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Abstract 

Lenat, D.B. and E.A. Feigenbaum, On the thresholds of knowledge, Artificial Intelligence 
47 (1991) 185-250. 

We articulate the three major findings and hypotheses of AI to date: 
(1) The Knowledge Principle: If a program is to perform a complex task well, it must 

know a great deal about the world in which it operates. In the absence of knowledge, 
all you have left is search and reasoning, and that isn't enough. 

(2) The Breadth Hypothesis: To behave intelligently in unexpected situations, an agent 
must be capable of falling back on increasingly general knowledge and analogizing to 
specific but superficially far-flung knowledge. (This is an extension of the preceding 
principle.) 

(3) AI as Empirical Inquiry: Premature mathematization, or focusing on toy problems, 
washes out details from reality that later turn out to be significant. Thus, we must test 
our ideas experimentally, falsifiably, on large problems. 

We present evidence for these propositions, contrast them with other strategic approaches 
to AI, point out their scope and limitations, and discuss the future directions they mandate 
for the main enterprise of AI research. 

I. Introduction 

For over three decades, our field has pursued the dream of the computer 
that competently performs various difficult cognitive tasks. AI has tried many 
approaches to this goal and accumulated much empirical evidence. The 
evidence suggests the need for the computer to have and use domain-specific 
knowledge. We shall begin with our definition of intelligence: 

* This article was originally prepared in May 1987 for the MIT Workshop on Foundations of AI 
the following month, and issued then as MCC Technical Report AI-126-87. A very much shortened 
version was given as an invited paper at IJCAI-87 in Milan, August 1987. It was edited in 1989 in 
preparation for this publication. 
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Definition. Intelligence is the power to rapidly find an adequate solution in 
what appears a priori (to observers) to be an immense search space. 

So, in those same terms, we can summarize the empirical evidence: "Knowl- 
edge is Power" or, more cynically "Intelligence is in the eye of the (un- 
informed) beholder". The knowledge as power hypothesis has received so 
much confirmation that we now assert it as: 

Knowledge Principle (KP). A system exhibits intelligent understanding and 
action at a high level of competence primarily because of the knowledge that it 
can bring to bear: the concepts, facts, representations, methods, models, 
metaphors, and heuristics about its domain of endeavor. 

The word knowledge in the KP is important. There is a tradeoff between 
knowledge and search; that is, often one can either memorize a lot of very 
detailed cases, or spend time applying very general rules. Neither strategy, 
carried to extremes, is optimal. On the one hand, searching is often costly, 
compared to the low cost of just not forgetting--of preserving the knowledge 
for future use. Our technological society would be impossible if everyone had 
to rediscover everything for themselves. On the other hand, even in a relatively 
narrow field, it's impractical if not impossible to have a pre-stored database of 
all the precise situations one will run into. Some at least moderately general 
knowledge is needed, rules which can be applied in a variety of circumstances. 
Since knowledge includes control strategies and inference methods, one might 
ask what is excluded by the KP. The answer is that we exclude unbalanced 
programs: those which do not contain, and draw power from, a mixture of 
explicit and compiled knowledge, and we advocate programs in which the 
balance is tipped toward the explicit, declarative side. Section 2 discusses the 
Knowledge Principle in more detail, and Section 3 provides experimental 
evidence for it. 

The KP suggests that any system which is to perform intelligently incorpo- 
rate both particular facts and heuristic rules. But how far-ranging must such 
knowledge be? Consider the brittleness of current knowledge-based systems. 
They have a plateau of competence, but the edges of that plateau are steep 
descents into complete incompetence. Evidence for how people cope with 
novelty is sparse and unreliable. Still, there is suggestive evidence supporting 
their reliance on general "commonsense" knowledge, and their reliance on 
partial or analogical matching. This leads us to a plausible extension of the 
Knowledge Principle: 

Breadth Hypothesis (BH). Intelligent performance often requires the problem 
solver to fall back on increasingly general knowledge, and/or to analogize to 
specific knowledge from far-flung domains. 
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Are we, of all people, advocating the use of weak methods? Yes, but only in 
the presence of a breadth of knowledge far afield of the particular task at hand. 
We are adding to the KP here, not contradicting it. Much of the power still 
derives from a large body of task-specific expertise (cases and rules). We are 
adding to the KP a new speculation, namely that intelligent problem solvers 
cope with novel situations by analogizing and by drawing on "common sense". 
Section 4 examines the brittleness of current expert systems, and Section 5 
presents evidence in support of the Breadth Hypothesis. That evidence comes 
from considering the limits of what AI can do today, in areas such as natural 
language understanding and machine learning. 

The natural tendency of any search program is to slow down (often combina- 
torially explosively) as additional assertions are added and the search space 
therefore grows. All our real and imagined intelligent systems must, at some 
level, be searching as they locate and apply general rules and as they locate and 
perform analogical (partial) matches. Is it inevitable, then, that programs must 
become less intelligent in their previously-competent areas, as their KBs grow? 
We believe not. The key to avoiding excess search is to have a little meta- 
knowledge to guide and constrain the search. Hence, the key to preserving 
effective intelligence of a growing program lies in judicious adding of meta- 
knowledge along with the addition of object-level knowledge. Some of this 
meta-knowledge is in the form of meta-rules, and some of it is encoded by the 
ontology of the KB; these are, respectively, the dynamic and static ways of 
effectively preserving whatever useful bundlings already existed in the KB. (Of 
course, meta-rules can and should be represented explicitly, declaratively, as 
well as having a procedural form. That way, meta-meta-knowledge can apply 
to them; and so on.) This is a prescription for one to gradually add and refine 
categories and predicates (types of slots) as one grows the KB. This is why we 
believe the KP works "in the large", why we can scale up a KB to immense 
size without succumbing to the combinatorial explosion. 

There is an additional element in our paradigm of AI research, which says 
that intelligence is still so poorly understood that Nature still holds most of the 
important surprises in store for us. This leads, in Section 6, to our central 
methodological tenets: 

Empirical Inquiry Hypothesis (EH). The most profitable way to investigate AI 
is to embody our hypotheses in programs, and gather data by running the 
programs. The surprises usually suggest revisions that start the cycle over 
again. Progress depends on these experiments being able to falsify our 
hypotheses. Falsification is the most common and yet most crucial of surprises. 
In particular, these programs must be capable of behavior not expected by the 
experimenter. 

Difficult Problems Hypothesis. There are too many ways to solve simple 
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problems. Raising the level and breadth of competence we demand of a system 
makes it easier to tes t - -and  raise--its intelligence. 

The Knowledge Principle is a mandate for humanity to concretize the 
knowledge used in solving hard problems in various fields. ~ This might lead to 
faster training based on explicit knowledge rather than apprenticeships. It has 
already led to thousands of profitable expert systems. 

The Breadth Hypothesis is a mandate to spend the resources necessary to 
construct one immense knowledge base spanning human consensus reality, to 
serve as scaffolding for specific clusters of expert knowledge. 

The Empirical Inquiry Hypothesis is a mandate to actually try to build such 
systems, rather than theorize about them and about intelligence. AI is a 
science when we use computers the way Tycho Brahe used the telescope, or 
Michaelson the interferometer--as  a tool for looking at Nature, trying to test 
some hypothesis, and quite possibly getting rudely surprised by finding out that 
the hypothesis is false. There is quite a distinction between using a tool to 
gather data about the world, and using tools to, shall we say, merely fabricate 
ever more beautiful crystalline scale models of a geocentric universe. 

In Section 7, the various principles and hypotheses above combine to suggest 
a sweeping three-stage research program for the main enterprise of AI 

research: 

(1) Slowly hand-code a large, broad knowledge base. 
(2) When enough knowledge is present, it should be faster to acquire more 

from texts, databases, etc. 
(3) To go beyond the frontier of human knowledge, the system will have to 

rely on learning by discovery, to expand its KB. 

Some evidence is then presented that stages (1) and (2) may be accom- 
plished in approximately this century; i.e., that artificial intelligence is within 
our grasp. Lenat 's current work at MCC, on the CYC program [28], is a 
serious effort to carry out the first stage by the mid-1990s. 

