
ARTIFICIAL INTELLIGENCE 269

Why AM and EURISKO Appear to Work*

Douglas B. Lenat
Heur is t ic P r o g r a m m i n g Project, S tan ford Universi ty,

S tanford , C A 94305, U . S . A .

John Seely Brown
In te l l igent S y s t e m s Laboratory , X e r o x P A R C ,

P a l o A l to , C A 94304, U . S . A .

Recommended by Daniel G. Bobrow

ABSTRACT
The AM program was constructed by Lenat in 1975 as an early experiment in getting machines to learn
by discovery. In the preceding article in this issue of the A I Journal, Ritchie and Hanna focus on that
work as they raise several fundamental ques6ons about the methodology of artificial intelligence
research. Part of this paper is a response to the specific points they make. It is seen that the difficulties
they cite fall into four categories, the most serious of which are omitted heuristics, and the most
common of which are miscommunications. Their considerations, and our post-AM work on machines
that learn, have clarified why AM succeeded in the first place, and why it was so difficult to use the
same paradigm to discover new heuristics. Those recent insights spawn questions about "where the
meaning really resides" in the concepts discovered by AM. This in turn leads to an appreciation of the
crucial and unique role of representation in theory formation, specifically the benefits of having syntax
mirror semantics. Some criticism of the paradigm of this work arises due to the ad hoc nature of many
pieces of the work ; at the end of this article we examine how this very adhocracy may be a potential
source of power in itself.

1. Introduction

Nine years ago, the AM program [7] was constructed as an experiment in learn-
ing by discovery. Its source of power was a large body of heuristics [2, 5, 13],
rules which guided it toward fruitful topics of investigation, toward profitable
experiments to perform, toward plausible hypotheses and definitions. Other
heuristics evaluated those discoveries for utility and 'interestingness', and they
were added to AM'S vocabulary of concepts. AM'S ultimate limitation apparently

*An earlier, shorter version of this paper appeared in Proc. AAAL 1983.

Artificial Intelligence 23 (1984) 269-294
0004-3702/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

270 D.B. LENAT AND J.S. BROWN

was due to its inability to discover new, powerful, domain-specific heuristics for
the various new fields it uncovered. At that time, it seemed straight-forward to
simply add Heuretics (the study of heuristics) as one more field in which to let
AM explore, observe, define, and develop. That task-- learning new heuristics
by d iscovery-- turned out to be much more difficult than was realized initially,
and we have just now achieved some successes at it, in the behavior of the
EURISKO program [11, 12]. Along the way, it became clearer why AM had
succeeded in the first place, and why it was so difficult to use the same
paradigm to discover new heuristics.

This article originally started out to be a response to Ritchie and Hanna ' s
"AM: A Case Study in AI Methodology" (the preceding article in this issue of
Artificial Intelligence). It quickly evolved into much more than a specific
response to the points they raise. We are grateful to them for spurring us to
perform this analysis, because of the new understanding it has led us to about
why AM and EURISKO appear to work. The first sections of this paper present
these recent insights; the second half treats Ritchie and Hanna ' s specific
questions about AI methodology in general and the AM thesis in particular.

2. What AM Really Did

In essence, AM was an automatic programming system, whose primitive actions
produced modifications to pieces of use code, predicates which represented the
characteristic functions of various math concepts. For instance, AM had a f rame
that represented the concept L I S T - E Q U A L , a predicate that checked any two
LISP list structures to see whether or not they were equal (printed out the same
way). That f rame had several slots:

NAME: LIST-EQUAL
IS -A : (PREDICATE FUNCTION OP BINARY-PREDICATE

BINARY-FUNCTION BINARY-OP ANYTHING)
GEN'L: (SET-EQUAL BAG-EQUAL OSET-EQUAL STRUC-EQUAL)
SPEC: (LIST-OF-EQ-ENTRIES LIST-OF-ATOMS-EQUAL EQ)
FAST-ALG: (LAMBDA (xy) (EQUAL xy)
RECUR-ALG: (LAMBDA (x y)

(COND ((OR (ATOM x) (ATOM y)) (EQ xy))
(T (AND

(LIST-EQUAL (CAR x) (CAR y))
(LIST-EQUAL (CDR x) (CDR y))))))

DOMAIN: (LIST LIST)
RANGE: TRUTH-VALUE
WORTH: 720

Of central importance is the R E C U R - A L G slot, which contains a recursive
algorithm for computing L I S T - E Q U A L of two input lists x and y. That
algorithm recurs along both the C A R and C D R directions of the list structure,
until it finds the leaves (the atoms), at which point it checks that each leaf in x

WHY A/Vl AND EURISKO APPEAR TO WORK 271

is identically equal to the corresponding node in y. If any recursive call on
L I S T - E Q U A L signals NIL, the entire result is NIL, otherwise the result is T.

During one AM task, it sought for examples of L I S T - E Q U A L in action, and a
heuristic accomodated by picking random pairs of examples of LIST, plugging
them in for x and y, and running the algorithm. Needless to say, very few of
those executions returned T (about 2%, as there were about 50 examples of
LIST at the time). Another heuristic noted that this was extremely low (though
nonzero), and concluded that it might be worth trying to define new predi-
cates by slightly generalizing LIST-EQUAL. By 'generalizing' a predicate we
mean copying its algorithm and weakening it so that it returns T more often.
The heuristic placed a task to this effect on AM'S agenda. The agenda, which
guided the application of heuristics in AM, was simply a job-queue of activities
worth spending time on, prioritized using the set of symbolic reasons support-
ing each task. The new task being added looked like this:

(Find Generalizations of LIST-EQUAL
because: (1) very few pairs of LISTS are LIST-EQUAL

(2) very few Generalizations of LIST-EQUAL are known
Priority: 700

)

When that task was chosen from the agenda, another heuristic said that one
way to generalize a definition with two conjoined recursive calls is simply to
eliminate one of them entirely, or to replace the A N D by an OR. In one run
(in June, 1976) AM then defined these three new predicates:

L-E-1 : (LAMBDA (x y)
(COND ((OR (ATOM x) (ATOM y)) (EQ x y))

(T (L-E-1 (CDR x) (CDR y))]

L-E-2: (LAMBDA (x y)
(COND ((OR (ATOM x) (ATOM y)) (EQ x y))

(T (L-E-2 (CAR x) (CAR y))]

L-E-3: (LAMBDA (x, y)
(COND ((OR (ATOM x) (ATOM y)) (EQ x y))

(T (OR
(L-E-3 (CAR x) (CAR y))
(LEE-3 (CDR x) (CDR Y))]

The first of these, b E - l , has had the recursion in the CAR direction
removed. All it checks for now is that, when elements are stripped off each list,
the two lists become null at exactly the same time. That is, L-E-1 is now the
predicate that tests two lists to see if they have the same length; indeed, the
human observing AM run might interrupt it at this point and rename L-E-1 to
be Same-Length.

The second of these, L-E-2, has had the CDR recursion removed. When run
on two lists of atoms, it checks that the first elements of each list are equal.
When run on arbitrary lists, it checks that they have the same number of
leading left parentheses, and then that the atom that then appears in each is the

272 D.B. LENAT AND J.S. BROWN

same. One might call this predicate Same-Depth. As with L-E-l, it is very
closely related to cardinality.

The third of these is more difficult to characterize in words. It is of course
more general than both L-E-1 and L-E-2; if x and y are equal in length then
L-E-3 would return T, as it would if they had the same first element, etc. This
disjunction propogates to all levels of the list structure, so that L-E-3 would
return true for x = (A (B C D) E F) and y = (Q (B)) or even y = (Q (W X Y)).
Perhaps this predicate is most concisely described by its LISP definition.

A few points are important to make from this example. First, note that AM
does not make changes at random, it is driven by empirical findings (such as the
rarity of LIST-EQUAL returning T) to suggest specific directions in which to
change particular concepts (such as deciding to generalize LIST-EQUAL).
However, once having decided upon this eminently reasonable goal, it then
reverts to a more or less syntactic mutation process to achieve it. (Changing
AND to OR, eliminating a conjunct from an AND, etc.) See [4] for back-
ground on this style of code synthesis and modification.

