if other generaiizations Gl, G2 of X exist but are TOO general,
Creata a new concept, a generalization of X and a specialization of both Gl and G2, defined as
the conjunction of G1 and G2's definitions.

Thus when AM generalizes Reverse-all-levels into Reverse-top-level and Reverse-first-
eiement, the above ruie causes AM to create a new operation, which reverses the top level

and which reverses the CAR® of the original list. While not particularly useful, the reader
should observe that 1t 15 1n fact midway in generality between the original Reverse tunction
and the first two generalizations.

32 To fili 1n specializalions of concept X,

Tehe the definition @, and replace it by a specialization of 6. If e is a concept, use e.Genl; if
is & disjunction, then remove a disjunct or specialize a disjunct; if e is a conjunction,
then add a conjunct or specialize 8 conjunct; if e is negated, then generalize the
negate; if @ is "any example of £", then replace e by a particular example of E; if e is
"anyihing satisfying P", then replace e by a parlicular salisfier of P; if @ is a variable,
then repiace it by @ well=chosen constant or restrict its scope.

This rule contains a bag of tricks for specializing any LISP predicate, the definition of any
concept. They are all syntactic tricks, however. Note that the Lisp code for this rule will
typically call itself (recur) in order to specialize small pieces of the original definition.

93. To fill in specializations of concept X, If some conjecture exists sbout "ali X's which are also
Y's" or "in X and V'™, for some other concept Y,
Create a new concept, a specializ.ion of both X and Y, defined as their conjunction,

This rule contains another trick for specializing any concept, although it is more
meaningful, more senfantic than the previous rule’s tricks. Many theorems about primes
contain the condition "p>2"; 1e, they are really true about primes which are odd. So this
might be one reasonable way to specialize Primes into a new concept: by conjoining the
definitions of Primes and Odd-numbers, into the new concept Odd-primes. Here'’s another
usage of this rule: If AM had originally defined Primes to include ‘I’, then the frequency of
zon j)ectures where | was an exception would trigger this rule to define Primes more normally
p22).

94. To fill in specializations of concept X,
It other specializations S1, $2 of X exist but are TOO restriclive {o be interesting,
Create a new concept, a spacialization of X and s generalization of both S1 and $2, defined as
the disjunction of S1 and $2's definitions,

& ot least, several theorems will be stated more concisely using this new concept: Numbers with 1 or 2 divisors.
8 aiso the CAR of the CAR, stc, until 8 non-list is encountered.

“ e = e o= e o mem e mae m masie s ale e wie u v o
LIS P N e ————— T i




Tl I SR I

Appendix 3 AM  Discovary in Mathematice as Heuristic Search -246-

95. To fill in generalizations of concept X, when a recursive definition of X exists,
If the definition contains two conjoined recursive calis, replace them by a disjunction or
eliminate one call entirely.
It there is only one recursive call, disjoin & second call, this one on a different dastructive
function applied to the original argument. If the original destructive function is one of
{CAR,COR}, then let the new one be the other member of that pair.

AM uses the first part of this rule to turn Equal-lists into two variants of Same-length-as.
The second part, while surprisingly unused, could work on this definition of MEMBER: “A
(x,L) LISTP(L) and: [x=CAR(L) or MEMBER(x,COR(L))]", which is just "membership at the top
level of”, or € and transform it into this one of MEM, which represents membership at any

depth: "A(x,L) LISTP'O(L) and: [x=CAR(L) or MEM(x,COR(L)) or MEM(xCAR(L)])". The rule
noticed a recursive call on CDR(L), and simply dis joined a recursive call on CAR(L).

96. To fill in specializations of concept X, when a recursive definition of C exists,
it the definition contains two disjoined recursive calls, replace them by & conjunction or
eliminate one call entirely.
if there is only one recursive call, conjoin 8 second on another destructive function applied to
the original argument. Often the two recursions will be on the CAR and the CDR of the
original argument to the predicate which is the definition for X,

This is closely related to the preceding rule. Just as it turned the concept of ‘element of’ into
the more general one of ‘membership at any depth’, the above rule can specialize the
definition of MEMBER into this one, called AMEM: "\ (x,L) LISTP(L) and: [x=CAR(L) or:

[AMEM(x,CDR(L)) and AMEM(x,CAR(LN])".}}

97. To fili in specializations of concept X,
Find,, within a definition of X (at even parity of NOT's), an expression of the form “For some x
in X, P(x)", and replace it either by "For all x in X, P(x)", or by P(x ).

Thus "sets, all pairs of whose members satisfy SOME mterestmg predicate” gets specnahzed
into "sets, all palrs of whose members satisfy Equality”". The same rule, with "even parity"
replaced by "odd parity”, is useful for generalizing a definition. This rule is really 4
separaie rules, in the LISP program. The same rule, with the transformations going in the
opposite direction, is also used for generalizing. The same rule, with the transformations
reversed and the parity reversed, is used for specializing a definition. Here is that doubly-
switched rule:

98. To fill in specializations of concept X,
Find within a definition of X (st odd parity of NOT’s) an expression of the form "For all x in X,
P(x)", and replace it either by "For some x in X, P(x)", or by P(x ). Or replace “P(ec)",

where o is a constant, by "For some x in A, P(x)" where A is 3 concept of which o¢ is
on: sxample.

10 The interiisp function LISTP(L) tests whether or not L is a (nonnull) list,

H This operation is simost impossible to explain verbally. AMEM(x,L) means that x is an element of L, and for esch member
M of L before the x, M is an ordered structure and x is an element of M, and for each member N of M

before the x which is inside M,.. etc. Eg, <[x] [Scx ab> <cx>xd &> <x > x g h ) [<x i> x j] x k [I] m>.




U3e 50 e e T "B M

'; m—
> EUA LA P
CAPRFRRL PLPLN

:i

s T P
. ":‘x“‘u‘"lc
PPN

A

*
AT
LI B
PN

T SRR SR ENL a

Appendix 3 AM Discovary in Mathematics as Heuristic Search -247-

99. When creating in s specialization S of concept C,
Note that S.Geni should contain C, and that C.Spe¢ should contain §.

The analogous rule exists, in which all spec and genl are switched.

Any-concept . Genl/Spec . Suggest

100. After creating & new specialization S of concept C,
Explicitly look for ties between S and other known specializations of C,

For example, after AM defines the new concept of Numbers-with-3-divisors, it looks around
for ties between that kind of number and other kinds of numbers.

101. After creating a new generalization G of concept C,
Explicitly look for ties between G and other close generalizations of C.

For example, AM defined the new predicates Same-size-CARs and Same.size-CDRs'? as
two generalizations of Equality. The above rule then suggested that AM explicitly try to
find some connection between these two new predicates. Although AM failed, Don Knuth
(using a similar heuristic, perhaps) also looked for a connection, and found one: it turns out
that the two predicates are both ways of defining the relation we intuitively understand as
"having the same length as".

102, After creating a new specialization $ of concept C,
Consider looking for examples of S.

This has to be said explicitly, because all too often a conéept is specialized into vacuousness.

103. After creating a new generalization G of concept C,
Consider looking for non=-examples of G.

This has to be said explicitly, because all too often a concept is generalized into vacuous
universality. This rule is less useful to AM than the preceding one.

104. if concept C possesses some very interesting property lacked by one of its specializations S,
Then considering creating a concept intermediate in specialization between C and S, and see
whether that possesses the property.

This rule will trigger whenever a new generalization or specialization is created.

105. If concept S is now very interesting, and S was created as a specialization of some earlier
concept C
Give extra cou'uidontion to specializing S, and to specislizing concept C again (but in
different ways than ever before).

12 Two lists satisfy Same-size-CORs iff they have the same number of members. Two lists satisfy Sams-size-CARs iff
(when written out in standerd LISP notation) they have the same number of initial left parentheses and also
have the same first identifier following that last initial left parenthesis.




e T e S o 1 Bl i Mah i S A i e A S L 0 S R R & £ i S0 £ A W40 (AR o g px g gt AN AT S el AL S I SRR

7k

Appendix 3 AM  Discovery in Mathematics as Heuristic Search -248-

The next rule is the analog of the preceding one. They incorporate tiny bits of the
strategies of hill-climbing and learning from one's successes.

-

106, If concept G is now very interesting, and G was created as s generalization of some earlier
concept C
Give extra cons'ideration to genaeralizing G, and to generalizing C in other ways.

I:mw

TG

The analogous rules exist, for concepts that have become so boring they've just been
discarded:

107, if concept X proved to be a dead-end, and X was created as a pgeneralization of
(specialization of) some earlier concept C,
Give less consideration o generalizing (specializing) X, and to generalizing (spec:alizing) C in
other ways in the future.