We are betting our professional l ives--the few decades of useful research we 
have left in us - -on  KP, BH, and EH. That's a scary thought, but one has to 
place one's bets somewhere, in science. It's especially scary because: 

(a) the hypotheses are not obvious to most AI researchers, 
(b) they are unpalatable in many ways even to us, their advocates! 

Why are they not obvious? Most AI research focuses on very small prob- 
lems, attacking them with machinery (both hardware and search methods) that 
overpower them. The end result is a program that "succeeds" with very little 

~Russell and others started a similar codification in the 1920s, but that movement was 
unfortunately led astray by Wittgenstein (see [41]). 
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knowledge, and so KP, BH, and EH are irrelevant. One is led to them only by 
tackling problems in difficult "real" areas, with the world able to surprise and 
falsify. 

Why are our three hypotheses (KP, BH, EH) not particularly palatable? 
Because they are unaesthetic! And they entail person-centuries of hard knowl- 
edge-entry work. Until we are forced to them, Occam's Razor encourages us to 
try more elegant solutions, such as training a neutral net "from scratch"; or 
getting an infant-simulator and then "talking to it". Only as these fail do we 
turn, unhappily, to the "hand-craft a huge KB" tactic. 

Section 8 summarizes the differences between our position and that of some 
other schools of thought on AI research. Section 9 lists several limitations and 
problems. We do not see any of them as insurmountable. Some of the 
problems seem at first blush to be "in-principle limitations", and some seem to 
be pragmatic engineering and usability problems. Yet we lump them side by 
side, because our methodology says to approach them all as symptoms of gaps 
in our (and our programs') knowledge, which can be identified and filled in 
incrementally, by in-context knowledge acquisition. Several of these problems 
have, in the two years since the first draft of this paper was prepared, been 
adequately "solved". The quote marks around "solved" mean that we have 
found adequate ways of handling them, typically by identifying a large collec- 
tion of special-case solutions that cover the vast majority of occurrences in 
actuality. 

The biggest hurdle of all has already been put well behind us: the enormous 
local maximum of building and using explicit-knowledge-free systems. On the 
far side of that hill we found a much larger payoff, namely expert systems. We 
have learned how to build intelligent artifacts that perform well, using knowl- 
edge, on specialized tasks within narrowly defined domains. An industry has 
been formed to put this technological understanding to work, and widespread 
transfer of this technology has been achieved. Many fields are making that 
transition, from data processing to knowledge processing. 

And yet we see expert systems technology, too, as just a local maximum. AI 
is finally beginning to move on beyond that threshold. This paper presents 
what its authors glimpse on the far side of the expert systems local-maximum 
hill: the promise of a large, broad KB serving as the nucleus of crystallization 
for programs which respond sensibly to novel situations because they can 
reason more by analogy than by perfect matching, and, ultimately, because, 
like us, they understand the meanings of their terms. 

2. The Knowledge Principle 

There is a continuum between the power of already knowing and the power 
of being able to search for the solution. In between those two extremes lie, 
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e.g., generalizing and analogizing and plain old observing (for instance, 
noticing that your opponent is Castling). Even in the case of having to search 
for a solution, the method to carry out the search may be something that you 
already know, or partial-match to get, or search for in some other way. This 
recursion bottoms out in things (facts, methods, etc.) that are already known. 
Though the knowledge/search tradeoff is often used to argue for the primacy 
of search, we see by this line of reasoning that it equally well argues for the 
primacy of knowledge. 

2.1. Thresholds of  competence 

Before you can apply search or knowledge to solve some problem, though, 
you need to already know enough to at least state the problem in a well-formed 
fashion. For each task, there is some minimum knowledge needed for one to 
even formulate i t-- that  is, so that one can recognize when one has solved the 
problem. 

Beyond this bare minimum, today's expert systems also include enough 
knowledge to reach the level of a typical practitioner performing the task. Up 
to that "competence" level, the knowledge/search tradeoff is strongly tipped in 
favor of knowledge. That is, there is an ever greater "payoff" to adding each 
piece of knowledge, up to some level of competence (e.g., where a useful 
subset of the original NP-complete problem becomes polynomial). Some of the 
knowledge that competent practitioners have is the knowledge of which 
distinctions to make and which ones to ignore. As shown by Polya [39] and 
Amarel [2], the space one needs to search for a solution to a problem can 
become smaller and smaller as one incorporates more and more such knowl- 
edge into the representation. 

Beyond that "practitioner" level is the "expert" level. Here, each piece of 
additional knowledge is only infrequently useful. Such knowledge deals with 
rare but not unheard-of cases. In this realm, the knowledge/search tradeoff is 
fairly evenly balanced. Sometimes it's worth knowing all those obscure cases, 
sometimes it's more cost-effective to have general models and "run" them. 

Notice that we have not yet considered "the rest of human knowledge", all 
the facts, heuristics, models, etc., that are not known to be relevant to this 
particular task. This does not mean that all other knowledge is truly irrelevant 
and useless to the task; perhaps it will one day be seen to be relevant through 
new discoveries, perhaps it will be useful to analogize from (and thereby lead 
to a novel solution to some tough situation), etc. Of course, putting this into an 
expert system for just one particular task is even less cost-effective, per piece of 
knowledge added, so no one seriously considers doing it. 

2.2. Why the Knowledge Principle works so frequently 

The above arguments describe how the KP might work; but why does it work 
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so frequently? In other words, why is building even conventional expert 
systems a powerful and useful thing to do? 

(1) Many useful real-world tasks are sufficiently narrow that the "prac- 
titioner level" and even some degree of "expert level" can be achieved 
by a system containing only, say, several hundred if/then rules--hence 
requiring only a few person-years of effort. 

(2) These systems often embody only the delta, the difference between 
expert and non-expert. MYCIN may outperform general practitioners at 
deciding which kind of meningitis a patient has, but that's because the 
GPs have to know about thousands of varieties of medical problems, and 
relatively rarely encounter meningitis, while the program can assume 
that the other 99% of medicine has been judged to be irrelevant, and is 
free to focus on how to differentiate one type of meningitis from another. 

(3) Conventional programs that perform a similar task lack most of the "if" 
parts of the corresponding expert system's rules. That is, they have 
compiled away much of the knowledge, in order to gain efficiency. The 
price they pay for this, though, is the high cost of integrating a new piece 
of knowledge into their program once it exists. To put this the other 
way, you can never be sure, in advance, how the knowledge already in 
the system is going to be used, or added to, in the future. Therefore, 
much of the knowledge in an intelligent system needs to be represented 
explicitly, declaratively, although compiled forms of it may of course 
also be present. We might call this the "Explicit Knowledge Principle". 
In other words, the experts in a field often do not yet have all the 
required knowledge explicitly codified (otherwise anyone could be pro- 
ficient, and there wouldn't be recognized experts). Therefore, standard 
software design methodology may fail to build a program "in one pass" 
to perform the task. However, as the developing expert system makes 
mistakes, the experts can correct them, and those corrections incremen- 
tally accrete the bulk of the hitherto unexplicated rules. In this manner, 
the system incrementally approaches competence, and even expertise, 
where no traditional software solution would work. 

(4) There is another benefit that accrues when knowledge--including pro- 
cedural knowledge--is represented declaratively, as explicit objects, 
following the "Explicit Knowledge Principle", above. Namely, meta- 
rules can apply to it, e.g., helping to acquire, check, or debug other 
rules. Structured objects that represent knowledge can be more easily 
analogized to, and can enable generalizations to be structurally induced 
from them. So while we concede to procedural attachment (having 
opaque lumps of code here and there in the system) for efficiency 
reasons, we argue that there should be a declarative version of that also 
(i.e., a declarative structure containing the information which is encoded 
in the procedure). 
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2.3. Control in knowledge-based systems 

What about the control structure of an intelligent system? Even granted that 
lots of knowledge is necessary, might we not need sophisticated as-yet- 

unknown reasoning methods? 

Knowledge Is All There Is Hypothesis. No sophisticated, as-yet-unknown con- 
trol structure is required for intelligent behavior. 