Second, note that all three derived predicates are at least a priori plausible
and interesting and valuable. They are not trivial (such as always returning T, or
always returning what LIST-EQUAL returns), and even the strangest of them
(L-E-3) is genuinely worth exploring for a minute.

Third, note that L-E-1 is familiar and of the utmost significance ("same-
length"), and the second of the three (L-E-2) is familiar and moderately useful
("same-depth" if one deals exclusively with very deep nestings of parentheses,
and "same-leading-element" if one deals only with shallow lists).

AM quickly derived from L-E-1 a function we would call LENGTH and a set
of canonical lists of each possible length: () , (T), (TT), (TT T), (T T T T) , etc.;
i.e., a set isomorphic to the natural numbers. By restricting list operations (such
as APPEND) to these canonical lists, AM derived the common arithmetic
functions (in this case, addition), and soon began exploring elementary number
theory. So these small syntactic mutations sometimes led to dramatic dis-
coveries.

This simple-minded scheme worked almost embarassingly well. Why was
that? Originally, we attributed it to the power of heuristic search (in defining
specific goals such as "generalize LIST-EQUAL") and to the density of
worthwhile math concepts. Recently, we have come to see that it is, in part, the
density of worthwhile math concepts as represented in L~se that is the crucial
factor.

3. The Significance of AM'S Representation of Math Concepts

It was only because of the intimate relationship between LISP and Mathematics
that the mutation operators (loop unwinding, recursion elimination, com-
position, argument elimination, function substitution, etc.) turned out to yield a

WHY AM AND EURISKO APPEAR TO WORK 273

high 'hit rate' of viable, useful new math concepts when applied to previously-
known, useful math concepts--concepts represented as LiSP functions. But no
such deep relationship existed between LISP and Heuretics, and when the basic
automatic programming (mutations) operators were applied to viable, useful
heuristics, they almost always produced useless (often worse than useless) new
heuristic rules.

To rephrase that: a math concept C was represented in AM by its characteristic
function, which in turn was represented as a piece of LISP code stored on the
Algorithms slot of the frame labelled 'C' . This would typically take about 4-8
lines to write down, of which only 1-3 lines were the 'meat ' of the function.
Syntactic mutation of such tiny LISP programs led to meaningful, related LISP
programs, which in turn were often the characteristic function for some
meaningful, related math concept. But taking a two-page program (as many of
the AM heuristics were coded) and making a small syntactic mutation is doomed
to almost always giving garbage as the result. It's akin to causing a point
mutation in an organism's D N A (by bombarding it with radiation, say): in the
case of a very simple microorganism, there is a reasonable chance of producing
a viable, altered mutant. In the case of a higher animal, however, such point
mutations are almost universally deleterious.

We pay careful attention to making our representations fine-grained enough
to capture all the nuances of the concepts they stand for (at least, all the
properties we can think of), but we rarely worry about making those represen-
tations too flexible, too fine-grained. But that is a real problem: such a
' too-fine-grained' representation creates syntactic distinctions that don't reflect
semantic distinctions--distinctions that are meaningful in the domain.

For instance, in coding a piece of knowledge for MVClN [2, 5], in which an
iteration was to be performed, it was once necessary to use several rules to
achieve the desired effect. The physicians (both the experts and the end-users)
could not make head or tail of such rules individually, since the doctors didn't
break their knowledge down below the level at which iteration was a primitive.

As another example, in representing a VLSI design heuristic H as a
two-page LISP program, enormous structure and detail were added--details that
are meaningless as far as capturing its meaning as a piece of VLSI knowledge
(e.g., lots of named local variables being bound and updated; many operations
which were conceptually an indivisible primitive part of H were coded as
several lines of LISP which contained dozens of distinguishable (and hence
mutable) function calls; etc.) Those details were meaningful (and necessary) to
H ' s implementation on a particular architecture.

Of course, we can never directly mutate the meaning of a concept, we can
only mutate the structural form of that concept as embedded in some
representation scheme. Thus, there is never any guarantee that we aren' t just
mutating some ' implementation detail' that is a consequence of the represen-
tation, rather than some genuine part of the concept 's intensionality.

274 D.B, LENAT AND J.S. BROWN

But there are even more serious representation issues. In terms of the syntax
of a given language, it is straightforward to define a collection of mutators that
produce minimal generalizations of a given LISP function by systematic
modifications to its implementation structure (e.g., removing a conjunct,
replacing AND by OR, finding a NOT and specializing its argument, etc.)
Structural generalizations produced in this way can be guaranteed to generalize
the extension of function, and that necessarily produces a generalization of its
intension, its meaning. Therein lies the lure of the AM and EURISKO paradigm.
We now understand that that lure conceals a dangerous barb: minimal
generalizations defined over a function's structural encoding need not bear
much relationship to minimal intensional generalizations, especially if these
functions are computational objects as opposed to mathematical entities.

4. Better Representations

Since 1977, Lenat has worked on building and extending the EURISKO program,
the descendant of AM, see [10, 11, 12]. Its task is to learn new heuristics the
same way it learns new math concepts. For four years, that effort achieved
mediocre results. Gradually, the way we represented heuristics changed, from
two opaque lumps of LISP code (a one-page long IF slot and a one-page long
T H E N slot) into a new language in which the statement of heuristics is more
natural: it appears more spread out (dozens of slots replacing the IF and
THEN), but the length of the values in each IF and T H E N is quite small, and
the total size of all those values put together is still much smaller (often an
order of magnitude) than the original two-page lumps were. The term 'slot'
here refers to a binary relation whose first argument is the name of a unit
(frame, concept, etc.) and whose second argument is referred to as the value
stored in that slot of that unit; they can also be viewed as unary functions over
units, thus Genl(Primes) = Numbers,

Consider as an example the heuristic that says "If you want to find examples
of a set B, and you know some function f : A ~ B ' , where B' is known to
intersect some generalization of B, then apply f to examples of A and collect
the results." In AM, this was coded in LISP as something like the following:

IF: (AND (EQ Cur-Action 'Find)
(EQ Cur-Slot 'Examples)
(MEMBER 'Collection (IsA Cur-Concept))
(SETQ f (SOME (Examples 'Function)

'(LAMBDA (g)
(Doeslntersect (Range g)(Generalizations Cur-Concept))))))

THEN: (SUBSET (MAPCAR (Examples (Domain f))
'(LAMBDA (x)

(APPLY* (AIg f) x))
'(LAMBDA (e)

(APPLY* (Defn Cur-Concept) e))))

WHY AM AND EURISKO APPEAR TO WORK 275

In EURISKO, the new form looks like this:

IfCu rAction: Find
IfCurSIot: Examples
ffCurConcept: a Collection
IfForSome: a Function f
Iflntersects: (Generalizations CurConcept) (Range f)
ThenMapAIong: (Examples (Domain f))
ThenApplyToEach: (AIg f)
CollectinglfTrue: (Defn Cur-Concept)

Much criticism of the AM paradigm, even of the entire expert systems and
heuristic programming paradigms, arise from the 'scruffy' or ad hoc nature of
the work. The shift in the form of the above heuristic rule suggests that
adhocness is relative, and may be a fairly superficial property of a piece of
knowledge: at the communication and surface structure level what appears to
be ad hoc in one representation may shift and appear to become much less ad
hoc as we evolve bet ter languages.

It is not merely the shortening of the code that is important here, but rather
the fact that this new representation provides a functional decomposition of the
original two-page program along two dimensions: slots and values. The values
now parameterize the heuristic; one can mutate syntactically, say replacing
'Generalizations' by some other slot name, and thereby move from one
meaningful heuristic to another. The slots (the many different unary functions
IfCurAction, IfForSome, ThenCollect, etc.) also functionally decompose the
heuristic, setting the stage to learn context-sensitive (slot-sensitive) rules for
guiding mutation. For instance, one such rule that EURISKO learned is "It 's
usually okay to mutate a heuristic by changing an A N D to an OR in its
IfPotentiallyRelevant slot, but usually not in its IfTru/yRelevant slot."