Any-concept . Genl/Spec . Check

108. When checking s gensralization G of concept C,

Specifically test to ensure that G is not equivalent to C.

The easiest way is to examine the non-examples (especially boundary non-exampies) of C,
and look for one salisfying G; or examine the examples of G (esp. boundary) and look
for one failing to satisfy C.

If they appear to be the same concept, look carefully at G. Are there any specializations of G
whoce examples have never been filled in? If so, then by all means suggest looking for
such concepts’ examples before concluding that G and C are really equivalent.
if they are the same, then replace one by a conjecture.

If they are different, make sure that some boundary non-example of C (which is an
example of G) is explicitly stored for C.

This rule makes sure that AM is not deluding itself. When AM generalizes Numbers-with-
4 I.divisor into Numbers-which-equal-their-no-of-divisors, it still hasn’t gotten past the
E singleton set {1}. The con jecture in this case would be “T'Ae only number which equals its own

number of divisors is I". Typically, when a generalization G of C turns out to be equivalent
to C, there is theorem lurking around, of the form "All G’s also satisfy this property..",

3 where the property is the "extra” constraint present in C’s definition but absent from G’s.
E This rule also was used when AM had just found some examples of Sets. AM almost
believed that all Unordered-Structures were also Sets, but the last main clause of the rule
3 had AM notice that Bags is a specialization of Unordered-structures, and that the latter
4 concept had never had any of its examples filled in. As a result, AM printed out this
g message: "Almost concluded that Unordered-structures are also always Sets. But will wait
N until examples of Bags are found. Perhaps some Bags will not be Sets." In fact, examples
1 of Bags are soon found, and they aren’t sets.
.

109. When checking a specialization S of concept C,
Specifically test to ensure that $ is not equivalent to C.
If they are the same, then replace one by a conjecture.
i they are different, make sure ihat some boundary example of C (which is not an
example of S) is explicitly stored for C.

11 s o B o B

{ gim

\

L

i ik vl

k LR e R, e magme = e e A e ==~
E;— P R R R P L L LN Al Ak Tl Sl Mol . » Y




W e TR Te T e e TS Ty M MW T W W e e Y = T I T . I

Appendix 3 AM  Discovery in Mathematics as Heuristic Search -249-

This rule is similar to the preceding one. If adding a new constraint P to the definition
doesn’t change the concept C, then there is probably a theorem there of the form "All C's
also satisfy constraint P".

110. When checking a specislization S of a specialization X of & concept C,
if there exist other specs. of specs. of C,
then ensure that none of them are the same as S. This is especially worthwhile if the
specializing operators in each case were the same but reversed in order.

Thus we can add a constraint to C and collapse the first two arguments, or we can collapse
the arguments and add the constraint; either way, we get to the same very specialized new
concept. The above rule helps detect those accidental duplicates. E.g., Coalesced-Dom=Ran-
Compositions zre really the same as Dom=Ran-Coalesced-Compositions, and this rule would
suspect that they might be.

111. When checking the Genl or Spec facet entries for concept C,
ensure that C.Genl and C.Spec have no common member Z. Iif they do, then conjecture that C
and Z are actually equivalent.

In fact, this rule actually ensures that Generalizations(C) does not intersect
Specializations(C). If it does, a whole ‘cycle’ of concepts exists which can be collapsed into
one single concept. S=e also rule 114, below.

Any-concept . Genl/Spec . Interest

A}

112, A generalization of X is interesting if all the previously<known boundary non-examples are
now boundary examples of the concept,

A check is included here to ensure that the new concept was not simply defined as the
closure of the old one.

113, A specialization of X is interesting if all the previously-known boundary examples are now
boundary non=examboles of the new specialized concept,

A check is included here to ensure that the new concept was not simply defined as the
interior of the old one.

114. If Cl is a generalization of C2, which is a generalization of C3,.., which is 8 generalization of
Cj, and it has just been learned that Cj is & generalization of Cl,

DI G £ ORI wae 8-ab 4 A= 1 SCE S SN ELI-E SN AR SPESN puR g e Sl aF kAN R e gl e S o S N U P O USRS A S RIS S U Ve
.

Then all the concepts Cl,..,Cj are equivalent, and can be merged, and the combined concept

will be much more interesting than any single one, and the interestingness of the new
composite concapt increases rapidly with j.

The Lisp code has the new in‘erest value be computed as the maximum value of the old
concepts, plus a bonus which increases like the square of j. This is similar to rule number
28. A rule just like the precedinz one exists, with ‘Specialization’ substituted everywhere for
‘Generalization’. Thus a closed icop of Spec links constitutes a demonstration that all the
concepts in that loop are equivalent. These rules were used more frequently than expected.




U i i
nn -:-'—"J
L er )

L

i T Lt
— -y e
i AT

w4 [PLE

R

P

P,
8
Ed

It
e ‘l '0

'
S

-y g
ranc 2
LM r‘_ e

Yy

v
Fa N

by
Lo

a gr——
. e v
PR

[’i R T N R T L e e A L e R P N P 2R N Tl Yl DA B O a i falv Lo PO, § Ao T A% bl el iR o TACA LR et El e DA R E R BT HahT R - Beiia S50y RNt Whe § 211
.

Appendix 3 AM  Discovary in Mathematice as Heuristic Search -250-

Appendix 3.2.6. Heuristics for the View facet of Any-concept

Any-concept . View , Fillin

1185. To fill in View facet entries for X,
Find an interesting operation F whose range is X,
and indicate that any member of Domain(F) can be viewed as an X just by running F on it.

While trying to fill in the View facet of Even-nos, AM used this rule. It located the
operation Doubling, whose domain is Numbers and whose range is Even-nos. Then the rule
created a new entry: "to view any number as if it were an even number, double it". This is a
twisted affirmation of the standard corresponderice between natural numbers and even
natural numbers.

Appendix 3.2.7, Heuristics for the In-dom/ran-of facets of Any.concept

Any-concept . In-dom-of/In-ran-of ., Fillin

116. To fill in entries for the In-dom-of facet of concept X,
Ripple down the tree of concepls, starting at Active, to empirically determine which active
concepis can be run on X's.

This can usually be decided by inspecting the Domain/range facets of the Active concepts.
Occasionally, AM must actually try to run an active on sample X's, to see whether it fails or

returns a value.!3

117. To {ill in the In-ran-of facet of concept X,
Ripple down the tree of concepis, starting at Active, to empirically determine which active
concepts ¢an be run to yield X's.

This can usually be decided by inspecting the Domain/range facets of the Active concepts.
Occasionally, AM inspects known examples of some Active concept, to see if any of the
results are X's.

118. While filling in entries for the In-dom~of facet of X,
Look especially carefully for Operations which transform examples and non-examples into

each other;
This is even better if the operation pushes boundary exs/non-exs ‘across the boundary’,

This was used to note that Insert and Delete had a lot to do with the concept of Singleton.

13 One key feature of Lisp which permits this to be done is the Errorset feature.

R A e R R R = R R - v wm = ml = = = m e = % = = m s = = A




PR AR SRR L R et . aN IS A T R S AR A YEATL R A R e RN

Appendix 3 AM Discovery in Mathematics as Heuristic Search -251-

Appendix 3.2.8. Heuristics fo nition facet of -con

Any-concept , Defn . Suggest

119, If there are no known dafinitions for concept X,
Then it is crucial that AM spend some time looking for such definitions.

This situation might occur if only an Algorithm is present for some concept. In that case,
the above rule would suggest a new, high-priority task, and AM would then twist the
algorithm into a (probably very inefficient) definition. A much more serious situation would
occur if a concept were specified only by its Intuition entries (created, eg., by modifying
another concept’s intuitions). In that case, rapidly formulating a precise definition would be
a necessity. Of course, this need never arose, since all the intuitions were deleted.

Any-concept . Defn , Check

120. When checking the Definition facet of concept C,
Ensure that each mamber of C.Exs satisfies all definitions present, and each non-example fails
all definitions. If there is one dissenting definition, modify it, and move the offending
example {0 the boundary.

There is little real "checking” that can be done to a definition, aside from internal
consistency: If there exist several suposedly-equivalent definitions, then AM can at least
ensure they agree on the known examples and non-examples of the concept. If the Intuitions
facets were permitted, then each definition could be checked for intuitive appeal.

121. When checking the Definition facet of concept C,
Try to find and eliminate any redundant constraints, try to find and eliminate any circularity,
check that any recursion will terminate.

Here are the other few tricks that AM knows for "checking” a definition. For each clause in
the rule above, AM has a very limited ability to detect and patch up "bugs” of that sort.
Checking that recursion will terminate, for example, is done by examining the argument to
the recursive call, and verifying that it contains (at some level before the original argument)
an application of a LISP function on Destructive-LISP-functions-list. There is no intelligent
inference that is going on here, and for that reason the process is not even mentioned
within the body of this document.