On the one hand, we already understand deduction, induction, analogy, 
specialization, generalization, and so on, well enough to have knowledge be 
our bottleneck, not control strategies. This does not mean that we fully 
understand such processes, of course. To be sure, additional work still needs to 
be done there. But we have examined them enough to eliminate the gross 
inefficiencies in their execution, to devise data structures and algorithms for 
efficiently performing them in the most commonly occurring cases. (For 
instance, consider Stickel's non-clausal connection graph resolution theorem 
prover [44], which was a response to the known inefficiency of deduction.) 

On the other hand, all such strategies and methods are themselves just 
pieces of knowledge. The control structure of the intelligent system can be 
opportunistic: select one strategy, apply it for a while, monitor progress, and 
perhaps decide to switch to another  strategy (when some other piece of 
knowledge suggests it do so). 

Carefully reading our wording in this section will reveal that we are making a 
pragmatic argument,  involving choices for where to focus current AI research, 
rather than making a hypothesis we expect to hold true forever. We don't  
understand induction, analogy, etc., perfectly, but further progress on under- 
standing them needs to be done in the context of a large knowledge base. So 
let's worry about getting that built, and then return to study these phenomena.  
Perhaps at that time we will see the need to develop some useful new control 
scheme. 

2.4. The manner in which knowledge boosts competence 

Can we be more specific about the manner  in which knowledge boosts 
competence? Can we give, say, an equation for how to measure the effective 
power of the knowledge in a system, when it's applied to a problem P? It is 
premature to even attempt to do so- - i t  may never be possible to do so. It may 
never even be possible to give precise definitions for terms like "useful" and 
"competence" .  Nevertheless, this section speculates on what some of the terms 
in that equation would be. 

Factor 1. Consider a heuristic H;  e.g., "Drive carefully late at night". It has 
a characteristic curve of how powerful or useful it is, as a function of what 
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problem it's applied to. As detailed in [25], the area under this curve is often 
constant across heuristics. In simpler and more familiar terms, this is just the 
generality/power tradeoff: the more powerful a heuristic's "peak power" is, 
the narrower its domain of applicability is likely to be. A heuristic that only 
applies to driving on Saturday nights, in Austin, might be far more powerful 
than H, but its range of applicability is correspondingly narrower. As a first 
approximation to the power of the knowledge in the system, we might simply 
superpose all the "power curves" of the heuristics (and algorithms) that 
comprise the knowledge. That would give us an overall idea of the power of 
the system as a function of what problem it was applied to. If we're interested 
in applying the system to a particular problem P, we could then read off the 
value of this curve at point P. If we're going to apply the system to several 
problems, so that P is a large distribution, then we would weight the result by 
that distribution. 

Factor 2. As a correction to this first rough guess, attempt to factor out 
some of the redundancy and dependence among the pieces of knowledge. 

Factor 3. Weight each heuristic by how costly it is to run. "Cost" here 
includes literal CPU and memory resources used, and also includes the less 
tangible cost of asking questions of slow and busy human beings. Also included 
in this factor would be the downside risks of what might happen if the heuristic 
gave incorrect advice. 

Factor 4. To be fair to the less-knowledge-based approaches, we should also 
deduct some amount which amortizes the effort we spent acquiring that rule or 
method. 

Those represent just four of the factors in measuring the effective power of 
the knowledge in a system. We encourage further investigation in this direc- 
tion. Recent work in nonmonotonic logic may bear on Factors 1 and 3; and 
[46] may bear on Factor 2. 

3. Evidence for the Knowledge Principle 

Half a century ago, before the modern era of computation began, Turing's 
theorems and abstract machines gave a hint of the fundamental idea that the 
computer could be used to model the symbol-manipulating processes that make 
up that most human of all behaviors: thinking. 

Thirty years ago, following the 1956 Dartmouth Summer Conference on AI, 
the work began in earnest. The founding principle of the AI research paradigm 
is really an article of faith, first concretized by Newell and Simon: (See [35] for 
more details.) 

Physical Symbol System Hypothesis. The digital computer has sufficient means 
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for intelligent action; to wit: representing real-world objects, actions, and 
relationships internally as interconnected structures of symbols, and applying 
symbol manipulation procedures to those structures. 

The early dreaming included intelligent behavior at very high levels of 
competence. Turing speculated on wide-ranging conversations between people 
and machines, and also on expert-level chess playing programs. Newell and 
Simon also wrote about champion chess programs, and began working with 
Cliff Shaw toward that end. McCarthy wrote about the Advice Taking pro- 
gram. Gelernter, Moses, Samuel, and many others shared the dream. 

Lederberg and Feigenbaum chose, in 1964, to pursue the AI dream by 
focusing on scientific reasoning tasks. With Buchanan and Djerassi, they built 
Dendral, a program that solved structure elucidation problems at a high level 
of competence. Many years of experimenting with Dendral led to some 
hypotheses about what its source of power might be, how it was able to solve 
chemical structure problems from spectral data. Namely, the program worked 
because it had enough knowledge of basic and spectral chemistry. 

Table 1 shows that as each additional source of chemical knowledge was 
added, the Dendral program proposed fewer and fewer candidates (topologi- 
cally plausible structures) to consider (see [7]). The fifth and final type of rule 
of thumb were rules for interpreting nuclear mass resonance (NMR) data. 
With all five types of rule in the program, many problems--such as the one 
il lustrated--resulted in only a single candidate isomer being proposed as worth 
considering! Threatened by an a priori huge search space, Dendral managed to 
convert it into a tiny search space. That is, Dendral exhibited intelligence. 

When searching a space of size 1, it is not crucial in what order you expand 
the candidate nodes. If you want to speed up a blind search by a factor of 43 
million, one could perhaps parallelize the problem and (say, by 1995) employ a 
43-mega-processor; but even back in 1965 one could, alternatively, talk with 
the human experts who routinely solve such problems, and then encode the 
knowledge they bring to bear to avoid searching. There is a cost associated 
with making the generator "smarter"  in this fashion (i.e., there is inferencing 

Table 1 
Dendral at work: Finding all atom-bond graphs that could have the 
formula C2oH43N. The sources given are cumulative; thus, the final 
"1" refers to Dendral with all five types of rules running in it. 

Number of 
Information source structures generated 

Topology (limits of 3D space)  42,867,912 
Chemical topology (valences) 14,715,814 
Mass spectrography (heuristics) 1,284,792 
Chemistry (first principles) 1,074,648 
NMR (interpretation rules) 1 
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going on inside the generator, to utilize the knowledge it now contains) but 
that cost is insignificant compared to the seven orders of magnitude reduction 
in the size of the search space it permits. 

Obvious? Perhaps, in retrospect. But at the time, the prevailing view in AI 
ascribed power to the reasoning processes, to the inference engine and not to 
the knowledge base. (E.g., consider LT and GPS and the flurry of work on 
resolution theorem provers.) The knowledge as power hypothesis, supported by 
Feigenbaum (Dendral), McCarthy (Advice Taker), and a few others, stood as 
a contra-hypothesis. It stood awaiting further empirical testing to either 
confirm it or falisfy it. 

The 1970s were the time to start gathering evidence for or against the 
Knowledge Principle. Medical and scientific problem solving provided the 
springboard. 

• Shortliffe's MYCIN program formed the prototype for a large suite of 
expert-level advisory systems which we now label "expert systems" [12]. 
Its reasoning system was simple (exhaustive backward chaining) and ad 
hoc in parts. 

• DEC has been using and extending R1 program (EXCON) since 1981; its 
control structure is also simple: exhaustive forward chaining [32]. 

• Over a period of two decades, Bledsoe was led to incorporate more and 
more heuristics into his theorem provers, ultimately rejecting resolution 
entirely and opting for knowledge-guided natural deduction [3, 4]. 

• The INTERNIST program [40] got underway at nearly the same time as 
MYCIN. By now it has grown to a KB of 572 diseases, 4500 manifestations, 
and many hundreds of thousands of links between them. 

• The AM [9] and EURISKO [25] programs, 15 years old by now, demon- 
strated that several hundred heuristic rules, of varying levels of generality 
and power, could adequately begin to guide a search for plausible (and 
often interesting) new concepts in many domains, including set theory, 
number theory, naval wargaming tactics, physical device design, evolution, 
and programming. These experiments showed how scientific discovery--a 
very different sort of intelligent behavior from most expert systems' 
tasks--might be explained as rule-guided, knowledge-guided search. Not 
all of the AM experiments were successful; indeed, the ultimate limitations 
of AM as it was run longer and longer finally led to EURISKO, whose 
ultimate empirical limitations [27] led to CYC, of which more later. 