A single mutation in the new representation is frequently equivalent to many
coordinated small mutations at the LISP code level; conversely, most meaning-
less small changes at the LISa level (e.g., changing SETQ to SETQQ, or
changing one occurrence of x to f) can't even be expressed in terms of changes
to the higher-order language. This is akin to the way biological evolution
makes use of the gene as a meaningful functional unit, and gets great milage
from rearranging and copy-and-edit ' ing it.

A heuristic in EUmSKO is now-- l ike a math concept always was in AM--a
collection of about twenty or thirty slots, each filled with at most a line or two
worth of code (often just an atom or a short list).

By employing this new language of specialized If- and Then-slots, the old
property that AM satisfied fortuitously is once again satisfied: the primitive
syntactic mutation operators usually now produce meaningful semantic variants
of what they operate on. Partly by design and partly by evolution, a language
has been constructed in which heuristics are represented naturally, just as
Church and McCarthy made the lambda calculus and LISP into a language in

276 D.B. LENAT AND J.S. BROWN

which mathematics concepts' characteristic functions could be represented
naturally. Just as the LiSP~--~Math 'match' helped AM to work, to discover math
concepts, the new 'match' helps ~vmsKo to discover heuristics.

In getting EOmSKO to work in domains other than mathematics, we have also
been forced to develop a rich set of slots (new binary relations) for each
domain (so that any one value for a slot of a concept will be small). EUmSKO
also requires that we provide a frame that contains information about that type
of slot, so it can be used meaningfully by the program. This combination of
small size, meaningful functional decomposition, plus explicitly stored in-
formation about each type of slot, enables the AM-EURISKO scheme to function
adequately in non-mathematical domains. It has already done so for domains
such as the design of three-dimensional VLSI chips, the design of fleets for a
futuristic naval wargame, and for INTERLISP programming.

We believe that such a natural representation should be sought by anyone
building an expert system for domain X; if what is being built is intended to
form new theories about X, then it is a necessity, not a luxury. That is, it is
necessary to find a way of representing X ' s concepts as a structure whose
pieces are each relatively small and unstructured. In many cases, an existing
representation will suffice, but if the 'leaves' are large, simple methods will not
suffice to transform and combine them into new, meaningful 'leaves'. This is
the primary retrospective lesson we have gleaned from our study of AM.

We have applied it to getting EURISKO to discover heuristics, and are
beginning to get EURISKO to discover such new languages, to automatically
modify its vocabulary of slots. To date, there are three cases in which EUR1SKO
has successfully and fruitfully split a slot into more specialized subslots. One of
those cases was in the domain of designing three-dimensional VLSI circuits,
where the Terminals slot was automatically split into InputTerminals, Out-
putTerminals, and SetsOfWhichExact lyOneElementMustBeAnOutputTer"
minal.

The central argument here is the following:
(1) 'Theories' deal with the meaning, the content of a body of concepts,

whereas ' theory formation' is of necessity limited to working on form, on the
structures that represent those concepts in some scheme.

(2) This makes the mapping between form and content quite important to
the success of a theory formation effort (be it by humans or machines).

(3) Thus it's important to find a representation in which the form ~--~ content
mapping is as natural (i.e., efficient) as possible, a representation that mimics
(analogically) the conceptual underpinnings of the task domain being theorized
about. This is akin to Brian Smith's recognition [14] of the desire to achieve a
categorical alignment between the syntax and semantics of a computational
language.

(4) Exploring ' theory formation' therefore forces us to study the mapping
between form and content.

WHY AM AND EURISKO APPEAR TO WORK 277

(5) This is especially true for those of us in AI who wish to build theory
formation programs, because that mapping is vital to the ultimate successful
performance of our programs.

5. Where Does the Meaning Reside?

We speak of our programs knowing something, e.g. AM'S knowing about the
List-Equal concept. But in what sense does AM know it? Although this
question may seem a bit adolescent, we believe that in the realm of theory
formation (and learning systems), answers to this question are crucial, for
otherwise what does it mean to say that the system has 'discovered' a new
concept? In fact, many of the controversies over AM stem from confusions
about this one issue--admittedly, confusions in our own understanding of this
issue as well as others'.

In AM and EURISKO, a concept C is simultaneously and somewhat redundantly
represented in two fundamentally different ways. the first way is via its
characteristic function (as stored on the Algorithms and Domain/Range slots of
the frame for C). This provides a meaning relative to the way it is interpreted,
but since there is a single unchanging EVAL, this provides a unique inter-
pretation of C. The second way a concept is specified is more declaratively, via
slots that contain constraints on the meaning: Generalizations, Examples, IsA.
For instance, if we specify that D is a Generalization of C (i.e., D is an entry
on C's Generalizations slot), then by the semantics of 'Generalizations' all
entries on C's Examples slot ought to cause D ' s Algorithm to return T.

Such constraints squeeze the set of possible meanings of C but rarely to a
single point. That is, multiple interpretations based just on these under-
determined constraints are still possible. Notice that each scheme has its own
unique advantage. The characteristic function provides a complete and succinct
characterization that can both be executed efficiently and operated on. The
descriptive information about the concept, although not providing a 'charac-
terization' instead provides the grist to guide control of the mutators, as well as
jogging the imagination of human users of the program by forcing them to do
the disambiguation themselves! Both of these uses capitalize on the am-
biguities. We will return to this point in a moment but first let us consider how
meaning resides in the characteristic function of a concept.

It is beyond the scope of this paper to detail how meaning per se resides in a
procedural encoding of a characteristic function. But two comments are in
order. First, it is obvious that the meaning of a characteristic function is always
relative to the interpreter (theory) for the given language in which the function
is. In this case, the interpreter can be succintly specified by the E V A L of the
given LISP system.

But the meaning also resides, in part, in the 'meaning' of the data structures
(i.e. what they are meant to denote in the 'world') that act as arguments to that

278 D.B. LENAT AND J.S. BROWN

algorithm. For example, the math concept List-Equal takes as its arguments
two lists. That concept is represented by a LISP predicate, which takes as its two
arguments two structures that both are lists and (trivially) represent lists. That
predicate (the L A M B D A expression given earlier for List-Equal) assumes that
its arguments will never need 'dots' to represent them (i.e., that at all levels the
CDR of any subexpression is either NIL or nonatomic), it assumes that there is
no circular list structure in the arguments, etc. This representation, too, proved
well-suited for leading quickly to a definition of natural numbers (just by doing
a substitution of T for anything in a LISP list), and that unary representation was
critical to AM'S discovering arithmetic and elementary number theory.

If somehow a place-value scheme for representing numbers had developed,
then the simple route AM followed to discover arithmetic (simply applying
set-theoretic functions to 'numbers' and seeing what happened) would not
have worked at all. It's fine to ask what happens when you apply APPEND to
three and two, so long as they're represented as (T T T) and (T T); the result is
(T T T T T) , i.e. the number five in our unary representation. Try applying
APPEND to 3 and 5 (or to any two LISP atoms) and you'd get NIL, which is no
help at all. Using bags of T's for numbers is tapping into the same source of
power as Gelernter [3] did; namely, the power of having an analogic represen-
tation, one in which there is a closeness between the data structures employed
and the abstract concept it represents---again, an issue of the relationship
between form and function.

Thus, to some extent, even when discussing the meaning of a concept as
portrayed in its characteristic function, there is some aspect of that meaning
that we must attribute to it, namely that aspect that has to do with how we wish
to interpret the data structures it operates on. That is, although the system in
principle contains a complete characterization of what the operators of the
language mean (the system has embedded within itself a representation of
E V A L - - a representation that is, in principle, modifiable by the system itself)
the system nevertheless contains no theory as to what the data structures
denote. Rather, we (the human observers) attribute meaning to those struc-
tures.