AT BTSSR IE T A

R AL I EW EA LALN LR BEY |




L

B

¥

ooy
v
»

T
. .

Lk
P,

TR T T N A R T F T R YL R IR T R TR T Y E TR TR T T E T

Appendix 3 AM Discovary in Mathematics as Heuristic Search -252-

Appendix 83. Heuristics for dealing with any Active concept

All the rules below are applicable to tasks which involve operations, predicates, relations,
functions, etc. In short, they apply to all the concepts AM knows about which involve doing
something, which involve action.

Active . Fillin

122. If the current task is to fill in examples of the activity F,
One way to get them is to run F on randomly chosen examples of the domain of F.

Thus, to find examples of Equality, AM repeatedly executed Equality.Alg on randomly
chosen pairs of objects. AM found examples of Compositions by actually picking a pair of
operations at random and trying to compose them. Of course, most such "unmotivated”
compositions turned out to be uninteresting.

123. While filling in examples of the activity F, by running F.Algs on random arguments from
F.Domain
it is worth tha’ effort to specifically include extreme or boundary examples of the domain of
F, among the argumenis on which F.Algs is run.

124. To fiil in a Domain entry for active concept F,
Run F on various entities, rippling down the tree of concepls, to determine empirically where
F seems to be defined.

This may shock the reader, as it sounds dumb and explosive, but the concepts are arranged
in a tree (using Genl links), so the search is really quite fast. Although this rule is rarely
used, it always seems to give surprisingly good results.

125. To fill in genaralizations of active F,
Consider just extending F, by enlarging its domain, Revise F.Defn as little as pessible.

Although Equality is initially only for structures, AM extends it (using the same definition,
actually) to a predicate over all pairs of entities.

126. To fill in specisiizations of aclive F,
Consider just restricting F, by shrinking its domain. Check F.Defn to see if some optimization
is possible.

127. After an slgorithm is known for F, if AM wants a better one,
AM is permitted to ask the user to provide a fast but opaque algorithm for F.

This was used a few times, especially for inverse functions. A nontrivial open-ended
research problem (x)' is to collect a body of rules which transform an inefficient algorithm

14 Following Knuth, we shall reserve » star (::x) for those problems which are quite difficult, which should take the reader
roughly 3 full lifetimes to master. Readers not belisving in rencarnation should therefore skip such
problems.




e
e Yo 0
BT s ot

40
4

Sty

.Y
3 ')’":l v, ‘r‘
LA

P
by ¥

*y
"

Appendix 3 AM Discovary in Mathematics as Heuristic Search -253-

into a computationally acceptable one.

128. If the current task is to fill in boundary (non<)examples of the activity F,
One way to get them is to run F on randomly chosen boundary oxamplu and (with proper
safeguards) boundary non-examples of the domain of F,

Proper safeguards are required to ensure that F.Algs doesn't loop or cause an error when
fed a slightly-wrong (slightly-illegal) argument. In LISP, a timer and an ERRORSET
suffice as crude safeguards.

129, If the current task is to fill In (boundary) non-examples of the activity F,
One low=intsrest way to ge! them is to run F on randomly chosen examples of its domain,
and then replace the value obtained by some other (very similar) value. Also, be sure
to check that the resultant i/o pair doesn't accidentally satisty F.Defn.

The parentheses in the above rule mean that it is really two rules: for boundary non-
examples, just change the final value slightly. For ¢ypical non-examples, change the resuit
significantly. If you read the words inside in the parentheses in the IF part, then read the
words inside the parentheses in the THEN part as well, or omit them in both cases.

Active ., Check

130. When checking an algorithm for active F,
run that algorithm and ensure that the input/output satisfy F.Defn,

131. When checking a definition d for active concept F,
Run one of its aigorithms and ensure that the input/output satisfy d.

This is the converse of the preceding rule. They simply say that the definition and
algorithm facets must be mutually consistent.

132. While checking examples o.r boundsry examples of the active concept F,

Ensure that each input/output pair is consistant with F.Dom/range.
If the domain/range entry is <D1 D2.. Dk - R>, and the i/o pair is <d; dg.. dy , r>, then
each component d; of the input must be an example of the corresponding Di, and the
output r must be an example of R.

133. When checking examples of the active concept F,
If any argument(s) to F were concepts, tag their in-domain~of facets with 'f’,
If any values produced by F are concepts, tag their In-range-of facets with ‘F’.

For example, Restrict{Union) produced Add, at one time in AM’s history. Then the above
rule caused ‘Restrict’ to be inserted as a new entry on Union.In-dom-of and also on Add.In-
ran-of.




AT H T TR T AR A RO R FLRL I L L WMWY U A STV S T o T

Appendix 3 AM  Discovary in Mathematics as Heuristic Search -254-
Active . Suggest

134. if there are no known algorithms for active concept F,
Then AM should spend some time looking for such aigorithms.

This situation might eccur if only a Definition is present for some operation. In that case,
the above rule would suggest a new, high-priority task, and AM would then twist the
definition into a (probably very inefficient) algorithm. The rule below is similar, for the
Domain/range facet:

135. If the Domain/range facet of active concept F is biank,
Then AM should spend some time locking for specifications of F's domain and range.

136. i & Domain of active concept F is encountered frequently, either within conjectures or as the
domain or range of other operations and predicates,
Ther: define that Domain as a separate concept, and raise the Worth of F slightly.

The ‘Domain’ here refers to the sequence of components, whose cartesian product is what is
normally referred to in mathematics as the domain of the operation. This led to the
definition of "Anything x Structures”, which is the domain of several Insertion and Deletion
operations, Membership testing predicates, etc.

137. It is worthwhile to explicitly calculate the value of F for all distinguished (extreme, boundary,
interesting) members of and subsets of ite domain.

138. If some domain component of F has s very interesting specialization,
Then consider restricting F (slong that component) to that smaller domain.

Note that these last couple rules deal with the image of interesting domain items. The pext
rule deals with the !nverse image (pre-imag.) of unusual range itcms. We saw earlier in this
document (Chapter 2) how this rule led to the definition of Prime numbers.

1389. If the range of F contains interesting items, or an interesting specialization,
Then it is worthwhile to consider their inverse image under F.

140. When trying to fill in new Algorithnis for Active concept F,
Try to transform any conjectures about F into (pieces of) new aigorithms.

This is one place where a sophisticated body of transformation rules might be inserted.
Others are working on tkis problem [Burstall & Darlington 75), and AM only contains a
few simple tricks for turning con jectures into procedures. For example, "All primes are odd,
except 2", is transformed into a more eficient search for primes: a separate test for x=2,
followed by a search through unly Odd-numbers.

141. After trying in vain to {ili in examples of active concept F,
Locate the domain of F, and suggest that AM try to fill in examples for each component of
that domain,




Appendix 3 AM  Discovery in Mathematics as Heuristic Search -2565-

Thus after failing to find examples for Set-union, AM was told to find examples of Sets,
because that could have let the previous task succeed. There is no recursion here: after the
sets are found, AM will not automatically go back to finding examnles of Set-union. In
practice, that task was eventually proposed and chosen again, and succeeded this time.

142, After working on an Active concept F,
Give a slight, ephemaral boost to tasks involving Domain(F): give a moderate size boost to
each task which asks to fill in examples of that domain/range component, and give a
very tiny boost to each other task mentioning such a concept.

This is both a supplement to the more general "focus of attention” rule, and a nontrivial
heuristic for finding valuable new tasks. It is the partial converse of rule 14.

Active , Interest

143. An active concept F is interesting if there are other operations with the same domain as F,
and if they ars (on the sverage) fairly interesting. If the other operations' domain is
only similar, then they must be very interesling and have some valuable conjectures
tied to them, if they are 1o be allowed to push up F's interestingness rating.

The value of having the same domain/range is the ability to compose with them. If the
domain/range is only similar, then AM can hope for analogies or for partial compositions.

144, An active concept is interesting if it was recently created.

This is a slight extra boost given to each new operation, predicate, etc. This bonus decays
rapidly with time, and thus so will the overall worth of the concept, unless some interesting
property is encountered quicxly.

145, An active concept is interesting if its domain is very intaresting.

An important common caie of this rule is when the domain is interesting because all its
members are equal to each other. The corresponding statement about ranges does exist, but
only operations can be said to “ave a specific range (not, eg. Predicates). Therefore, the
‘range’ rule is listed under Operation.Interest, as rule number 165.




o

F)’q‘ :"1

e g
S

| ) .
celihyd

vr("‘x & ey

S S A AL S A LR A

Appendix 3 AM Discovary in Mathematics as Heuristic Search ~256-

Appendix 3.4. Heuristics for dealing with any Predicate

Each of these heuristics can be assumed to be prefaced by a clause of the form "If the
current task is to deal with concept X, wherc X isa Predicate,.”. This will be repeated
below, for each rule.