In the past decade, thousands of expert systems have mushroomed in 
engineering, manufacturing, geology, molecular biology, financial services, 
machinery diagnosis and repair, signal processing, and in many other fields. 
From the very beginning, these expert systems could interact with professionals 
in the jargon of the specialty; could explain their line of reasoning by 
displaying annotated traces of rule-firings; and had subsystems (such as 
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MYCIN'S TEIRESIAS [9] and XCON's SALT [29]) which aided the acquisition of 
additional knowledge by guiding the expert to find and fix defects in the 
knowledge (rule) base. 

Very little ties these areas together, other than that in each one, some 
technical problem solving is going on, guided by heuristics: experimental, 
qualitative rules of thumb--rules of good guessing. Their reasoning compo- 
nents are weak and simple; in their knowledge bases lies their power. The 
evidence for the various propositions we made in Section 2 lies in their 
details--in the details of their design, development, and performance. 

In the 1980s, many other areas of AI research began making the shift over to 
the knowledge-based point of view. It is now common to hear that a program 
for understanding natural language must have extensive knowledge of its 
domain of discourse. Or, a vision program must have an understanding of the 
"world" it is intended to analyze scenes from. Or even, a machine learning 
program must start with a significant body of knowledge which it will expand, 
rather than trying to learn from scratch. 

4. The Breadth Hypothesis 

A limitation of past and current expert systems is their brittleness. They 
operate on a high plateau of knowledge and competence until they reach the 
extremity of their knowledge; then they fall off precipitously to levels of 
ultimate incompetence. People suffer the same difficulty, too, but their plateau 
is much broader and their slope is more gentle. Part of what cushions the fall 
are layer upon layer of weaker, more general models that underlie their 
specific knowledge. 

For example, if engineers are diagnosing a faulty circuit they are unfamiliar 
with, they can bring to bear: circuit analysis techniques; their experiences with 
the other products manufactured by the same company, published handbook 
data for the individual components, and commonsense rules of thumb for 
water circuits (looking for leaks, or breaks), for electrical devices (turn it off 
and on a few times), and for mechanical devices in general (shake it or smack it 
a few times). Engineers might analogize to the last few times their automobile 
engine failed, or even to something as distant as a failed love affair. Naturally, 
the more different the causality of the thing they analogize to, the less likely it 
will be to apply in the electronic circuit diagnosis situation. 

Domain-specific knowledge represents the distillation of experience in a 
field, nuggets of compiled hindsight. In a situation similar to the one in which 
they crystallized, they can powerfully guide search. But when confronted by a 
novel situation, human beings turn to reasoning strategies like generalizing and 
analogizing in real time and (even better) already having more general rules to 
fall back on. This leads to the Breadth Hypothesis (BH), which we stated in 
Section 1. 
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4.1. Falling back on increasingly general knowledge 

Each of us has a vast storehouse of general knowledge, though we rarely talk 
about any of it explicitly to one another; we just assume that other people 
already know these things. If they're included in a conversation, or an article, 
they confuse more than they clarify. Some examples are: 

• water flows downhill, 
• living things get diseases, 
• doing work requires energy, 
• people live for a single, contiguous, finite interval of time, 
• most cars today are riding on four tires, 
• each tire a car is riding on is mounted on a wheel, 
• if you fall asleep while driving, your car will start to head out of your lane 

pretty soon, 
• if something big is between you and the thing you want, you probably will 

have to go around it. 

It is consensus reality knowledge. Lacking these simple commonsense con- 
cepts, expert systems' mistakes often appear ridiculous in human terms. For 
instance, when a car loan authorization program approves a loan to a teenager 
who put down he'd worked at the same job for twenty years; or when a skin 
disease diagnosis program concludes that my rusted out decade-old Chevy has 
measles; or when a medical system prescribes an absurd dosage of a drug for a 
maternity patient whose weight (105) and age (35) were accidentally swapped 
during the case's type-in. 

As we build increasingly complex programs, and invest them with increasing 
power, the humor quickly evaporates. 

4.2. Reasoning by analogy 

Reasoning by analogy involves partial-matching from your current situation 
to another one. There are two independent dimensions along which analog- 
izing occurs, vertical (simplifying) and horizontal (cross-field) transformation. 

• Vertical: When faced with a complex situation, we often analogize to a 
much simpler one. Of course simplification can be overdone: "the stock 
market is a seesaw"; "medication is a resource" (this leads many patients 
to overdose). 

• Horizontal: Cross-field mapping is rarer but can pay off: "curing a disease 
is like fighting a battle" may help doctors devise new tactics to try (e.g., 
viruses employed to perform the analogue of propaganda) and may help 
soldiers devise new military tactics (e.g., choosing missions which function 
like vaccination). 

Successful analogizing often involves components of both vertical and 
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horizontal transformation. For instance, consider reifying a country as if it 
were an individual person: "Russia is angry". That accomplishes two things: it 
simplifies dealing with the other country, and it also enables our vast array of 
first-hand experiences (and lessons learned) about inter-personal relations to 
be applied to international relations. 

Do not make the mistake we did, of thinking of this reasoning method as 
little more than a literary device, used for achieving some sort of emotional 
impact. It can be used to help discover solutions to problems, and to flesh out 
solutions; and it can be argued that analogy pervades human communication 
and perhaps almost all of human thought! (see [22]). Even conceding that 
analogy is powerful, and often applies, still two questions linger: "Why does 
such an unsound problem-solving method  work well?", and "Why does it work 
so often?" 

There is much common causality in the world; that leads to similar events A 
and B; people (with our limited perception) then notice a little bit of that 
shared structure; finally, since we know that human perception is often limited, 
people come to rely on the following rule of thumb: 

Analogical Method. If A and B appear to have some unexplained similarities, 
then it's worth your time to hunt for additional shared properties. 

This rule is general but inefficient. There are many more specialized versions 
for successful analogizing in various task domains, in various user-modes (e.g., 
by someone in a hurry, or a child), among analogues with various epis- 
temologicai statuses, depending on how much data there is about A and B, and 
so on. These are some of the n dimensions of analogy space; we can conceive 
having a special body of knowledge--an expert system--in each cell of that 
n-dimensional matrix, to handle just that sort of analogical reasoning. 

Why focus on causality? If cause(A) and cause(B) have no specific common 
generalization, then similarities between A and B are more likely to be 
superficial coincidences, a metaphor useful perhaps as a literary device but not 
as a heuristic one. 

Analogy in mathematics, where there is no clear notion of causality, 
operates similarly to "genuine" analogy, with the weaker relation of material 
implication substituting for causality. In that case, what one is often finding is a 
connection between two instances of a not-yet-conceptualized generalization. 
Also, much of analogizing in the doing of mathematics [39] is analogizing 
between the current problem-solving situation and a past one, i.e., between 
two search processes, not between two mathematical entities. And the act of 
trying to solve math problems is indeed frought with causality and, hence, 
opportunities for the above sort of "genuine" analogizing. 

The above paragraphs are really just a rationalization of how analogy might 
work. The reason this unsound reasoning method frequently succeeds has to do 
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with three moderation properties that happen to hold in the real world: 

(1) The moderate distribution of causes with respect to effects. If there were 
a vast number of unrelated kinds of causes, or if there were only one or 
two distinguishable causes, then analogy would be less useful. 

(2) The moderately high frequency with which we must cope with novel 
situations, and the moderate degree of novelty they present. Lower 
frequency, or much higher (volatility of the world in which the problem 
solver must perform), would decrease the usefulness of trying to analog- 
ize. Why? In a world with essentially no surprises, memory is all you 
need; and in volatile world, matching to past occurrences is more of a 
hindrance than a help. 

(3) The obvious metric for locating relevant knowledge--namely, "close- 
ness of subject matter"--is  just a moderately good predictor of true 
relevance. Far-flung knowledge and imagery can be useful. If we already 
understood all the connections, we'd always know when X was relevant; 
and if we had no attributes of knowledge to match to, we'd have no idea 
of how to generate (let alone flesh out) an analogy. 