AM (and any AI program) is merely a model, and by watching it we place a
particular interpretation on that model, though many alternatives may exist.
The representation of a concept by a LISP encoding of its characteristic function
may very well admit only one interpretation (given a fixed EVAL, a fixed set of
data structures for arguments, etc.) But most human observers looked not at
that function but rather at the underconstrained declarative information stored
on slots with names like Domain/Range, HowCreated, Generalizations, IsA,
Examples, and so on. We find it provocative that the most useful heuristics in
EURISKO---the ones which provide the best control guidance--have triggering
conditions which are also based only on these same underconstraining slots.

Going over the history of AM, we realize that in a more fundamental way

WHY AM AND EURISKO APPEAR TO WORK 279

we- - the human observerswplay another crucial role in attributing 'meaning' to
a discovery in AM. How is that? As is clear from the fact that EURISKO has often
sparked insights and discoveries, the clearest sense of meaning may be said to
reside in the way its output jogs our (or other observers ') memory, the way it
forces us to attribute some meaning to what it claims is a discovery. Two
examples, drawn from Donald Knuth's experiences in looking over traces of
AM's behavior, will illustrate the two kinds of 'filling in' that is clone by human
beings:

(i) See AM's definition of highly composite numbers, plus its claim that they
are interesting, and (for a very different reason than the program) notice that
they are interesting.

(ii) See a definition of partitioning sets (an operation that was never judged
to be interesting by AM after it defined and studied it), recognize that it is the
definition of a familiar, worthwhile concept, and credit the program with
rediscovering it.

While most of AM's discoveries were judged (by AM) interesting or not interest-
ing in accord with human judgements, and for similar reasons, errors of these
two types did occur occasionally, and indeed errors of the first type have proven
to be a major source of synergy in using EURISKO. To put this cynically, the more
a working scientist bares his control knowledge (audit trial) to his colleagues and
students, the more accurately they can interpret the meaning of his statements
and discoveries, but the less likely they will be to come up (via being forced to
work to find an interpretation) with different, and perhaps more interesting,
interpretations.

6. AI Methodology

In the remaining sections of this article, we address those specific issues and
problems raised by Ritchie and Hanna's "AM: A Case Study in AI
Methodology". We are grateful to them for spurring us to do this analysis,
because of the new understanding it has led to about why AM and EURISKO
appear to work (discussed in the preceding sections of this paper).

Ritchie and Hanna's Section 3 raises three fundamental questions, which are
discussed one by one in their Section 4. Rather than mimic this organization,
we choose to treat, one at a time, in decreasing order of seriousness, the four
types of errors we believe were made in the AM thesis:

Error Type 1: Omitted heuristics. The AM thesis never explained, precisely,
how concepts such as 'not very often' and 'related to' were implemented. By
and large, these omissions were due to the fact that the code Lenat wrote for
these predicates was quite trivial. Very recently, we realized that many un-
stated heuristics had been applied (by Lenat) to decide which concepts could
and could not be trivialized in this way. Many of those heuristics are domain
specific; that even more strongly argues that they ought to have been stated

280 D.B. LENAT AND J.S. BROWN

explicitly in his thesis. So we disagree with Hanna and Ritchie 's opinion that
the code implementing these concepts was the important missing information.
Yes, the code ought to have been provided, but there was a much more
significant omission, however: the heuristics that led to such decisions were
significant in getting AM tO work, hence should have been listed explicitly along
with the 243 others.

Error Type 2: Omit ted details. The second type of error of omission was the
common, almost inevitable, yet regrettable process of simplifying large pieces
of code, translating them to brief English phrases. This process left out many
exceptional cases, and made the English condensations less accurate than the
original LISP versions. The alternative, to leave things in LISP and present them
that way, would have made the thesis largely impenetrable and dull. This is a
choice that everyone in our field must make when writing up their work. In
cases where a type 2 (or type 1) error led Ritchie and Hanna to believe a
genuine problem or inconsistency existed in AM, we explain below how the
original LISP code worked.

Error Type 3: Miscommunications. Some problems that Ritchie and Hanna
cite, we shall see, are simply errors of mis-reading what was stated in the thesis
or articles. For mistakes of this type, both writer and reader must share the
blame. These are 'mistakes ' only in the exposition of the work, not in the work
itself. Most errors of this type are listed and explained below. It is useful that
Ritchie and Hanna found these, as their correction will improve the readability
of the work.

Error Type 4: Inconsistencies. A few of the problems raised in Ritchie and
Hanna ' s article are, annoyingly, genuine inconsistencies in the thesis document,
such as whether or not facets had subfacets. These reflect the fact that AM was a
running and evolving program, changing daily in small ways even as the thesis
document was being written. Types 3 and 4 are the least serious type of error,
since they can be (and ought to have been) caught and corrected at the
document level.

6.1. Omitted heuristics

Many of the questions Ritchie and Hanna raise, especially in Section 4.2,
involve stating a heuristic, and simply saying "how in the world could that be
coded as a small, separate if-then rule?" So this and the next section comprise,
primarily, expositions of how their "problem heuristics" were coded. First we
consider the serious cases, where the omission might seriously impair others
at tempting to duplicate this work. Next, we treat those cases where the
omissions were unimportant . In both cases, they were usually an artifact of the
heuristics' condensation into English.

We begin by discussing the specific cases cited in their Section 4.2: the use,
by AM'S heuristics, of expression such as " . . . very similar value . . . " , " . . .

WHY AM AND EURISKO APPEAR TO WORK 281

decays rapidly with time . . . " , " . . . C is related to D . . . " , " . . . replace the
v a l u e . . . " , "if AM jUSt . . . " , " . . . not o f t e n . . . " , and so on. Initially, we did not
understand their difficulty with these; they took a small amount of LISP tO code,
and neither their coding nor their performance presented any particular
problems. Let us examine the first of these, "very similar value"; SIMILARP is
coded in AM as a COND that takes two arguments x and y, and if x is a
number, then y must be a number within 10% of x; if x is a concept name,
then y must be a concept name that appears somewhere on the values of x's
slots; and so on, for about a dozen 'types' of entities that might be given to it as
arguments. What was not realized until recently was that such simple encodings
work only because the form of the entries in AM's knowledge base mimic their
meaning.

These encodings were admittedly--intentionally methodologically--done
crudely and quickly, and worked well enough that we never needed to go back
and improve that code. In retrospect this means that those small pieces of code
were a kind of heuristic after all, heuristics which depended on AM'S domain
(elementary mathematics). Hanna and Ritchie don' t explicitly state this, but we
believe it is what troubled them in these particular heuristics, and we now
agree that the details of such unstated heuristics should have been given in the
thesis.

Let 's consider their next example in particular: Hanna and Ritchie worry
about how each new concept gets a small interestingness bonus that "decays
rapidly with time"---i.e., how was that coded? The answer is that the task-
number of each new concept's creation was recorded, and each concept got an
automatic boost in interestingness, a numeric bonus which was reduced each
time AM chose a task off its agenda and worked on it. Here is the for-
mula for computing that bonus: (1 0 - C u r r e n t T a s k N u m b e r + CreationTask-
Number). So, ten tasks after a concept gets created, its interestingness starts
to fall; 500 tasks later it'll be very low indeed if nothing interesting has been
discovered about it by then.

That was the first formula Lenat tried, and it never again drew his attention
in such a way that he felt the need to modify it. This mechanism is a trivial
version of HEARSAYII'S 'focus of attention' mechanism. Many large heuristic
programs possess similar mechanisms, both to keep the user/observer from
becoming disoriented, and to avoid giving up prematurely on hard tasks. Yet
the reason why AM's particular trivial version of Focus of Attention suffices has
to do with the nature and structure of its task environment--discovery in
mathematics---therefore it warranted detailed treatment in the thesis document
[7], t reatment it did not receive.

In other words, Lenat omitted stating the crucial heuristic he applied in this
case: that a more sophisticated procedure for managing this decay was prob-
ably not worth the effort and, if it turned out to be needed, that need would
become apparent as the program ran, and could be fixed by changing the focus

282 D.B. LENAT AND J.S. BROWN

of attention code at that time. Inherent in this discussion is the assumption that
one has a limited amount of effort and time to expend on building an AI
program, and therefore one must decide what features and sub-mechanisms to
pay attention to.