Predicate . Fillin

146. If the current task was (Fill=in examples of X),
and X is a predicate,
and more than 100 items are known in the domain of .,
and at least 10 cpu seconds were spent trying to randomly instantiate X,
and the ratio of successes/failures is both >0 and less than 05
Then add the following task to the agenda: (Fill-in generalizations of X), for the following reason:
"X is rarely satistied; a slightly less restrictive concept might be more interesting".
This reason’s rating is computed as three times the ratio of nonexamples/examples found.

This rule says to generalize a predicate if it rarely succeeds (returns T). One use for this
was when Equality was found to be quite rare; the resultant generalizations did indeed turn
out to be more valuable (numbers). A similar use was found for predicates which tested for
identical equality of two angles, of two triangles, and of two lines. Their generalizations
were also valuable (congruence, similarity, parallel, equal-measure). Most rules in this
appendix are not presented with the same level of detail as the preceding one, as the reader
has no doubt observed.

147. To fill in Domain/range entries for predicate P,
P can operate on the domain of any specialization of P,
P can operate on any specialization of the domain of P,
P can operate on some restriction of the domain of any generalization of P,
P may be able to operate on some enlargement of its current domain,
The range of P will necessarily be the doubleton set {T,F},
P is guaranteed returr T if any of its specializations do, and F if any of ils generalizations do.

This contains a compiled version of what we mean when we say that one predicate is a
generalization or specialization of another. Viewed as relations, as subsets of a Cartesian-
product of spaces, this notion of general/special is just that of superset/subset. The last line
of the rule is meant to indicate that adding new constraints onto P can only make it return
True less frequently, while relaxing P's definition can only make it return True more often.

Predicate . Suggest

148. if all the values of Active concept F happen to be Truth-values, and F is not known to be a
predicate,
Then conjecture that F is in fact s predicate.

This rule is placed on the Suggest facet because, if placed anywhere else on this concept, it
could only be seen as relevant by AM if AM already knew that F were a predeicate. On
the other hand, the rule can’t be placed, eg., on ActiveFillin, since just forgetting (deleting)




W aaT et L TR TN M T xR T PR A N R AN R N g PR LR UMAKLUNUN LY DR RS AR IR KT R T U Lo T A IR VROV NS

Appendix 3 AM  Discovery in Mathematice as Heuristic Search -257-

this "Predicate” concept should be enough to delete all references to predicates anywhere in
the system.

Predicate . Interest

149. A praedicate P is interesting if its domain is Any-concept (the space of all known concepts).
This is especially true if there is a significant positive correlation (theoretical or
empirical) between concepts’ worths and their Pevalues.

This very high level heuristic wasn't really used by AM during its runs.




T TN T AT N 1 R IR, T

e i e PV B i SR R oy il ra b v e i U D Wi A i ek e £ F it S i e = A i Bl i I S EA S AR S I A Rri abicd, b A SR A |

Appendix 3 AM  Discovery in Mathematics as Heuristic Search -258-

Appendix 3.5. Heuristics for dealing with an atio

Operation , Fillin

150. To fill in examples of operation F (with domain A and range B),
when many examples o¢ of A are already known,
and F maps some of those examples o¢ into distinguished members (esp: extrema) b of B,
Then (for each such distinguished member "b"¢B) study F~}(b) 2s a new concept. That is,
isolate those members of A whose F-value is the unusual item beB.

This rule says to investigate the inverse image of an unusual item b, under the interesting
operation f. When b=2 and f=number-of-divisors-of, this rule leads to the definition of

prime numbers. When b=Phi'® and f=Intersection, the rule led to the discovery of the
concept of disjointness of sets.

151. To fill in Domain/range entries for operation F,

F can operate on the domain of any specialization of F,

F can operate on the specialization of the domain of any specialization of F (including F
itself)

F can Oper'ate on some restriction of the domain of any generalization of F, at least on its
current domain and perhaps even on a bigger space,

F may oe able 1o operate on some generalization of (some component(s) of) its current
domain

F can only (;nd will always) produce valuss lying in the range of each generalization of F,

F can == with the proper arguments == produce values lying in the range of any particular
specialization of F.

There are only a few changes between this rule and the corresponding one for Predicates.
Recall that Operations can be multi-valued, and those values are not limited to the set
{T,F}.

152. To fill in Domain/range entries for operation F, when some exist alrsady,
Take an entry of the form <DI D2.. Dn < R> and see if DixR is meaningful for some i
(especially: i=n). '
If 0, then remove Di from the left side of the entry, and replace R by DixR, and modify the
definition of F.

In LISP, "meaningful” is coded as: either DixR is equivalent to an already-known concept,
or else it is found in at least two interesting con jectures, This is probably an instance of
what McDermott calls natural stupidity“’. This rule is tagged as being explosive, and is not
used very often by AM.

153. To {ill in a Range entry for operation F,
Run F on various domain examples, especially boundary examples, to collect examplas of the
range. Then ripple down the tree of concepls to determine empirically where F seems
fo te sending its values.

15 ihe smpty set, NIL, {}

i6 Ses {McDermott 76) for natural stupidity. He criticizes the use of very intelligent-sounding names for otherwise-simple
program modules. But consider "Homo sapisns®, which means "wise man”. Now there’s s misleading label..




o i

Joagr wd LA TR LR R LR LATUR TR T T A L EITANTRIAT YT YT

Appendix 3 AM  Discovery in Mathematics as Heuristic Search -259-

This may shock the reader, as it sounds dumb and explosive, but the concepts are arranged
in a tree (using Genl links), so the search is really quite fast. Although this rule is rarely
used, it always seems to give surprisingly good results.

154, If operation F has just been spplied, and has yielded a new concept C &3 its result,
Then carefully examine F.Dom/range to try to find out what C.isa should be. C.iss will be sll
legal entries listed as values of the range of F.

When F=Compose, say AM has just created C=Emptyolnsert.'” What is C? It is a concept,
of course, but what else? By examining the Domain/range facet of Compose, AM finds the
entry <Active Active -+ Active>. Aha! So C must be an Active. But AM also finds the entry
<Predicate Active - Predicate>. Since "Empty" is a predicate, the final composition C must
also be a predicate. So C.Isa would be filled in with "Predicate”. AM thus used the above
rule to determine that EmptyoInsert was a predicate. Even if this rule were excised, AM
could- still determine that fact, painfully, by noticing that all the values were truth-values.

Y

; }_ 155. If operation F has just been appliec; o Al,A2,., and has yielded 8 new concept C as its
. result

Sl Then add F" to C.In~ran-of; add F to the In=dom-of facet of all the Ai's which sre concepts;
o add <Al.. = C> {o F.Exs,
,7
- There is some overlap here with earlier rules, but there is no theoretical or practical
e difficulty with such redundancy.
} 156. When filling in examples of operation F, if F takes some existing concepts Al, A2,.. and
T (may) produce a new concept,
{- Then only consider, as potentisl A/'s, those concepis which siresdy have some examples.
- Prefer the Aj's to be interesting, to have a high worth rating, to have some interesting

conjectures about them, to have several examples and several non-examples, etc.

The danger here is of, eg., Composing two operations which turn out to be vacuous, or of
Con joining an empty concept onto another, or of proliferating variants of a boring concept,

9 etc.

P Operation , Check

b

SN

Below are rules used to check existing entries on various facets of operations.

%; 17 i, insert x into a structure S and then ses if S is empty. This leads AM to resiize that inserting can never resuit in an
e ompty structure.
283 ;,,:




Appendix 3 AM  Discovery in Mathematicr as Heuristic Search -260-

157. To check the domain/range entries on the cperation F,
IF a domain/range antry has the form (D D D... = R),
and all the D's are equal, and R is a generalization of D (or, with less enthusiasm: if R and D
have a significant overlap),
THEN it's \\;?rlh seeing whether (D D D.. = D) is consistent with all known examples of the
operation:
it tho;'o are no known examples, add a task to the agenda requesting they be filied
n
If there are examples, and (D D D.. = D) is consistent, add it to the Domain/range
facet of this operation.
if there are some contradicling examples, create 8 new concept which is defined
s this operation restricted to (D D D... = D).

When AM restricts Bag-union to numbers (bags of T's), the new operation has a
Domain/range entry of the form {Numbers Numbers » Bag). The above rule has AM
investigate whether the range specification mightn't also be narrowed down to Number. In
this case it is a great help. The rule often fails, of course: the sum of two primes is rarely a
prime, the cross-product of two lists-of-atoms is not a list-of-atoms, etc. Since this rule is
almost instantaneous to execute, it's cost-effective overall.