Analogizing broadens the relevance of the entire knowledge base. It can be 
used to construct interesting and novel interpretations of situations and data; to 
retrieve knowledge that has not been stored the way that it is now needed; to 
guess values for attributes; to suggest methods that just might work; and as a 
device to help students learn and remember. It can provide access to powerful 
methods that might work in this case, but which might not otherwise be 
perceived as "relevant". E.g., Dirac analogized between quantum theory and 
group theory, and very gingerly brought the group theory results over into 
physics for the first time, with quite successful results. 

Today, we suffer with laborious manual knowledge entry in building expert 
systems, carefully codifying knowledge and placing it in a data structure. 
Analogizing may be used in the future not only as an inference method inside a 
program, but also as an aid to adding new knowledge to it. 

5. Evidence for the Breadth Hypothesis 

If we had as much hard evidence about the BH as we do for the KP, we 
would be calling it the Breadth Principle. Still, the evidence is there, if we look 
closely at the limits of what AI programs can do today. Most of the current AI 
research we've read about is currently stalled. As Mark Stefik recently 
remarked in a note to us, "Progress will be held back until a sufficient corpus of 
knowledge is available on which to base experiments." For brevity, we will 
focus on natural language understanding (NL) and machine learning (ML), but 
similar results are appearing in most other areas of AI as well. 
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5.1. The limits of natural language understanding 

To understand sentences in a natural language, one must be able to 
disambiguate which meaning of a word is intended, what the referent of a 
pronoun probably is, what each ellipsis means, and so on. These are knowl- 
edge-intensive skills. 

1. I saw the Statue of Liberty flying over New York. 
2. The box is in the pen. The ink is in the pen. 
3. Mary saw a dog in the window. She wanted it. 
4. Napolean died on St. Helena.  Wellington was saddened. 

Fig. 1. Sentences presume world knowledge furiously. 

Consider the first sentence in Fig. 1. Who's flying, you or the statue? Clearly 
we aren' t  getting any clues from English to do that disambiguation; we must 
know about people, statues, passenger air travel, the size of cargo that is 
shipped by air, the size and location of the Statue of Liberty, the ease or 
difficulty of seeing objects from a distance, and numerous other consensus 
reality facts and heuristics. What if we'd said "I  saw the Statue of Liberty 
standing in New York Harbor . "  It's not fair to say the verb (flying versus 
standing) decides it for you; consider, e.g., "I  saw the Statue of Liberty 
standing at the top of the Empire State Building." See [45] for similar 
examples. 

On line 2, in Fig. 1, the first "pen"  is a corral, the other is a writing 
implement. But how do you know that? It has to do with storage of solids and 
liquids, of how big various objects are, with your ability to almost instantly and 
subconsciously consider why one might place a box in each kind of pen, why 
one might put ink inside each kind of pen, and choose the plausible interpreta- 
tion in each case. This ability can of course be misled, as for example in one 
category of jokes. 

On line 3, does " i t"  refer to the dog or the window? What if we'd said "She 
smashed it", or "She pressed her nose up against it".'? 

A program which understood line 4 should be able to answer "Did Welling- 
ton hear of Napoleon's  death?"  Often, we communicate by what isn't said, in 
between one sentence and the next one. And of course we should then be able 
to draw the obvious conclusions from those inferred assertions; e.g., being able 
to answer the question "Did Wellington outlive Napoleon.'?" 

For any particular chosen text, an NL program can incorporate the small set 
of necessary twentieth century Americana,  the few commonsense facts and 
scripts that are required for semantic disambiguation, question answering, 
anaphoric reference, and so on. But then one turns to a new page, and the new 
text requires more semantics (pragmatics) to be added. 



On the thresholds of knowledge 201 

In a sense, the NL researchers have cracked the language understanding 
problem. But to produce a general Turing-testable system, they would have to 
provide more and more domain-specific information, and the program's seman- 
tic component would more and more resemble the immense KB mandated by 
the Breadth Hypothesis. As Norvig [38] concludes: "the complexity [has been 
shifted] from the algorithm to the knowledge base, to handle examples that 
other systems could do only by introducing specialized algorithms." 

Have we overstated the argument about how NL programs must ultimately 
have a large, real-world knowledge base to draw upon? Hardly; if anything we 
have drastically understated it! Look at almost any newspaper story, e.g., and 
attend to how often a word or concept is used in a clearly metaphorical, 
non-literal sense. Once every few minutes, you might guess? No! Reality is full 
of surprises. The surprise here is that almost every sentence is packed with 
metaphors and analogies [22]. An unbiased sample: here is the first article we 
saw today (April 7, 1987), the lead story in the Wall Street Journal [50]: 

Texaco lost a major ruling in its legal battle with Pennzoil. The 
Supreme Court dismantled Texaco's protection against having to 
post a crippling $12 billion appeals bond, pushing Texaco to the 
brink of a Chapter 11 filing. 

Lost? Major? Battle? Dismantled? Posting? Crippling? Pushing? Brink? The 
example drives home the point that, far from overinflating the need for 
real-world knowledge in language understanding, the usual arguments about 
disambiguation barely scratch the surface. (Drive? Home? The point? Far? 
Overinflating? Scratch? Surface? oh no, I can't call a halt to this! (call? halt?)) 
These layers of analogy and metaphor eventually "bottom out" at physical-- 
somatic-  primitives: up, down, forward, back, pain, cold, inside, seeing, 
sleeping, tasting, growing, containing, moving, making noise, hearing, birth, 
death, strain, exhaustion . . . . .  and calling and halting. 

NL researchers--and dictionaries--usually get around analogic usage by 
allowing several meanings to a word. Definition #1 for "war", say, is the 
literal one, and the other definitions are various common metaphorical uses of 
"war" (such as "an argument", "a commercial competition", "a search for a 
cure for", etc.). 

There are many millions (perhaps a few hundred million) of things we 
authors can assume you readers know about the world: the number of tires an 
auto has; who Ronald Reagan is; what happens if you fall asleep when 
driving--what we called consensus reality. To use language effectively, we 
select the best consensus image to quickly evoke in the listener's mind the 
complex thought we want to convey. If our program doesn't already know 
most of those millions of shared concepts (experiences, objects, processes, 
patterns . . . .  ), it will be awkward for us to communicate with it in NL. 

It is common for NL researchers to acknowledge the need for a large 
semantic component nowadays; Schank and others were saying similar things a 
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decade ago! But the first serious efforts have only recently begun to try to 
actually build one: at MCC (in conjunction with cYc), and at EDR, the 
Japanese Electronic Dictionary Research project [10]. We shall have to wait a 
few more years until the evidence is in. 

5.2. The limits of machine learning (induction) 

Machine learning is a second area where research is stalled owing to 
insufficiently broad knowledge bases. We will pick on AM and EURISKO 

because they exemplify the extreme knowledge-rich end of the current ML 
spectrum. Many experiments in machine learning were performed on them. 
We had many surprises along the way, and gained an intuitive feel for how and 
why heuristics work, for the nature of their power and their brittleness. Lenat 
and Brown present many of those surprises in [27]; some are listed in Fig. 2. 

1. It works. Several thousand concepts, including some novel con- 
cepts and heuristics, from several domains, were discovered. 

2. Most of the interesting concepts could be discovered in several 
different ways. 

3. Performing the top N tasks on the Agenda in simulated-parallel 
provided only about a factor of 3 speedup even when N grew as 
large as 100. 

4. Progress slows down unless the program learns new heuristics 
(compiles its hindsight) often. 

5. Similarly, progress slowed down partly because the programs 
could not competently learn to choose, switch, extend, or invent 
different representations. 

6. These programs are sensitive to the assumptions woven into their 
representations' semantics; e.g., "What does it mean for Jane to 
appear as the value on the spouse slot of the Fred frame?" 

7. Some of their apparent power is illusory, only present in the 
mind of the intelligent observer who recognizes concepts which 
the program defines but does not properly appreciate. 

8. Structural mutation works iff syntax mirrors semantics: represent 
heuristics using many small if- and many small then-parts, so the 
results of point mutation can be more meaningful. 

9. In each new domain, there would be a flurry of plausible 
activities, resulting in several unexpected discoveries, followed 
by a period of decreased productivity, and finally lapsing into 
useless thrashing. The above techniques (e.g., 4, 5, 8) only 
delayed this decay. 