As the final case of this phenomenon, we examine the predicate for testing "not
often". This might have been arbitrarily complex and sensitive to context, but
it was hoped and expected (by unstated heuristics) that it needn ' t be, in AM'S
domain. Here is AM'S entire LISP code for Not-Often:

(LAMBDA () (EQ 10 (RAND 1 10)))

Certainly one might (in some domains) need "not of ten" to be a relative term,
sensitive to context, but '10% of the t ime' worked in all the cases AM needed to
realize that notion. Besides being suited to its domain, the trivializations of
otherwise-elusive predicates and concepts were not fatal. Indeed, this touches
on the methodology of building AM: the source of power AM relied on (guidance
by a large corpus of heuristics communicating via an agenda of plausible tasks)
worked despite all the simplifications and trivializations commit ted at the
coding level; the project took less than a man-year to do because of such
simplifications.

At one point in their article, Ritchie and Hanna point out that some of AM'S
heuristic rules appear to need some inspectable record of past history. This is
true, and we agree that it should have been discussed more clearly in the thesis.
All that AM'S rules can 'see ' of the past is (i) what 's been happening so far,
during the efforts to work on the "current task", and (ii) a list of the most
recent tasks that have been worked on, annotated with a list of their results.
These two types of records are kept in AM. This was never discussed explicitly
in [7]; it should become apparent as one works through the heuristic rules, as
Ritchie and Hanna did. They noticed this, recognized that this ought to have
been discussed in [7], and pointed out this fact.

Since there are so few such 'history' data structures, it is small work to
represent each one of them as a full-fledged concept; we have always done
things that way in EURmKO. Thus EURISKO has a RecentTasks concept, with a
rule or two to update it each time a new task is completed, and a CurrentTask
concept, which changes much more frequently and stores data about progress
on the current task. At the time the AM thesis was written, the record-keeping
data structures were seen as a minor detail, but we now believe that the choice
of what parts of past history to save were significant, because they reflected the
application of unstated heuristics about the process of theory formation.

6.2. Omitted details

Ritchie and Hanna complain, early in their article, that "no explanation is
given as to why they [the Suggest rules] should, in this case, be attached to

WHY AM AND EURISKO APPEAR TO WORK 283

concepts or facets." The answer to this in English is that, "when it's time to
suggest some new tasks about a concept c, evaluate all the Suggest heuristics
tacked onto c (and all c's generalizations)". For instance, to suggest new tasks
involving PrimeNumbers, collect all the Suggest heuristics tacked onto
PrimeNumbers, and NaturalNumbers, and Bags, and Structures, and Mathemati-
calObjects, and Anything. Any or all of the rules you find in those places might
be able to suggest new tasks involving PrimeNumbers; the other hundreds of
rules in the system are presumed to be irrelevant and won't even be checked to
see if they'll fire.

AM encoded this in INTERLISP as:

(MAPC (Genl* c) '(LAMBDA (gc) (MAPC (GET gc 'SuggestRules) 'EVAL]

Throughout the AM thesis, even in the appendices, Lenat opted for the former
style (English description followed by an example or two) rather than the latter
(listing the LiSP code.) Hopefully, in most cases the 'casual reader ' gets the
correct sense out of the prose, and the reader who spends time to work through
each statement in detail can comprehend what should have been said and how
it might be implemented in LISP. For those interested in more detail, AM's LiSP
code was available to others for years after the publication of the thesis.
Presenting an AI thesis largely in English is methodologically unlike most of
the so-called hard sciences, where prose is supplied merely as commentary to
the 'real' work, which must be presented in a formal calculus. This largely
reflects the early stage of the AI science, but it does inconvenience those who
wish to duplicate and extend their predecessors' work.

As has been mentioned previously, some liberties w e r e taken with the
English translation of each heuristic, so that Appendix 3 of the thesis would not
be too monotonous. One result of this desire to not be monotonous is that the
heuristics appear to be quite different from each other in format and syntax. In
the AM program itself, however, the heuristic rules were indeed all coded in the
same format (except for Interestingness rules). That format is specified in the
thesis, and with it in hand one can, in most cases, readily see how to re-word
each heuristic into that format, and then, given a rule in that format, how to
code it up in LISP.

One of the heuristics that Ritchie and Hanna speculate (in Section 4.2) might
be hard to code, and therefore code should have been provided for it, is "A
nonconstructive existence conjecture is interesting". It's worth noting that this
rule was never used in an AM run; it was intended to be part of the
theorem-proving heuristics, an endeavor which, as stated in the thesis, we
never got round to. In any event there is no magic in this; it only works on
conjectures which have already been tagged explicitly, syntactically, as being
existential and not constructive. In other words it is a two-line piece of code: if
the proper three entries are members of the IsA facet of a concept, it upgrades
its Interestingness facet. Because it was so simple to code, it was one of the first

284 D.B. LENAT AND J.S. BROWN

of formal proving heuristics to be coded. Unlike errors of type 1, omitting the
details of this heuristic from [7] was not a mistake; failing to include tables
detailing the performance of each heuristic was, we believe, the mistake.

Some heuristics comprised lists of automatic programming techniques for
generalizing a predicate:
- r ep l ace the main connective by a more general one,
- if the main connective is NOT, then recur on its argument trying to specialize it,
-d i s jo in a related predicate onto this one, etc.
AM was not an automatic programming thesis, and it listed several pointers to
AP articles (such as [4]) that covered exactly how such code mutations could be
managed. Also, there was little if any innovation on code synthesis and
mutation, hence little need to dwell on the details of the code we used to do it.
Surprisingly often, it was little more than "randomly choose a node in the
S-expression ' tree' and syntactically mutate it". This is why the ability of syntax
to mirror semantics is so vital: in lieu of powerful mutation techniques AM
relied on a natural representation to keep the fraction of useful mutants high.

6.3. Miscommunications

Ritchie and Hanna begin their article by summarizing AM. That summary is
largely correct, but one of its errors is an example of a Miscommunication.
They say "In general, any facet of a concept will be ' inherited' by that
concept's specialization." The casual reader may get a general sense that some
sort of inheriting of values is going on (which is true), or s/he will sit down and
look at an example of that sentence and realize it is correct in some cases but
wrong in others: surely 'examples of primes' should not automatically include
all 'examples of numbers' , rather, vice versa! As discussed in Lenat 's thesis,
some facets (such as Examples) inherit their values from specializations, some
(such as all the relevant heuristics slots) inherit in the direction that Ritchie and
Hanna stated, from generalizations, and some (such as all the book-keeping
slots) don' t inherit at all.

Hanna and Ritchie next dwell on the fact that Interestingness rules have a
format which is not the same as the schema for other types of rules. This is
quite correct, and is a MisComm: as can be seen by carefully reading the
Interestingness subsection of the representation chapter of the thesis, Interes-
tingness rules are not collected and fired to work on a task. Rather, what
happens is that a particular Fillin or Check rule may call on the Interestingness
rules stored for a concept C (and, by inheritance, C's generalizations), then run
those rules to determine if some concept X is an interesting C, and, if so, why.

They next question the consistency of the way heuristic rules in Appendix 3
of the thesis are organized; this again is a Miscommunication, not a genuine
Inconsistency, as the first page of Appendix 3 clearly states how the section
headings correspond to the 'internal form' of the heuristics. Lenat followed the

WHY AM AND EURISKO APPEAR TO WORK 285

convention that, if f is an operation, then by saying that "h is a f.check
heuristic" or "h is a f.fillin heuristic", what was really meant was that "h is a
f.examples.check heuristic" (or f.examples.fillin, etc.).

The small pieces of additional structure (beyond the clean, simple control
structure discussed in [7, 8]) were added as a series of steps to improve
efficiency by a small factor, and to cut down the amount of list cells required
(by less than a factor of 2). They have little to do with the issues and
contributions of the research. This level of detail is important to those who
might wish to code similar systems, which is why some discussion of it was
included in the thesis. It is this bundle of details that are the focus of much of
Ritchie and Hanna's article's Section 4.1. The failure of the thesis to be clear
on this point was a serious Miscommunication error.