158, When checking the domain/range eniries on the operation F,
IF a domain/range entry has the form (D D D.. = R),
and all the D's are equsl, and R is & specialization of D,
THEN it's wortth inserting (D D D... = D) as a new enlry on F.Dom/ran, even though that is
redundant.

This shows that symmetry and aesthetics are sometimes preferable to absolute optimization.
That's why we program in Lisp, instead of machine language. On the other hand, this rule
wasn't really that useful to AM. Now, by analogy,..?

159. When checking the Domain/range entries for operation F,
Ensure that the boundary items in the range can actually be resached by F. If not, see
whether the range is reslly just some known specialization of F.

This rule is a typical checking rule. Note that it is active, not passive: it might alter the
Domain/range facet of F, it it finds an error there.

160. When checking examples of the operation F, for each such example,
If the value returned by F is a concept C, add 'F’ to Cin-range-of.

Operation . Suggest

161. Whenever the domain of operation F has changed,
check whether the range has aiso changed. Often the range wili change analogously to the
domain, where the operation itself is the Analogy.

i62. After working on Operation F,
Give a slight, ephemeral boost to tasks involving Range(F).

..........................................
...........




RN S R R AL S AN ke AR R A S e A Ve S S FE A AR SR A B ) i T N TR ML VR Ve R i ve i al e Rl o X aa ot ial Spdl A iut ael n i il S v Al

Appendix 3 AM  Discovery in Mathematics as Heuristic Search . -261-

This wil be a moderate size boost for each task which asks to fill in examples of that range
concept, and a very tiny boost for each other task mentioning such a concept. This is both
a supplement to the more general "focus of attention” rule, and a nontrivial heuristic for
finding valuable new tasks. It is an extension of rule number 142, and a partial converse to
rule 14,

Operation . Interest

163. An operation F is interesting if there are other operstions with the same domain and range,
and if they are (on the average) fairly interesting.

164, An operation F is interesting if it is the first operation connecting its domain concept to its
range concept, and if those domain/range components are themseives valusble
concepts, and there is no analogy between them, and there are some interesting
conjectures involving the domain of F.

The above two rules say that F can be valuable becuase it's similar to other, aiready-liked
operations, or because it is totally different from any known operation. Although these two
criteria are nonintersecting, their union represents only a small fraction of the operations
that get created: typically, neither ruie will trigger.

165, An operation F is interesting if ils range is very interesting.

Range here refers to the concept in which all results of F must lie. It is the R in the
domain/range facet entry <D .- R> for concept F. The corresponding rule for ‘domains’ is
applicable to any Active, not just to Operations, hence is listed under Active.Interest, as rule
number 145. :

166. An operation F is interesting if the values of F satisfy some unusual property which is not (in
general) selistied by the arguments to F.

Thus doubling is interesting because it always returns an even number. This is one case
where the interesting property can be deduced trivially just by looking at the domain and
range of the operation: Numbers-Even-nos,

167. An operation is interesting if ils values are inferesting.

This can mean that each value is interesting (eg., Compose is well-received because it
produc.s many new, valuable concepts as its values). Or, it car mean that the operations’
values, gathered together into one big set, are interesting as a set. Unlike the preceding rule,
this one has no mention whatsoever of the domain items, the arguments to the operation.
This rule was used to good advantage frequently by AM. For example, Factorings of
numbers are interesting because (using rule 232) for all x, Factorings(x) is interesting in
exactly the same way. Namely, Factorings(x), viewed as a set, always contains precisely one
item which has a certain interesting property (see rule 233). Namely, all its members are
primes (see ruie 282 again). This explains one way in which AM noticed that aii numbers
seem to factor uniquely into primes.




2o B A el AT S P B Pl Sl T e AV A N I AN R TR R ) S il A A T bR L A LA A e U C R S R A i L A S AVl P T e A A T Sl |

Appendix 3 AM Discovary in Mathematics as Heuristic Search -262-

168. An operation is interesting if its vslues are interesting, ignoring the images of boundary
items from the domain.

That is, if the image of the domain — minus its boundary — is interesting.

169. An operation is interesling if its values on the boundary items from the domain are very
interesting. ignore the non-boundary parts of the domain,

That is, if the image of the boundary of the domain is interesting.

170. An operation is interesting if it leaves intact any interesting properiies of its argument(s).
This is even better if it eliminates some undesirable properties, or adds some new,
desirable ones.

Thus a new, specialized kind of Insertion operation is interesting if, even though it stuffs
more items into a structure, the nice properties of the structure remain. The operation
"Merge" is interesting for this very reason: it inserts items into an alphabetized list, yet it
doesn’t destroy that interesting property of the list.

171. An operation is interesting if its domain and range are equal. If there is more than one
domain component, then at least one of them should equal the range. The more
componenis which are equal to the range, the better.

Thus "Insertion” qualifies here, since its domain/range entry is <Anything Structures -
Structures>. But "Union" is even better, since both domain components equal the range,
namely Structures.

172. An operation is mildly interesting if its range is related somehow (e.g. specialization of) to
one or more components of its range. The more the better.

A weakened form of the preceding rule.

173. If the result of applying operation F.is a new concept C,
Then the interestingness of F is weakly tied fo that of C,

If the new concept C becomes very valuable, then F will rise slightly in interest. If C is so
bad it gets forgotten, F will not be regarded quite as highly. When Canonize scores big its
first time used, it rises in interest. This caused AM to form poorly-motivated canonizations,
which led to dismal results, which gradually lowered the rating of Canonize to where it was
originally.

D T ..
- }\_ _.:1.{_ J \q W ,« . 'w
S A 'L_.!__L_A‘.i.l._\__s_\_“ J



L AN AL A

Appendix 3 AM Discovery in Mathematics as Heuristic Search -263-

Appendix 36. Heuristics for dealing with any Composition

Composition . Fillin

174. To fill in algorithms for operation F, where F is a composition GoH,
One algorithm is: apply H and then apply G to the result.

Of course this rule is not much more than the definition of what it means to compose two
operations.

175. To fill in Domain/range entries for operation F, where F is & composition GoH,
Tentatively assume that the domain is Domain(H), and range is Range{(G). More precisely, the
domain will be the result of substituling Domain(H) for Range(H) wherever Range(H)
appears (or: just once) in Domain(G).

Thus for F=DividesoCount, where Divides:<Number,Number - {T,F}>, and Count:<Bag -
Number>, the above rule would say that the domain/range entries for F are gotten by
substituting ‘Bag’ for ‘Number’ once or twice in Domain(Divides). The possible entries for
F.Dom/range are thus: <Bag,Bag -+ {T ,F}>, <Number,Bag » {T,F}>, and <BagNumber -»
{TFp.

176. To fill in Domain/range entries for operation F, where F is a composition GoH, But Range(H)
does not occur as a component of Domain(G),

The range of F is slill Range(G), but the domain of F is computed as follows: Ascertain the
component X of Domain(G) having the biggest (fractional) overlap with Range(H). Then
substitute Domain(H) for X in Domain(G). The result ic the value to be used for
Domain(F).

This rule is a second-order correctirn to the previous one. If there is no absolute equality,
then a large intersection will suffice. Notice that F may no longer be defined on all of its
domain, even if G and H are. If identical equality is taken as the maximum possible
overlap betwen two concepts, then this rule can be used to replace the preceding one
completely.

177. When trying to fill in the Isa entries for a composition FxGoH,
Examine G.lsa and H.ss, and especially their intersection. Some of those conceptis may also
claim F as an example. Run their definition facet 1o see.
To see how this is encoded into LISP, turn to page 218.

178. When trying to fill in the Genl or Spec entries for a composition F=GoH,
Examine the corresponding facet on G and on H.

This rule is similar to the preceding one, but wasn’t as useful or as reliable.

179. A satisfactory initisl guess at the Worth value of composition FaGoH is the root-sum-of-
squares of G.Worth and H.-Worth,

1 PR
o S S e

L

'.‘l '(l :.l' :
LA D e

“
.llx
¥

------

“ m - m e ros
e e A M TN
- -,I.){gl“la

)
wt T

'



i
m’
4
o

“
- ‘ -

iy

e
e
8 A

S
o

ey
R

i.
b
i

W,

Appendix 3 AM Ducovery in Mathematics as Heuristic Search -264-

180. To fill in examples of F, whare FsGoH, and both G and H are time-consuming, but where
many examples of both G and H exist,
Seek an example x-)y of H, and an axample y-z of G, and than return x-2z as a probable
example of F.