Fig. 2. Some of the major surprises of the "discovery guided by heuristic rules" 
experiments performed with the AM and EURISKO programs, during the decade 

1975-1984. 
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Despite their relative knowledge-richness, the ultimate limitations of these 
programs derived from their small size. Not their small number of methods, 
which were probably adequate, but the small initial knowledge base they had 
to draw upon. One can analogize to a campfire that dies out because it was too 
small, and too well isolated from nearby trees, to start a major blaze. The 
heuristics, the representations chosen, etc., provide the kindling and the spark, 
but the real fuel must come from without. 

In other words, AM and other machine learning programs "ran down" 
because of insufficient knowledge. EURISKO partially solved this, by having 
new heuristics be learned simultaneously with the object-level learning, but this 
merely delayed the inevitable. The point here is that one can only learn 
something--by discovery or by being told-- if  one almost knows it already. 
This leads to Piagetian stages in young children, courses of study in young 
adults, and suggests the need for large knowledge bases in AI programs. 

Marvin Minsky cites a variant of this relationship in his afterword to True 

Names [49]: "The more you know, the more (and faster) you can learn." The 
inverse of this enabling relationship is a disabling one, and that's what 
ultimately doomed AM and EURISKO: 

Knowledge Facilitates Learning (Catch 22). If you don't know very much to 
begin with, don't expect to learn a lot quickly. 

This is the standard criticism of pure Baconian induction. As philosophers 
are wont to say, "To get ahead, get a theory." Without one, you'll be lost. It 
will be difficult (or time-consuming) to determine whether or not each new 
generalization is going to be useful. In hindsight, perhaps we shouldn't have 
been surprised at this. After all, learning can be considered a task; and, like 
other tasks, it is subject to the Knowledge Principle. 

This theme (knowledge facilitates learning) is filtering into ML in the form 
of explanation-based generalization (EBG) and goal-based learning. Unfortu- 
nately, EBG requires well-defined theories (too strong a requirement) and 
works by logically deducing (too restrictive a process) the explanandum. Hence 
we would expect this method of getting machines to learn to have some--  but 
limited--success, which seems to be empirically what ML researchers report. 
E.g., Mostow [34] concludes that "scaling up for harder learning prob- 
l e m s . . ,  is likely to require integrating [additional] sources of knowledge." 

Don't human beings violate this Catch, starting as we do "from nothing"? 
Maybe, but it's not clear what human infants start with. Evolution has 
produced not merely physically sophisticated structures, but also brains whose 
architecture make us well suited to learning many of the simple facts that are 
worth learning about the world. Other senses, e.g., vision, are carefully tuned 
as well, to supply the brain with data that is already filtered for meaning 
(edges, shapes, motion, etc.) in the world in which we do happen to live. The 
exploration of those issues is beyond the scope of this paper, and probably 
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beyond the scope of twentieth century science, but one thing is clear: neonatal 
brains are far from tabula rasae. 

Besides starting from well-prepared brain structures, humans also have to 
spend a lot of time learning. It is unclear what processes go on during infancy. 
Once the child begins to communicate by speaking, then we are into the 
symbolic sort of learning that AI has traditionally focused on. One theory of 
why it's difficult to remember one's infancy and young childhood is that we 
radically reorganize our knowledge once or twice during our early life, and the 
memory structures we built as infants are not interpretable by the retrieval and 
reasoning methods we use as an adult [33]. 

6. The Empirical Inquiry Hypothesis 

We scientists have a view of ourselves as terribly creative, but compared to 
Nature we suffer from a poverty of the imagination; it is thus much easier for 
us to uncover than to invent. As we state elsewhere in this paper, experimenta- 
tion must be hypothesis-driven; we are not advocating the random mixture of 
chemicals in the hope that lead transmutes to gold. But there is a difference 
between having theories as one's guide versus as one's master. Premature 
adherance to a theory keeps Nature's surprises hidden, washing out details that 
later turn out to be significant (i.e., either not perceiving them at all, or 
labeling them as anomalies [20] and then not attending to them). E.g., contrast 
the astonishing early empirical studies by Piaget (Stages of Development) with 
his subsequent five decades of barren attempts to mathematize them. 

This attitude leads to our central methodological hypothesis, our paradigm 
for AI research: the Empirical Inquiry Hypothesis (EH). We stated it in 
Section 1, and repeat it here: 

Empirical Inquiry Hypothesis (EH). Intelligence is still so poorly understood 
that Nature still holds most of the important surprises in store for us. So the 
most profitable way to investigate AI is to embody our hypotheses in pro- 
grams, and gather data by running the programs. The surprises usually suggest 
revisions that start the cycle over again. Progress depends on these experiments 
being able to falsify our hypotheses. Falsification is the most common and yet 
most crucial of surprises! In particular, these programs must be capable of 
behavior not expected by the experimenter. 

What do we mean by "a surprise"? Surely we wouldn't want to increase 
surprises by having more naive researchers, less careful thought and planning 
of experiments, sloppier coding, unreliable machines, etc. We have in mind 
astronomers getting surprised by what they see (and "see") through telescopes; 
i.e., things surprising to the professional. Early AI programs often surprised 
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their builders in this fashion; e.g., Newell, Simon, and Shaw's LT program [36] 
and Gelernter's geometry program [15]. Then fascination with axiomatizing 
and proving set in, and surprises from "the real world" became rare. 

We have no objection to experimentation and theorizing proceeding hand in 
hand, we object only to the nearly exclusive doing of one of those activities and 
ignoring the other. As Genesereth and Nilsson argue in the preface of [17], 
having a good understanding of the theoretical issues can enable one to be a 
better experimenter. 

The inverse to the EH is cruel: 

Inverse to the Empirical Inquiry Hypothesis. If one builds programs which 
cannot possibly surprise him/her ,  then one is using the computer either 

(a) as an engineering workhorse, or 
(b) as a fancy sort of word processor (to help articulate one's hypothesis), or 
(c) as a (self-)deceptive device masquerading as an experiment. 

Most expert systems work falls into the first category; DART's use of MRS 
exemplifies the middle [16]; pup5 (by the young Lenat [24]) and HACKER (by 
the young Sussman [47]) exemplify the latter category. 

6.1. PUp5: a bad example 

To illustrate this point, we will use some of our own earlier work. The PUP5 

program [24] used a community of about one hundred Beings (similar to what 
have since been called actors and blackboard knowledge sources) to cooperate 
and synthesize a long LISP program, namely a variant of the Arch-learning 
program that Patrick Winston had written for his thesis a few years earlier. 

That was the program that PUP5 was built to synthesize, the target it was to 
hit. We chose that target first, and wrote a clean version of the program in 
INTERLISP. Next, we wrote down an English dialogue in which a user talked to 
an idealized automatic program synthesis program which then gradually wrote 
the target program. Next, we analyzed the script of that dialogue, writing down 
the specific knowledge needed on the part of the synthesizer to handle each 
and every line that the user typed in. Finally, we encoded each of those 
pieces of knowledge, and bundled up the related ones into little actors or 
Beings. 

Given this methodology, it should come as no surprise that PUP5 was then 
able to carry on that exact dialogue with a user, and synthesize that exact Arch 
program. We still firmly believe in the paradigm of multiple cooperating 
knowledge sources, it's just that our methodology ensured that there wouldn't  
be any surprises when we ran PUP5. Why? All along the way, there were 
numerous chances to cut corners, to consciously or unconsciously put down 
knowledge in a very specific form: just the knowledge that was needed, and in 
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just the form that it would be needed during the dialogue we know was going 
to be run. There wasn't much else puPs could do, therefore,  besides hit its 
target, and there wasn't much that we learned about automatic programming 
or intelligence from that six-month exercise. 

There was one crucial meta-level lesson we did learn: You can't  do science if 
you just use a computer  as a word processor, to illustrate your ideas rather 
than test them. That 's  the coarse form of the Empirical Inquiry Hypothesis. 
We resolved, in late 1974, to choose a task that eliminated or minimized the 
chance of building a wind-up toy like pups. We did not want a program whose 
target behavior was so narrow, so precisely defined, that it could "succeed" 
and yet teach us nothing. The AM program, written during 1975, was the direct 
result of Lenat 's  violent recoil from the PUP5 project.  