Ritchie and Hanna then complain that in AM'S concept hierarchy Any-
Concept is not the root, but rather has a generalization called Anything. In AM,
not all the world were concepts: there were individual numbers, user-names,
and other atoms and strings that existed as values (of some facet of some
concept) but were not themselves full-fledged concepts. Our recent work on
EURISKO strives toward the extreme self-representation wherein each entity
can be considered a concept, but in AM there were plenty of nonconcepts. We
see the separation of AnyConcept and Anything to be a useful pragmatic
distinction; there is no 'deep irregularity' to permitting AM to know that there
are non-concepts in its world.

Ritchie and Hanna speculate on Lenat 's "putting the heuristic commands in
the body of the facet's entry (the algorithm, in this example)." Interpreting this
remark literally results in a category error: algorithms encode the characteristic
functions of concepts, whereas heuristics provide meta-level guidance on when
and how those characteristic functions might be reasoned about, changed, etc.
E.g., the Alg facet of Squaring (a concept discovered by AM) contained this LISP
code:

(LAMBDA (x) (TIMES xx)),

while Squaring's (and its generalizations') heuristics facets contained page-long
pieces of code that listed conditions under which one might want to square
numbers, or apply a function in general to some particular arguments, how one
could evaluate a function for interestingness, and so on-- informat ion which
does not belong to the same category or type as the algorithm.

The other possible interpretation of their remarks about weaving heuristics
into algorithms facets might be that the Alg facet of a concept contained a
several-page-long block of LISP code, in effect a large SELECTQ, one of whose
branches actually ran the algorithm and the other of whose branches were the
various heuristics associated with the concept. That would be a significant
change from the simple stated control structure, but AM could not function if it
were true. There are two reasons for this. The first is pragmatic: there would be

286 D.B. LENAT AND J.S. BROWN

too huge a space cost involved in duplicating heuristics dozens of times (once in
each algorithm facet), and AM was space-limited. The second reason is more
important: AM mutates algorithms (values stored on various concepts' Algs
facets) quite often, and if those algorithms were pages long (as they would have
to be if they contained heuristics in the form of LISP code) rather than a couple
lines long, syntactic mutation would never have achieved a high hit rate of
valuable new mutants. This is the point of an earlier section of our current
paper. AM worked only because the algorithms facets were tiny; they most
clearly did not contain heuristics woven as pages of LISP code into them. This is
one of the fortuitous cases where a Miscommunication error led us to a deeper
insight about why the program worked.

A serious Miscommunication was caused by Lenat 's use of the terms 'backs'
and 'specific tricks'. Lenat used the term to describe summarizations, collected
in code, of his and others' work in other, earlier AI projects: the use of the
term does not mean that he had preprogrammed into AM just the right piece of
knowledge to achieve a desired runtime result, as Ritchie and Hanna imply. It
is the incomplete nature of these parts of the program, and the fact that they
were represented differently from the 'full fledged concepts' that comprised the
bulk of the knowledge base, that drew from Lenat the label of hacks and tricks.

Ritchie and Hanna complain, e.g., about AM'S "known tricks, some hacks"
for symbolically instantiating LISP definitions. These "hacks" are a corpus of
dozens of small general heuristics assembled earlier in PUP6 (BEINGS), and
discussed extensively in print [4, 6] in the few years prior to the AM thesis. In
AM, they were all lumped together into one four-page-long heuristic. The point
is that this megaheuristic is capable not just of the one or two transformations
AM actually carried out, but rather of the large classes of program instantiations
that PUP6 and similar systems carried out. Directed by Cordell Green, Lenat
collected this useful body of techniques for manipulating small LISP programs,
unwinding recursions, etc.

It is worth .going through one of these little 'tricks' to show the level of
generality it has. It says that, if one wants examples of a concept, first find the
base step in its recursive definition (the branch of the COND that doesn't
mention the function name itself) and then extract a primitive extreme example
from that base step (namely the value returned by that line of code). For
instance, given

(DEFUN FIB (n)
(COND

((EQ 0 n) 2)
((EQ 1 n) 3)
(T (PLUS (FIB (SUB1 n))

(FIB (SUB2 n))))))

this technique would first isolate the ((EQ 0 n) 2) branch, and the ((EQ 1 n) 3)
branch, and then extract the values 2 and 3 as trivial examples of Fibonacci

WHY AM AND EURISKO APPEAR TO WORK 287

numbers. Even though it works quite often. Lenat called it a 'trick' because it
relies on a particular style of programming (form), rather than on a true
understanding of the LISP semantics (function), to work. As with many heuris-
tics, this one usually succeeds but sometimes fails. Such 'imperfect coverage' is
acceptable research methodology, in the spirit of heuristic programming. It is
certainly not the same thing as 'fully predetermined usage', any more than an
expert system's performance is determined when its rules are acquired.

Another example of this is the complaint about Rule 67, "Examine C for
regularities". This one rule was large, to be sure--i t contained many of the
microrules that comprised Pat Langley's original BACON system. Not seeing any
need to separate out the various recognizers from one another, Lenat allowed
that single rule to embody all the low-level pattern recognizers. This does not
mean that the uses of that rule were known ahead of time, merely that its
contents have little to do with Discovery in Mathematics as Heuristics Search.

In discussing AM'S rediscovery of cardinality, Ritchie and Hanna raise a
question about which Suggest rules fire, and how that led to the goal of
canonicalizing SameLength; the answer is the following: the Suggest rules
attached to Predicate (and to its generalizations) are the rules which get
evalled, and since SameLength is a Genl of SetEqual, AM tries Canonization.
That 's all there is to it. Canonization was not nearly as special-purpose as they
imply, though--like "not often", "similar to", and "notice regularities"--it was
heuristically incomplete. That is, it was drastically simplified to take advantage
of the program's domain (reasoning about types of simple discrete math
functions and structures), though not tailored with any specific sequence of
behaviors in mind. The idea is that Canonizing operates via a set of mini-
experiments, and various changes are made depending on their outcomes. For
instance, here are the experiments (and reactions to take) AM applies when
canonizing a new type of list structure:
- i f order makes no difference, then sort the result,
- i f element-name makes no difference, then use the same letter as the value of
every element;
- i f duplicating makes no difference, then eliminate all multiple copies of
elements.

In the case of canonizing Has-the-same-length (the new predicate AM called
Genl-Obj-Equal), order makes no difference, element-name makes no
difference, but duplicating an element does make a difference. The resultant
canonizing function therefore takes a bag, (unnecessarily) sorts it, and then
replaces each element by the letter T. Since this was the only significant use of
Canonize, we see that if we'd had a script in mind when building AM, and if
only 'the scripted behavior' was desired, then only the middle of these three
experiments would have been needed.

Later, once the Canonical-bag-strucs are defined, Ritchie and Hanna ques-
tion whatever mysterious process lets arithmetic get discovered. As the traces

288 D.B. LENAT AND J.S. BROWN

in the thesis document, AM simply sees what happens when it restricts normal
bag operations to these new canonical bags (all of whose elements are just the
letter T). The result is that A P P E N D becomes addition (for instance, (TT)
appended to (T T T) gives (T T T T T)) , CDR becomes subtract-i, BAG-
UNION becomes maximum, and so on. In other words, bag-operations restric-
ted to Bags-of-T's are arithmetic functions. Moreover, it further surprised us
that most of the arithmetic operations were discovered again and again, in
unusual and different ways, as AM ran further.

Hanna and Ritchie focus, in Section 4.3, on this discovery of natural
numbers. AM'S key step was mutating the definition of equality, and it is treated
in great detail in the thesis and also earlier in this paper. A miscommunication
apparently occurs here: stripping off the CAR recursion test does not trans-
form it into the predicate "Equal-except-Cars", as Ritchie and Hanna state,
but rather into "Has-the-same-length".

6.4. Inconsistencies

The very first problem Ritchie and Hanna cite in the AM thesis is its apparent
discrepancy about whether subfacets existed, and if so how many there were.
This is a genuine inconsistency. The policy we (and the AM program) followed
for having or not having subfacets changed frequently during the time that the
thesis document was being written, and settled down finally into the decision
that subfacets weren't needed, but the Suggest rules were separated off into
different list structures. Looking over our records to see why this occurred, the
changes in representation were driven simply by AM'S running out of list space
in 1975 1NTERLISP code; we were forced to shift representations time and time
again just to gain a few hundred precious list cells.