Above, ‘seek’ is done in a tight, efficent manner. The examples are H are hashed into an
array, based on the values y of each one. Then the arguments of the examples of G are
hashed to see if they occur in this array. Those that do will generate an example of the new
composition.

181. To fill in examples of F, where FxzGoH, and G is limeconsuming, but many examples of G exist,

and it is not known whether H is time=consuming or not,

Spend & momant {rying to access or trivially fill in examples of H,

If this succeeds, apply the preceding rule.

if this fails, then formally propose that AM fill in examples of H, with priority equail to that of
the current task, for these two reasons: (i) if examples of H existed, then AM could
have used the heuristic preceding this one, to fill in examples of F, and (ii) it is
dangerous to spend a long time dealing with GoH before any examples at all of H are
known,

This rule is of course tightly coupled to the preceding one. The same rule exists for the
case where just H is time-consuming, instead of G.

182. When trying to fill in Conjecs about a composition FaGoH,
Consider that F may be the same as G (or the same as H).

It was somewhat depressing that this ‘stupid’ heuristic turned out to be valuable, perhaps
even necessary for AM's top performance.

Composition . Check

183. Check that FoG is really not the same as F, or the same as G. Spend some time checking
whether FoG is equivalent {o any already-known active concept.

This happens often enough to make it worth stating explicitly. Often, for example, F will
not even bother looking at the result of G! For example,
Proj2cSquare(x,y) = Proj2(Square(x)y) = y = Proj2(x.y).

184. When checking the Algorithms entries for a composition F=GoH,
If range(H) is not wholly contained in the domain of G,
then the algorithm must contain 8 "legality” chack, ensuring that H(x) iz a valid member of
the domain of G.

-----
.......




Appendix 3 AM Discovary in Mathematics as Hauristic Search ~265-

Composition , Suggest

185. Given an interesting operation F:AM=A,
consider composing F with itselt.

This may result in more than one new operation. From F=division, for example, we get the
two operations (x/y)/z and x/(y/z). AM quickly realizes that such variants are really
equivalent, and (if prodded) eventually realizes that F(F(xy)z)=F(x,F(y,2)) is a common
situation (which we call associativity of F). .

186. If the newly=-formed domain of the composition F=GoH contains more than one occurrence of
the concept D, and this isn't true of G or H,
Then consider creating a new operation, & specialization of F, by Coalescing the
domain/range of F, by eliminating one of the D components.

Thus when InsertoDelete is formed, the old Domain/range entries were both of the form
<Anything Structure - Structure>. The newly-created entry for InsertoDelete was <Anything
Anything Structure - Structure>; i.e, take x, delete it from S, then insert y into S. The
above rule had AM turn this into a new operation, with domain/range <Anything Structure
- Structure>, which deleted x from S and the inserted the very same x back into S.

Composition , Interest

187. A composition FxGoH is interesting if G and H ars very interesting.

188. A composition FuGoH is interesting if F has an interesting property not possessed by either
GorH

189. A composition FeGoH is interesting if F lias most of the interesting properties which are
possessed by either G or H. This is slighlly reduced if both G and H possess the
property.

Pt
AP

190. A composition FsGoH is interesling if F lacks any undesirable properties true of G or H. This
is greatly increased if both G and H possess the bad property, unless G and H are very

closely related to each other (e.g., HeG,or HaG™!).

«

The numeric impact of each of these rules was guessed at initially, and has never needed
tuning. Here is an area where experimentation might prove interesting.

181. A composition FxGoH is interesting if F maps interesting subsets of domain(H) into interesting
subsets of range(G).
F is to be judged even more interssting if the image was not thought to be interesting until
sfter it was explicitly isolated and studied because of part 1 of this very rule.

Here, an “interesting” subset of domain(H) is one so judged by Interests(domain(H)). A
completely different set of criteria will be used to judge the interestingness of the resultant




L7 W T T W W T WY e e e (et oW v o W m o od W

o pord
v

13

Appendix 3 AM Discovery in Mathematics as Hauristic Sesrch -266-
L image under F. Namely, for that purpose, AM will ask for range(G).Interest, and ripple
5 outwards to look for related interest features.
192. A composition F=GoM is interesting if F! maps interesting subseis of range(G) into
15 interesting subsels of domain(F).
> This is even better if the preimage wacn't hitherto realized as interesting.
P This is the converse of the preceding rule. Again, interesting” is judged by two different
b sets of criteria.
193. A composition F=GoH is interesting if F maps interesting olements of domain(H) into
[:.f interesting s!:bsets of range(G).
x 194, A composition FsGoH is interesting if F-! maps interesting elements of range(G) into
- interesting subsets of domain(F).

This is aven better if the subset is only now seen to be interesting.

E' This is the analogue of an earlier rule, but for individual items rather than for whole
- subsets of the domain and range of F.

[ 195. A composition FaGeH is interesting if range(H) is equal 1o, not just intersects, one component
i of domain(G).

L 196. A composition FsGoH is mildly interesting it range(H) is & specizlizetion of one component of
- domain(G).

. This is a weakened version of the preceding feature. Such a composition is interesting

i-f. because it is guaranteed to always be applicable. If Range(H) merely intersects a domain

& component of G, then there must be an extra check, after computing H(x), to ensure it lies
within the legal domain of G, before trying to run G on that new entity H(x).

g 197. A cdmposilion FsGoH is more interesting if range(G) is equal to a domain component of H.

i This is over and above the slight boost given to the composition because it is an operation
r- whose domain and range coincide (see rule 171).

dix 3.7. istics for dealing with any Insertion

Insertion . Check

h————,

198. When checking an example of any kind of insertion of x into S,
Ensure that x is a member of S,

E:: «  The only types of insertions known to AM are unconditional insertions, so this rule is valid.
- It is useful for ensuring that a particular new operation really is an insertion-operation after
aiit




-
.

r

.

I"

-
ot
*

r

ROALA &l f
Yh AN N

Ly

Appendix 3 AM  Dncovery in Mathematics as Heuristic Search -267-

ix 8.8. Heuristic ith the operati esc

Coalesce . Fillin

199. When coalescing F(a,b,c,..), whose domain/range is <A B C... = R,

' A good choice of two domain componenis 16 coalesce is a pair of idenlicslly equal ones.
Barring that, choose & pair related by specialization (eliminate the more general one).
Barring that, choose a pair with a common specialization S, and replace both by S.

Thus to coalesce the operation "InserteDelete” [which takes two items and a structure, deletes
the first argument from the structure and then inserts the second argument], AM examines
its Domain/range entry: <Aaything Anything Structure -+ Structure>, Although it would be
legal to collapse the second and third arguments, the above rule says it makes more sense in
general to cctiapse the first and second. In fact, in that case, AM gets an operation which
tells it something about multiple elements structures.

200, When filling in Algorithme for a coslesced version G of active concept F,
One natursl algorithm is simply to call on F.Algs, with two arguments the same.

Of course the two identical arguments are those which have been decided to be merged.
This will be decided before the definition and algorithm facets are filled in. Thus a natural
algorithm for Square is to call on TIMES.Alg(x,x). The following rule is similar:

201, When filling in Definitions for s coalesced version G of active concept F,
One natural Definition is simply to cali on F.0efn, with iwo arguments the ssme.

202. When filling in the Worth of a new coalesced version of F,
A suitable value is 0.9x(Worth of F) + 0.1 x(Worth of Coalesce).

This is a compromise between (i) the knowledge that the new operation will probably be
less interesting than F, and (ii) the knowledge that it may iead to even more valuable new
concepts (e.g., its inverse may be more interesting than F's). The formula also incorporates
a small factor which is based on the overall value of coalescings which AM has done so far
in the run.

Coalesce . Check

203. if G and H are each two coalescings away from F, for any F,
Then check that G and H aren't really the same, by writing their definitions out in terms of
F.Defn,

Thus if R(a,b,c) is really F(a,b,ac), and S(ab,c) is reaily F(ab,cc), and R and S get coalesced
again, into G(a,b) whch is R(a,b,a) and into H(a,b) which is S(a,b,a), then both G and H are
really F(aba,a) The order of coalescing is u ‘mportant. This is a boost to the more
general impetus for checking thie sort of thing, rule 110. This rule is faster, containing a
special-purpose program for untangling argument-calis rapidly. If the concept of Coalesce is




4'.
B

v Ry
ala

——

L
o

l“-

Iy

3

‘\5‘
f <.

Appendix 3 AM  Discovery in Mathematics as Heuristic Search -268-

excised from the syster, one can easily imagine it being re-derived by a more general
‘coincidence’ strategy, but how will these specific, high-powered, tightly-coded heuristics ever
get discovered and tacked onto the Coale.ce concept? This is an instance of the main meta-
level research problem proposed earlier in the thesis (Chapter 7).