There was no particular target behavior that AM was designed with; rather,  it 
was an experiment: What would happen if a moderate-sized body of a few 
hundred math heuristics (about what were plausible directions to go in, about 
when something was and wasn't interesting) were applied in an agenda- 
managed best-first search, given an initial body of a hundred or so simple math 
concepts. In this sense, AM's task was less constrained than any program's had 
ever been: to explore areas of mathematics and do interesting things (gather 
data, notice regularities, etc.), with no preconceptions about what it might find 
or by what route it would find it. (Actually, we did have a few examples in 
mind for what AM might do, involving simple lattice theory and abstract 
algebra, but it never did those!) 

Unlike PUPS, AM provided hundreds of surprises, including many experi- 
ments that led to the construction of EURISKO. EURISKO ran for several 
thousand CPU hours, in half a dozen varied domains (see Fig. 2, above). And 
again the ultimate limitation was not what we expected (CPU time), or hoped 
for (the need to learn new representations of knowledge), but rather something 
at once surprising and daunting: the need to have a large fraction of consensus 
reality already in the machine. In this case, the data led Lenat to the next 
project  to work o n - - c Y c - - a n  undertaking we would have shied away from 
like the plague if the empirical evidence hadn't  forced us to it. It has similarly 
led Feigenbaum to undertake his current line of research, namely building a 
large KB of engineering and scientific knowledge. 

Thus, progress along our personal "paths of evolution" was due to running 
large experiments. As the Difficult Problems Hypothesis said in Section 1, 
There are too many ways to solve simple problems. Raising the level and breadth 

o f  competence we demand o f  a system makes it easier to test and raise its 
intelligence. 

Much research in cognitive psychology, e.g., traditionally sidesteps hard-to- 
quantify phenomena such as scientific creativity or reading and comprehending 
a good book, in favor of very simple tasks such as remembering nonsense 
syllables. If a "messy" task is studied, then usually either (1) it is abstracted 
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and simplified almost beyond recognition [23], or (2) the psychologist focuses 
on (and varies) one specific variable, so "respectable" statistical tests for 
significance can be run. 

6.2. Paradigms for AI  research 

Much of the confusion about AI methodology may be due to our casual 
mixing together of two quite different things: AI goals and AI strategies for 
achieving those goals. The confusion arises because many entries appear on 
both lists. Almost any strategy can apply toward any goal. Consider just one 
example: (1) An expert system strategy for a language understanding goal might 
be to build a rule-based system containing rules like "If a person gets excited, 
they break more grammatical rules than usual." By contrast: (2) A language 
understanding strategy for an expert system goal might be to build a restricted- 
English front end that helps an expert enter and edit rules. 

All scientific disciplines adopt a paradigm: a list of the problems that are 
acceptable and worthwhile to tackle, a list of the methods that can and should 
be tried, and the standards by which the results are judged. Adopting a 
paradigm is done for reasons of cognitive economy, but each paradigm is one 
narrow view. Adding to the confusion, some paradigms in AI have grown up 
both around the various goals and around the various strategies! See Appendix 
A for a more detailed look into AI goals and strategies. 

Finer distinctions can be drawn, involving the tactical choices to be made, 
but this turns out to be misleading. In what way misleading? Tactics that 
appear to be superficially different may share a common source of power: E.g., 
predicate calculus and frames both rely on a judicious dividing up of the world. 
Much of the "scruffies' " recent work on plausible reasoning by heuristic rules 
overlaps (but with very little shared vocabulary!) the "neats ' "  recent work on 
nonmonotonic reasoning and circumscription. 

The KP and BH and EH are all strategic statements. Each could be prefaced 
by the phrase "Whichever of the ultimate goals for AI you are pursuing...". 
The strategic level is, apparently, the level where one needs to take a stand. 
This is rarely stated explicitly, and it is rarely taken into account by news media 
or by conference organizers. 

We have an abiding trust in our chosen paradigm--empirical inquiry--in 
doing science the same way as the early Piaget, Newell, Simon, and Gelernter. 
The number of states that a brain or a computer can be in is immense; both 
those numbers are so huge as to be almost unimaginable. Turing's Hypothesis 
likens them to each other; the only other system we're familiar with with that 
degree of complexity is Nature itself. Mankind has made progress in studying 
natural phenomena only after centuries of empirically studying those phenom- 
ena; there is no reason to expect intelligence to be exempt. Eventually, many 
of the natural sciences advanced to the point that theory now often precedes 
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experiment by years or decades, but we have far to go in AI before reaching 
that stage. 

James Wilkinson was asked in 1974 why he was the first to discover the 
truncation errors of early twentieth century integration methods. After all, 
Wilkes at Cambridge, and others, had access to equal or better machines at the 
same time. He replied that at the National Physical Laboratory,  the Pilot Ace 
machine was sitting out, available to all to use and to watch. He was fascinated 
by the rows of blinking lights, and often stood mesmerized by them while his 
programs ran. Soon he began to recognize patterns in the l ights--patterns 
where there should not have been patterns! By contrast, the Cambridge 
computer  was screened off from its users, who got one-day turnaround on their 

card decks, but who were denied access to the phenomenon that Wilkinson was 
allowed to observe. 

The point is that while having a theory is essential, it is equally important to 
examine data and be driven by exceptions and anomalies to revise, criticize, 
and if necessary reject one's theory. To take one last example: a computer- 
simulated Newtonian world really would be Newtonian; only by hooking up 
actual telescopes and interferometers and such (or the data from them) can the 
non-Newtonian nature be perceived. 

7. A mandate for AI research: mapping the human memome 

AI must somehow get to that stage whe re - - a s  called for by KP and 
BH-- l ea rn ing  begins to accelerate due to the amount  already known. Induc- 
tion will not be an effective means to get to that stage, unfortunately; we shall 
have to hand-craft that large "seed"  KB one piece at a time. In terms of the 
graph in Fig. 3, all the programs that have ever been written, including AM and 
EURISKO, lie so far toward the left edge of the x-axis that the learning rate is 
more or less zero. Several of the more successful recent additions to the suite 
of ML techniques can be interpreted as pushes in the direction of adding more 
knowledge from which to begin the learning. 

The graph in Fig. 3 shows learning by induction (DISCOVERY) constantly 
accelerating: the more one knows, the faster one can discover still more. Once 
you speak fluently, learning by talking with other  people (LANGUAGE) is more 
efficient than rediscovery, until you cross the frontier of what humanity already 
knows (the vertical line at x = F) ,  at which point there is no one to tell you the 
next piece of knowledge. 

"Learning by discovery" is meant to include not only scientific research 
(e.g., cancer research), but also the many smaller-scale events in which 
someone formulates a hypothesis, gathers data to test it, and uses the results to 
adjust their " theory" .  That  small-scale case can occur in a (good) classroom; or 
just by driving the same route to work over various different times of the day 
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Fig. 3. The rate at which one can learn new knowledge. One can also integrate these three curves 
with respect to time, to see how the total amount known might grow over time. 

(and hypothesizing on rush hour patterns). It involves defining new concepts 
(at least in principle), formulating new heuristics, and even adjusting or 
changing one's representation of knowledge. Figure 3 illustrates two more 
things. Learning by discovery is much slower than other forms of learning-- 
such as being told something in natural language--but it is the chief method 
that extends the boundary F of human knowledge. 

By contrast, the rate of hand-coding of knowledge is fairly constant, though 
it, too, drops to zero once we cross the boundary of what is already known by 
humanity. The hand-coding rate may slope down a bit, since the time to find 
related concepts will increase perhaps as the log of the size of the KB. Or, 
instead, the hand-coding rate may slope up a bit, since copy and edit is a 
powerful technique for knowledge entry, and, as the KB grows, there will be 
more chance that some very similar concept is already present. 

This is an example of EH (the Empirical Inquiry Hypothesis which was 
presented in Section 1): Only by trying to hand-code the KB will we see which 
of those two counteracting factors outweighs the other, and by how much. 
Only by continued work on NL and ML will we determine whether or not 
there is a region, near where all three curves meet, where ML temporarily 
surpasses NL as a way to grow the KB. And only much further in the future, 
after our program crosses the frontier F will we find out if the discovery curve 
begins to slope up or down. 