Most of the apparent inconsistencies pointed out in Ritchie and Hanna's
article have already been seen to be one of the above three types of errors
(usually a Miscommunication). The other inconsistencies, as the subfacet vs.
no-subfacet issue, trace their roots to the volatility of coding details, and their
etymology cannot be recreated today. If Lenat had noted them at the time of
writing the thesis, they of course would have been excised, but is that the ideal
solution? We are raising the methodological issue that perhaps it would have
been better to chronicle and discuss the evolution of the program's data
structures and algorithms, rather than just describing their final designs. Such
considerations lead us to the next section of this article.

7. Methodological Consequences

The opening and closing pages of the Ritchie and Hanna article call attention
to a valid, important issue in AI today: the difficulty researchers experience
trying to build directly upon each other 's work, due to the informal style of

WHY AM AND EURISKO APPEAR TO WORK 289

reportage currently acceptable. Lenat had hoped to alleviate this somewhat by
giving copious details of how the program was built (in hundreds of pages of
appendices and footnotes in his thesis). As Hanna and Ritchie say, "The whole
discussion in this paper could not have commenced if Lenat had not provided
this unusual level of documentation." It is largely at this level of minutiae that
their article (and perforce our Section 6) focuses. We agree with them that
critical dialogues at this extremely concrete level can faciliate the spread of AI
ideas, techniques, and problems. This competitive argumentation [15] should
clarify the details of how AM was built and how it ran.

It is misleading to praise or critize AM's performance or methodology on the
basis of any one or two specific discoveries. What surprised and pleased us was
the quantity of interesting results, the large average number of discoveries
(about two dozen) that each heuristic was used in making, the large average
number of heuristics (again about two dozen) that worked together to make
each discovery, the large number of discoveries of concepts and conjectures
which were not known to Lenat (typically found by mathematicians poring over
a transcript of one of AM's runs.)

It is not crucial that AM discovered cardinality or any other one concept. It
did hundreds of other things before and after. It is the quality and quantity of
the route it followed, the top tasks' consistent plausibility, that is the proper
yardstick for its performance, regardless of exactly which concepts that route
did or didn't happen to uncover. Consistent with this paradigm, we might have
supplied cardinality and a few numerical concepts to it, just to see what it
would do in number theory. In one experiment on AM, reported in the thesis,
Lenat did have to hand-supply a dozen geometry concepts to get it to make
discoveries in plane geometry. It was interesting that AM found cardinality all
by itself, but, as we saw in the body of this paper, concepts such as "Bag" and
"Set-Equality" took it halfway there to begin with.

After discussing the discovery of cardinality in detail, Ritchie and Hanna make
a claim that we disagree with completely: to wit, that even if AM'S behavior were
the result of a carefully-engineered attempt to produce just one particular
sequence of discoveries, then that would still be interesting. Such a project might
indeed say something about mathematics, but it would have nothing to do with
research in machine learning. The AM project methodology was to write down an
apparently-coherent set of heuristics and starting concepts, and then code them all
up and let them run. Tuning the system extensively (except to improve its use of
space and time) would have negated the experiment utterly; the behavior of the
program could have been arbitrarily deeper and more 'advanced' if we tuned it,
but such exercises would not shed much light on how one could explore a new
field, where the useful discoveries hadn't already been made. Exploring new fields
is what EU~IS~:O does, with some success [11, 12], and it is crucial to appreciate that
it was the methodological commitment we made not to ever tune AM that let us
discover what we needed to build EURISKO.

290 D.B. LENAT AND J.S. BROWN

Many of the next questions raised by Hanna and Ritchie are right on the
mark (e.g., did AM ever judge a concept to be uninteresting, when a human
thought it was interesting?), and are discussed in the body of this paper. Their
speculation is correct, that human observers corrected for some of the mis-
judgements on AM'S part. The set of guidelines and questions they list in Section
5.2 are excellent, and warrant careful attention from all of us in AI research.

Ritchie and Hanna conclude Section 4.1 stating "The queries raised in the
section are not minor organizational matters or implementat ion details." We
disagree; that is precisely what they are. They appear to treat Lenat ' s thesis as
if it were a formal proof of a theorem, in which finding even the tiniest
inconsistency or irregularity from the clean control structure claimed therein
would ' refute ' it. But AI research is rarely like proving a theorem. The AM
thesis is not making a formal claim about a provable property of a small, clean
algorithm; AM is a demonstrat ion that little more than a body of plausible
heuristic rules is needed to adequately guide an "explorer" in elementary
mathematics theory formation.

One of their central questions is "What did AM discover?" This is a very
interesting issue, and to a large extent is what we describe in the body of this
paper. Hanna and Ritchie complain because AM did discover Goldbach 's
conjecture in one run, but failed to in another run. They may take it as a flaw
that AM does different things in ditterent runs, but we take it as a very
significant and positive sign, and indeed one might characterize EURISKO'S
current goal as being to produce as varied and unexpected behavior as possible,
while not seriously sacrificing its level of plausibility, productiveness, and
interestingness. Because of innumerable uses of random number generators
(such as in "not often", above), the only way to keep the performance the same
is to restart the program with the same pseudorandom seed. Placing much
emphasis on the precise set of discoveries made or not made by AM is missing
the entire point of the thesis, treating it as if it were stating a precise theorem,
rather than making a plausible conjecture, about the nature of discovery.

The opposite complaint is also made, about the "p rep rogrammed
behaviours" AM exhibited, the tailoring of the knowledge base to "unwind" a
given discovery. In building AM, Lenat first compiled a large online document
called GIVEN, in which were listed all the concepts it seemed plausible for AM
to have (90% of which finally made it in), concepts drawn from Piaget 's sets of
prenumerical concepts. This document also specified all the slots (facets), and a
rough listing of the values to be filled in for any slots that would start out with
values (including all the attached heurist ics--plus many more that never were
implemented). This document was generated via morphological analysis-- to
wit, we made a big table of concepts along one dimension, slots along another,
and spent months agonizing over the contents of each box. Armed with this
document and several set-theory scenarios (most of which AM never did

WHY AM AND EURISKO APPEAR TO WORK 291

successfully carry out, by the way), coding began. Only about 1% of the final
knowledge--both concepts and rules--was added or modified after that stage.

8. Conclusions

We have taken a retrospective look at the kind of activity AM carried out.
Although we generally described it as "exploring in the space of math
concepts", what it actually was doing from moment to moment was "syntac-
tically mutating small LISP programs". Rather than disdaining it for that reason,
we saw that that was its salvation, its chief source of power, the reason it had
such a high hit rate; AM was exploiting the natural tie between LISP and
mathematics.

We have seen the dependence of AM's performance upon its representation
of math concepts' characteristic functions in LISP, and in turn their dependence
upon the LISP representation of their arguments, and in both cases their
dependence upon the semantics of LISP, and in all those cases the dependence
upon the observer's frame of reference. The largely fortuitous "impedance
match" between all four of these, in AM, enabled it to proceed with great speed
for a while, until it moved into a less well balanced state.

One of the most crucial requirements for a learning system, especially one
that is to learn by discovery, is that of an adequate representation. The
paradigm for machine learning to date has been limited to learning new
expressions in some more or less well defined language (even though, as in AM's
case, the vocabulary may increase over time, and, as in EURISKO'S case, even
the grammar might expand occasionally).

If the language or representation employed is not well matched to the
domain objects and operators, the heuristics that do exist will be long and
awkwardly stated, and the discovery of new ones in that representation may be
nearly impossible. As an example, consider that EURISKO began with a small
vocabulary of slots for describing heuristics (If, Then), and over the last several
years it has been necessary (in order to obtain reasonable performance) to
evolve two orders of magnitude more kinds of slots that heuristics could have,
many of them domain-dependent, some of them proposed by EURISKO itself.
Another example is simply the amount of effort we must expend to add a new
domain to EURISKO'S repertoire, much of that effort involving choosing and
adjusting a set of new domain-specific slots.