Coalesce . Suggest

204, If a newly~-interesting active concept F(x,y) takes a pair of N's as arguments,
Then create a new concept, a specialization of F, salled F-iiself, taking just one N as
argument, defined as F(x,x), with initial worth Worth(F).
If AM has never coalesced F befors, this gels a slight bonus vaiue.
If AM has coulasced F before, say into 5, then modify this suggestion's value according to the
current worth of S.
The jower the system's interest=threshhold is, the more attactive this suggestion becomes.

AM used this rule to coalesce many active concepts. Times(x,X) is what we know as
squaring; Equality(x,x) turned out to be the constant predicate True; Intersect(x,x) turned
out to be the identity operator; Compose(f,f) was an interesting “iteration” operator ‘% etc.
This 1ale is really a bundle of little meta-rules modifying one suggestion: the suggestion that
AM coalesce F. The very last part of the above rule indicates that if the system is
desparate, this is the least distasteful way to "take a chance” on & high-payoff high-risk
course of action. It is more sa~¢ than, eg, randomly composing tvio operations until a nice
new one {s croated.

205. If concept F takes oniy one argument,
Then it is not worthwhile o try o coslesce it.

This rule was of little help cpu-timewise, since even if AM tried to coalesce such an active
concept,it would fail almost instantaneously. The rule did help make AM appear smarter,
however.

Apoeadix 89. Heuristics for dealing with the operation Canonize

Canonize . Fillin

206. If the task is to Canonize predicates P1 and P2 (over AxA)'S, and the difference between a
dcﬁnit'ion of P1 and definition of P2 is jusi that P2 performs some extra check that Pl
doesn't

Then F shou'ld converl any a¢A inlo = memiber of A which automatically satisfias that extra
constraint.

Thus when Pl=Same-length, P2«Equality, A=Lists, the extra constraint that P2 satisfies is
just that it recurs i) the CAR direction: the CARSs of the two arguments must also satisfy

18 0.8, Compose(Compose,Composs) is an operator which tekss 3 operations f,g,h snd forms "f 0 g o h"; ie,, their joint
composition.

19 Tt te, find o function F such that P1(xy) itf P2(F(x)F(y)).

¥
SeNE T2l

.~

.

SR 11 i RPNy

!' l.l

RT )

-')‘tﬂ'.‘"

PAE I v Prantiadar'de’ dalager: oLl LIPRGRL I 08

| AR

fdiarinys ]

RS

CATE KT TG A,

[ T Apataar



v o e

Appendix 3 AM Discovary in Mathematics as Heuristic Search -269-

P2. Pl doesr’t have such a requirement. The above rule then has AM seek out a way to
guarantee that the CARs will always satisfy Equality. A special hand-crafted piece of
knowledge tells AM that since "T=T" is an example of Equality, one solution is for all the
CARs to be the atom T. Then the operation F must contain a procedure for converting
each ember of a structure to the atom "T". Thus (A C {Z A B} Q Q) would be converted
to(T T T T T). This rule is a specialized, "compiled” version of the idea expressed in rule
number 18.

207. if the task is to Canonize P sn. " over AxA, trying to synthesize F, where A=Structure,
Then perhaps there is & Jiclingi: .ied type of strurtva B which the argument to F should
always be converted ini. ' that case, consider Pl and P2 as two predicates over BxB.

This special-purpose rute is u:” - guide a series of experiments, to determine whether P1
is aftected by adding muitiple copies of exis'ing clements into its arguments, and whether its
vaiue is affected by rearranging some cf »* .rguments’ elements. In the case of P[=Same-
size, the an:wers are: multipie elements de == ¥~ a ditference, but rearrangement doesn't. So
the canonical iype of structure for F=Size mu. be one which is Mult-eles-allowed and also
one which is Unordered. Nameiy, a Bag. Thus F is modified so that it first converts its
argument to a Bag. Then Equality and Same-size are viewed as taking a pair of Bags, and
Size is viewed as taking one Bag and giving back a canonical bag.

208. After F is crected from Pl and P2, as Canonize(P!,P2),
an accaplable value for the worth of F is the maximum of the worths of Pl and P2,

In the actual Lisp code, an extra smali term is added which takes into account the overall
value of all the Canonizations which AM has recently produced.

209. IF the current task has juet created a canonical specialization B of concepl A, with respect o
predicates Pl and P2, [i.e.,, two membars of B satisfy Pl iff they satisfy P2],
THEN add the fuilowing entry {o the Analogies facet of B:
<A Pl  Operations-on-and=into(A)>
<B P2 Those operations resiricted to B's>

This rather incoherent rule says that it's worth taking the trouble to study the behavior of
each operation when it is restricted to working on standard or "canonical” items. Moreover,
some of the old relationships may carry over — or at least have analogues — in this
restricted world. When numbers are discovered as canonical bags, all the bag operations
are restricted to work on only canonical bags, and they magically turn into what we know
and iove as iiumeric operations. Many of the old bag-theoretic relationships have numeric
analogues. Thus we knew that the bag-difference of x and x was the empty bag; this is still
true for X a canonical bag, but we would word it as "x m:'nus x is zero”. This is because the
restriction of Bag-difference to canonical bags (bags of T's) is precisely the operation we call
subtraction.

210. When Canonize works on P}, P2 (two predicates), and produces an operation, F,
Both predicates must share s common Domain, of the form AxA for some concept A, and the
new operation F can have <A = A> as one of its Domain/range entries.
If & canonical specialization (say ‘B') of A is defined, then the domain/range of F can actually
be allghhmd o <A = B); and it is aiso worth explicitly storing the redundart entry <B
- B. .




EJC‘T-’“Y’-‘ e T AR PR AR T AL LT AT A R AT AT AT R AT T AT P ITRRAO R T TR R R TR AR,

e
1

Appendix 3 AM Discovery in Mathematics as Heuristic Search -270-

211. In the same situation as the last rule,
One conjecture is that Pl and P2 are equal, when restricted to working on pairs of B's [i.e.,
pairs ¢f Canonical A's, A's which are in F(A), range items for F, items x which are the
image F(a) of some a¢A).

After canonizing Equal and Same-size into the new operation Length, AM con jectures that
two canonical bags are equal iff they have the same size.

Canonize . Suggest

212. When Canonize works on Pl, P2, both predicales over AxA, and produces an operation
F:A-A
It is worth d'efining and studying the image F(A); i.e., the totality of A's which are canonical,
already in standard form. When this new concep! Canonical-A is defined, suggest the
task “Fillin Dom/range entries for Canonical=A".

Thus AM studied Canonical-Bags, which turned out to be isomorphic to the natural
numbers. What we've called ‘Canonical-A’ in this rule, we've referred to simply as ‘B’ in
earlier Canonizing rules.

213.1f Pl is a very interesting predicate over AxA, for some interesting concept A,
Then look over P1.Spec for some other predicate P2 which is also over AxA, and which has
some interesting properties Pl lacks. For each such predicate P2, consider applying
Canonize(P1,P2).

214, After producing F as Canonize(P1,P2) [both predicates over AxA}, and after defining
Canonical-A,
It is worth resiricting operations in in-dom=-of(A) to Canonical-A. Some new properties may
emerge.

Thus after defining Canonical-Bags, AM looked at Bags.In-dom-of. In that list was the
operation "Bag-union”. So AM considered the restriction of Bag-union to Canonical-bags.
Instead of Bag-union mapping two bags into a new bag, this new operation took two
canonical-bags and mapped them into a new bag. AM later noticed that this new bag was
itself always canonical. Thus was born the operation we call "Addition”.

215. After Canonical~A is produced,
It is marginaily worth trving to restrict operations in In-range-of(A) to map into Canonical~A.

This gives an added boost to picking Union to restrict, since it is in both Bags.In-dom-of
and Bags.In-ran-of. This rule is much harder to implement, since it demands that the range
be restricted. There are just a few special-purpose tricks AM knows to do this. Restricting
the domain is, by comparison, much cleaner. AM simply creates a new concept with the
same definition, but with a more restricted domain/range facet. For restricting the range,
AM must insert into the definition a check to ensure that the final 1 esult is inside Canonical-
A, not just in A. This leads to a very inefficent definition.

216. After Canonic» 1\ is produced,
it is worthwhil. to consider filling in examples (especially boundary) of that new concept.




f:;ﬂ'f?i"\f" LR LS 0 I N A AT S W e e e R e A S S e e R A S A VR Tl & E AR A 0 0 S B o

Appendix 3 AM Discovery in Mathematics as Heuristic Search -271-

This is above and beyond the slight push which rule 12 gives that task.

Appendix 3.10. Heuristics for dealing with the operation Substitute

Note that substitution operations are produced via the initial concepts called Parallel-replace
and Parallel-replace2. The following rules are tacked on there.

Parallel-replace . Suggest

217. if iwo different variables are used to represent the same entity,2° then substitute one for
the other.
This is very important if the two occurrances are within the same eniry on some facet of a
single concept, and less so otherwise.
The dominant variable should be the one typed out previously to the user; barring that, the
older usage; barring that, the one closest to the lelter "s" in the alphabet.

This heuristic was used less often — and proved less impressive — than was originally
anticipated by the author. Since most concepts were begotten from older ones, they always
assumed the same variable namings, hence there were very few mismatches. A special test
was needed to explicitly check for "x=y" occurring as a conjunct somewhere, in which case
we removed it and y substituted for x throughout the conjunction.

218. If two expressions (especiallys two conjectures) are structurally similar, and appear to differ
by a certsin substitution,
Then if the substitution is permissable we have just arrived at the same expression in
various ways, and tag il ss such,
But if the subsiitution is not seen to be tautologous, then s new analogy is born, Associate
the constituent parts of both expressions. This is made interesting if there are several
concepls involved which are assigned ncw analogues,

The similar statements of the associativity of Add and Times led to this rule’s identifying
them as analogous. If AM had been more sophisticated, it might have eventually
formulated some abstract algebra concepts like "semigroup” from such analogies.

Appendix 8.11._Heuristics for dealing with the operation Restrict

Restrict . Fillin

219. When filling in definitions (algorithms) for a restriction R of the active concept F,
One entry can simply be a call on F.Defn (F.Algs).

Thus one definition of Addition will always be as a call on the old, general operation ‘Bag-
union.’ Of course one major reason for restricting the domain/range of an activity is that it
can be performed using a faster algorithm! So the above rule was used frequently if not
dramatically.

20 When we say that x and y represent the same entity, what we really mean is that they have the same domain of identity
(e g, YxtBags; cnd they sre squally free (there is & precise logicel definition of all this, but there is little
point to presenting it here.)

RERARE et




oD R D SR A B R R R R R R R E i R R A R P e S e I B A AR AR S R T AR I L UL UG S B g Bl Tl

Appendix 3 AM Discovary in Mathematics as Heuristic Search -272-

220. When creating a restriction R of the aclive concept F,

221. When creating in a resiriction R of the active concept F, by restricting the domain or range
to some specialization S of its previous value C, .
A viable initial guess for R.Worth is F.Worth, augmented by the difference in worth between
S and C. Hopefully, S$.Worth is bigger than C.Worth!

Appendix 3.12. Heuristics for dealing with the operation Invert

Invert . Fillin

222. When filling in definitions for an Inverse F! of the active concept F,
One "Sufficent Defn" entry can simply be a blind search through the examples oi F.

If we already knew that 4216 is an example of Square, thcn AM can use the above rule to
quickly notice that Square-Inverse.Defn(16,4) is true. This is almost the "essence” of
inverting an operation, of course. .

Invert . Suggest

223. After creating an inverted form F! of some operation F,
If the only definition and algorithm entries are the "obvious" inefficient ones,

Then consider the task: "Fill in algorithms for F"", because the old blind search is just too
awful to tolerate.

Appendix 3.13. Heuristics for dealing with Logical combinations

Eventually, there may be separate concepts for each kind of logical connective. For the
moment, ali Boolean onerators are lumped together here. Their definition is too trivial for
a ‘Fillin’ heuristic to be useful, and even ‘Check’ heuristics are almost pointless. ;

: Logical-combine . Check

% 224, The user may sometimes indicate ‘Conjunction’ when he really means 'Repeating’. '




(oA eME NI S et S i e B SV IR vl i AT s A SR e N IVl Vel 0y Bosiglh Sh S Aab al uud Wl S L a I mal Vo ),

Appendix 3 AM  Discovery in Mathematics as Heuristic Search -273-
Logical-combine . Suggest

225. If there is something interesting to vay sbout entities satisfying the disjunction (conjunction)
of two concepls' definitions,
Then counsider creating a new concept defined as that logical combination of the two concepts’
definitions.

226. Given an implicalion,
Try to weaken the left side as much as possible without destroying the validity of the whole
implication. Similarly, try to strengthen the right side of the implication.

Logical-combine . Interest

227. A disjunction {conjunction) is interesting if there is a conjecture which is very interesting yet
which cannot be made about any one disjunct (conjunct).

In other words, their logical combination implies more than any consituent.

228. An implication is interesting if the right side is more interesting than the left side.

229. An implication is interesling if the right side is interesting yet unexpected based only on
assuming the left side.

Appendix 3.14. Heuristics for dealing with Structures

Structure . Fillin

230. To fill in examples of a kind of structure S,

‘}’:‘-_: Start with an emply S, pluck any other member of Examples(Structure), and transfer
e members one at a time from the random structure into the embryonic §. Finally, check
P that the resultant S really satisfies S.Dein,

r_m_ This is useful, e.g., to convert examples of lists into examples of sets.

L“:-‘,"

e 231. To fill in specializations of a kind of structure,

o add & new constraint that each member must satisfy, or a constraint on all pairs of members,
L or & constraint on all pairs of distinct members, or a constraint which the structure as a
:.‘nf'. whole must satisfy. Such a constraint is often merely a stipulation of being an example
w'* of an X, for some interesting concept X.

§::-j: Thus AM might specialize Bags into Bags-of-primes, or into Bags-of-distinct-primes, or into
:.:::_. Bags-containing-a-prime.

o




ey

s |

sy

r;'i "d 'l"

T T

7
g

T
.

LA

Ty

T

T A T R IR T T T N T N R R A R R TR TR UF TN LY LV LR TR LN LE LR VTR TR OIS TR

Appendix 3 AM Discovery in Mathematics as Heuristic Search -274-
Structure . Interest

232. Structure S is mildly interesting it all members of S satisfy the interesting predicate P, or
(equivalently) if they are all accidentally examples of the interesting concept C, or
(similarly) if all pairs of members of S satisfy the interesting binary predicate P, etc.

Also: a KIND of structure is interesting if it appears that each instance of such a structure
satisfies the above condition (for a fixed P or C).

Thus a singleton is interesting because all pairs of members satisfy Equal. The concept
"Singletons” is interesting because each singleton is mildly interesting in just that same way.
Similarly, AM defines the concept of a bag containing only primes, because the above rule
says it might be interesting.

233. A structure is mildly interesting if one mamber is very interesting. Even better: exactly one
member.
Also: a KIND of structure is interesting if each instance satisties the above condition in the
same way.

Thus the values of ADD"! are interesting because they always contain precisely one bag
which is a Singleton.

Appendix 3.15. Heuristics for dealing with Ordered-structures

Ordered-struc . Fillin

234, To fill in some new examples of the orderad structure S, when some already exist,
Pick an existing example and randomiy permute ifs members.

235. To fill in specializations of a kind of ordered structure,
add s new consiraint that each pair of adjacent members must satisfy, or a8 constraint on sli
ordered psirs of members in the order they appear in the structure. Such s constraint
is often merely a stipulation of being an example of sn X, for some interesting concept
X.

Thus Lists-of-numbers might be specialized into Sorted-lists-of-numbers, assuming AM has
discovered "s” and assuming it is chosen as the ‘constraint’ relationship between ad jacent
members of the list.

Ordered-struc , Check

236. If the structure is 1o be accessed sequentially until some condition is met, and if the precise
orc'sring is superfluous,
Then keep the structure ordered by frequemcy of use, the most useful element first.

This is a simple data-structure management trick. If you have several rules to use in a
certain situation, and rule R is one which usuall; succeeds, then put R first in the list of
ruies to try. Similarly, in a pattern-matcher, try first the test most likely to detect non-
matching arguments.

A mrprm s s - . .
A K A e e 4
A N S I

e P T O
LA SN 5 -u' S ‘l(_ "".}'

CEPE P AN L A
‘@ A "'J.' R e




Appendix 3 AM  Discovery in Mathematics as Heuristic Sesrch -275-

237. If structure S is always to be maintzinsd in aiphanumeric order,
Then AM can?! actualiy maintain it as an unordered siruciure, ii desired.

Luckily this heavily implementation-dependent rule was never needed by AM.

Ordered-struc . Interest

238. An ordersd struclure § is interesting if each adjacent pair of members of S satisfies
predicate P (for some rare, interesting P).

When AM discovers the relation "s", it immediately thinks that any sorted list of numbers is
more interesting, due to the above rule.

endix 3.16. 1st] hi wi ordereg-.

Unord-struc . Check

239, To check an example of an unordered siruclure,
Ensure that it is in alphanumerically~sorted order. if not, then SORT it.

All unordered ob jects are maintained in lexicographic order, so that two of them can be
tested for equality u