The chief bottleneck in building large AI programs, such as expert systems
[2,5], is recognized as being knowledge acquisition. There are two major
problems to tackle: (i) building tools to facilitate the man-machine interface,
and (ii) finding ways to dynamically devise an appropriate representation.
Much work has focused on the former of these, but our experience with AM and
EURISI~O indicates that the latter is just as serious a contributor to the bott-

292 D.B. LENAT AND J.S. BROWN

leneck, especially in building theory formation systems. Thus, our current
research is to get EURISKO to automatically extend its vocabulary of slots, to
maintain the naturalness of its representation as new (sub)domains are un-
covered and explored. This paper has raised the alarm; others [1, 10, 11, 12, 14,
15] discuss in detail the approach we're following and progress to date.

As we have tried to show above, throughout this paper, the kinds of
discrepancies that Hanna and Ritchie focus upon are minor implementation
details. The kinds of omissions they point to are more significant. We did not
perceive until writing this paper that the way in which Similar-To, Not-Often,
Notice-Regularity, and scores of other 'primitives' were coded do themselves
embody a large amount of heuristic knowledge. We exploited the structure of
(or, if you prefer, partially encoded) the domain of elementary mathematics, in
the process of making trivial yet adequate usP versions of those extremely
complex and subtle notions (such as similarity of concepts).

The set of issues which we addressed in the earlier sections of this paper
cover the other important methodological contributions and shortcomings of
the AM program. Some of these have been remedied in EVRISKO. All of them,
plus the ones Ritchie and Hanna have brought to light, deserve to be attended
to explicitly, both in theoretical studies of the nature of learning by heuristic
search, and in any projects to build programs that attempt to do such theory
formation tasks.

9. An Alternative Perspective: The New Generation of
Perceptrons

In closing, we present a new way of viewing the AM and EURISKO work. The
apparent adhocness in both the heuristics' content themselves, and in the
control knowledge guiding the application of those heuristics, is clearly the
source of many methodological objections to the work. But we believe that this
adhocracy--indeed, adhocracy controlling adhocracy--may be the source of
EURISKO'S underlying potential especially as a model for cognition. It bears some
similarity to Newell, Rosenbloom, and Laird's current ideas on using chunking
(into ad hoc chunks) to learn methods for controlling search.

As such, the paradigm underlying AM and EURISKO may be thought of as the
new generation of perceptrons, perceptrons based on collections or societies of
evolving, self-organizing, symbolic knowledge structures. In classical percep-
trons, all knowledge had to be encoded as topological networks of linked
neurons, with weights on the links. The representation scheme being used by
EURISKO provides much more powerful linkages, taking the form of heuristics
about concepts, including heuristics for how to use and evolve heuristics. Both
types of perceptrons rely on the law of large numbers, on a kind of local-global
property of achieving adequate performance through the interactions of many
small, relatively simple parts.

The classical perceptrons did hill-climbing, in spaces whose topology was

WHY AM AND EURISKO APPEAR TO WORK 293

defined explicitly by weights on arcs between nodes (nodes which did straight-
forward Boolean combinations plus threshholding). The EUmSKO style of sys-
tem does hill-climbing at both the object- (performance-program) and meta-
(control decision) levels, in spaces whose terrain is defined implicitly, sym-
bolically, by the contents of the nodes (nodes which are full-fledged concepts,
at both object- and meta-levels). The new scheme fully exploits the same
source of power (synergy through abundance) yet it is free from many of the
limitations of the classical perceptron scheme.

One new possibility, that could not exist with classical perceptrons, is the
opportunity for a genuine partnership, a synergy, between these programs and
human beings, much the kind that EURISKO has already demonstrated. EURXSKO
is mediated by a language infinitely more comprehensible to humans than were
classical perceptrons, and as we saw in Section 4 the more comprehensible the
language became the more powerful it (and the man-machine system) became.

We could wax poetic on the metaphors implied by this new perspective on
the AM and EUmS~O work. For example, the control heuristics serve the same
function in the program as cultural mores serve in human societies, and both of
those corpuses evolve relatively slowly for many of the same reasons. Another
example of the use of the cultural metaphor is that the appropriate
methodologies for studying the AM and EURISKO programs may resemble those
for studying the social sciences more than those for studying classical computer
science.

In any event, thinking about AM and EURISKO from the perspective of
perceptrons suggests new and exciting research directions in the construction
and orchestration of large parallel cognitive systems.

ACKNOWLEDGMENT

EURISKO is written in--and relies upon--RLL [9] and INTERLISP-D. We wish to thank XEROX
PARC, and Stanford University's HPP, for providing superb environments (intellectual, physical,
and computational) in which to work. An earlier, shorter version of this paper appeared in the
proceedings of the 1983 National Conference on Artificial Intelligence, and we thank AAAI for
permission to reprint it here. Financial support for this work has been provided by ONR, the IPTO
office of ARPA, and XEROX Corporation. We thank Saul Amarel and Danny Bobrow for many
useful comments on this work.

REFERENCES

1. DeKleer, J. and J.S. Brown, "Foundations of Envisioning", Proc. AAAI-82, NCAI, Carnegie-
Mellon University, Pittsburgh, PA, 1982.

2. Feigenbaum, E.A., The art of artificial intelligence, Proc. Fifth International Joint Conference on
Artificial Intelligence, MIT, Cambridge, MA, (1977) 1014.

3. Gelernter, H., Realization of geometry theorem proving machine, in: E.A. Feigenbaum and J.
Feldman (Eds.), Computers and Thought (McGraw-Hill, New York, 1963) 134-152.

4. Green, C.R., Waidinger, R., Barstow, D., Elscblager, R., Lenat, D., McCune, B., Shaw, D. and
Steinberg, L., Progress report on program understanding systems, AIM.240, STAN-CS-74-444,
AI Lab., Stanford, CA, 1974.

294 D.B. LENAT AND J.S. BROWN

5. Hayes-Roth, F., Waterman, D. and Lenat, D., (Eds.), Building Expert Systems (Addison-
Wesley, Reading, MA, 1983).

6. Lenat, D.B., BEINGS: Knowledge as interacting experts, Proc. Fourth International Joint
Conference on Artificial Intelligence, Tbilisi, USSR, 1975.

7. Lenat, D.B., AM: An artificial intelligence approach to discovery in mathematics as heuristic
search, Ph.D. Thesis, AIM-286, STAN-CS-76-570, and Heuristic Programming Project Report
HPP-76-8, Stanford University, AI Lab., Stanford, CA, 1976.

8. Lenat, D.B., On automated scientific theory formation: A case study using the AM program,
in: J. Hayes, D. Michie and L.I. Mikulich 0Eds.), Machine Intelligence 9 (Halstead Press, New
York; 1979) 251-283.

9. Lenat, D.B. and Greiner, R.D., RLL: A representation language language, Proc. First Annual
Meeting of the American Association .for Artificial Intelligence, Stanford, 1980.

10. Lenat, D.B., The nature of heuristics, Artificial Intelligence 19(2) (1982) 189-249.
11. Lenat, D.B., Theory formation by heuristic search, The nature of heuristics II: background and

examples, Artificial Intelligence 21(1, 2) (1983) 31-59.
12. Lenat, D.B., EURISKO: a program that learns new heuristics and domain concepts, The nature

of heuristics III: program design and results, Artificial Intelligence, 21 (1, 2) (1983) 61-98.
13. Polya, G., How to Solve It (Princeton University Press, Princeton, NJ, 1945).
14. Smith, B., Reflection and semantics in a procedural language, MIT Laboratory for Computer

Science Tech. Rept. TR-272, Cambridge, MA, 1982.
15. VanLehn, K., Brown, J.S. and Greeno, J., Competitive argumentation in computational

theories of cognition, in: W. Kinsch, J. Miller and P. Poison (Eds.), Methods and Tactics in
Cognitive Science 0Erlbaum, New York, 1983).

R e c e i v e d S e p t e m b e r 1983