Figure 3 suggests a sweeping three-stage research program for the coming 
three decades of AI research: 

• Slowly hand-code a large, broad knowledge base. 
• When enough knowledge is present, it will be faster to acquire more 

through reading, assimilating databases, etc. 
• To go beyond the frontier of human knowledge, the system will have to 

rely on learning by discovery, carrying out research and development 
projects to expand its KB. 

Three decades? What are the scales on the axes of Fig. 3? Why do we think it's 
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not a three-century or three-millenia program? Even if the vague shapes of the 
curves are correct, and even if we are near the left edge, how far over to the 
right is that place where language understanding meets and then surpasses the 
hand-coding level? Might we need a trillion things in our knowledge base, in 
order to get analogy and generalization to pay off? The usefulness and 
timeliness of the Breadth Hypothesis rest on the following quantitative as- 
sumption: 

Breadth Is within Our Grasp. A KB of about a million "frames" will provide a 
significant performance increase, due to generalization and analogy; this will 
consume - 2  person-centuries of time, ~$50 million, and -1  decade. Why such 
a "small size"? That's about all that people know! 

"Just one million 'frames'! Where did that number come from? What an 
insult!" you may say. "You just argued that the world is a complicated place. 
Surely we human beings each know an effectively infinite number of things! It's 
hopeless to try to represent an appreciable fraction of that, so we may as well 
settle on writing programs that know only 10-1000 specific things." 

What goes on during the 200,000 hours between birth and age 21? Certainly 
most of it is spent gathering experiences, building up long-term memories; 
some conscious time (and perhaps some sleep time) is spent generalizing and 
organizing one's memories. Much of what we're learning is quite specific to 
ourselves, our home, our family, our friends, and our culture. The result of 
thrusting someone into a different culture is often tragic or comic; consider, 
e.g., Crocodile Dundee, A Connecticut Yankee, The Beverly Hillbillies, and 
The Gods Must Be Crazy. 

Three recent estimates of the number of concepts (frames) needed for full 
breadth of knowledge all came up with a figure of approximately one million: 

(1) Alan Kay: 30,000 articles x 30 frames per article. 2 
(2) EDR: 200k words x 1 frame for each of a few languages. 3 
(3) Marvin Minsky: 4 LTM entries/hour from birth to adulthood. 4 

Two other ways for bounding the "bits" a human brain can store lead to 
much larger numbers: (1) counting neurons and synapses; but it's unclear how 
memories are stored in them; (2) counting pixels in our "mental images"; but 
controversy rages in cognitive psychology over whether mental imagery is just 
an illusion caused by the consistency and regularity in the world that lets us fill 
in missing pieces of memories--and of dynamic sensory experiences--with 

2 Based on research performed at Atari Research Labs, in conjunction with Encyclopaedia 
Britannica, during 1983. 

3 Reported at the First Workshop on Electronic Dictionaries, Tokyo, November 1988; proceed- 
ings available. 

4 Back of the envelope calculation performed for Bob Kahn, at NRI planning meeting, 1985. 
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default values (see, e.g., [13]). And humans who are blind from birth are not 
particularly less intelligent for want of those terrabytes of stored mental 
images. So it's unclear what those larger numbers signify. (Also, though it's 
clearly an over-simplification, having a million entries means that there can be 
a trillion one-step inferences involving pairs of them. And it would surprise no 
one to discover that one-step inference is going on unconsciously in our minds 

constantly.) 
Here again is a situation in which one should apply the EH. Various theories 

give various estimates, and the way to settle the issue--and,  perhaps, much 
more importantly, achieve the goal of having the KB we want-- is  to go off and 
try to build the large KB. Along the way, it will no doubt become clear how 
big it is growing and what the actual obstacles are that must be overcome. 

Lenat started the cYc project in late 1984 for this very purpose. It is now 
halfway through its ten-year time frame, and, most surprisingly, it is still on 
schedule. A book describing the project and its philosophy has been published 
[28], and the interested reader is referred there for details. Here, we shall just 
very briefly list a few of the surprises that actually trying to build this immense 
KB has engendered: 

(1) The need for more formality, for a more principled representation 
language. In a typical expert system application, much of the meaning of 
an entry on a slot of a frame can be idiosyncratic to that particular 
application; but cYc, which might be used for any application, cannot 
afford such sloppiness. E.g.,  consider placing "IceCream" on the "likes" 
slot of the "Fred"  frame. Does this mean that that's all he likes? Does 
he like all ice cream? In what sense does he like it? Has he liked it from 
birth onward (and does it mean he'll like it until he dies), or is there 
some temporal sub-abstraction of Fred that likes it? etc. 

(2) The search for a use-neutral control structure and use-neutral repre- 
sentation is not unlike the search for a single universal carpenter's tool. 
The pragmatic global effect of use-neutrality arises by having a large set 
of tools that complement each other (and sometimes overlap) and easily 
work together to get most common jobs done. On very, very rare 
occasions, a new tool may have to get invented; use the existing ones to 
fabricate it then. 

(3) In the case of control structure, cYc has by now amassed two dozen 
separate inference engines: inheritance, inverse slots, automatic classifi- 
cation, Horn clause rules, transfersThrough, etc. One lesson is that it is 
cost-effective to write and fine-tune a separate truth (actually, justifica- 
tion) maintenance system (TMS) for each feature, rather than relying on 
any one general (but of necessity inefficient) TMS algorithm. 

(4) In the case of representation, besides frames, we now have numerous 
other "tools".  One of them is a powerful constraint language which is 
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(5) 

essentially predicate calculus. This is because much of the knowledge in 
the system is inherently constraint-like. Consider "The number of 
children that Joe and Sam have are equal." We could define a new slot 
sameNumberOfChildrenAs, and such tactics might well get us through 
any one application, but that's hardly a scalable solution. In general, 
though, we wanted, needed, and developed a general constraint lan- 
guage. The constraint language is superficially second-order; in almost 
all real uses, any quantification over predicates (slot names) can be 
mechanically reduced to first-order. Several dozen of the most common 
sorts of constraints (e.g., the domain and range of slots) have been 
"slotized"; i.e., special slots (in this case, makesSenseFor and entrylsA) 
have been created and optimized, but still the general language is there 
to fall back on when needed. From time to time, when numerous 
constraints of the same form have been entered, we "slotize" that form 
by defining a new slot. For instance, we could create sameNumberOf- 
ChildrenAs if there were really heavy use of that sort of constraint. 
There are almost ten times as many "frames" required as we had 
originally expected; luckily, our rate of knowledge entry is also that 
much faster, so we still hope to "finish" by 1994. In the search for 
eliminating ambiguity, the knowledge being entered must be more 
precise than we are used to being in everyday conversation. E.g., the 
meaning of "Japan"  or "water"  varies depending on the context of the 
conversation. Each separate meaning (e.g., political Japan during the 
1890s) has its own frame, which is why there are more than we expected. 
But balancing that, it is relatively easy to build a knowledge entry tool 
which assists the user in copying and editing an entire cluster of related 
frames at once. So the two order-of-magnitude increases are not unre- 
lated. By the way, "finishing by 1994" means approaching the 
point (see Fig. 3), where it will be more cost-effective to 
building cYc's KB by having it read online material, and ask 
about it, than to continue the sort of manual "brain-surgery" 
we are currently employing. 

crossover 
continue 

questions 
approach 

8. Differences with other positions 

8.1. Our position regarding the aesthetes 

There is a methodological difference between our "scruffy" way of doing AI 
and the aesthetes' "nea t"  way. This in turn stems from a difference of opinion 
about whether the world must admit an elegant and simple formalization of 
intelligence. 

If only there were a secret ingredient for intelligence--Maxwell 's equations 
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of thought. If only we could axiomatize the world in a small set of axioms, and 
deduce everything. If only our learning program could start from scratch. If 
only our neural nets were big or cerebellar or hyperlinear enough. If only the 
world were like that. But it isn't. The evidence indicates that almost all the 
power is in the bulk knowledge. As Whitehead remarked, "God is in the 

details." 
Following the Difficult Problems Hypothesis, we are firmly convinced that 

the AI researcher must make a major time commitment to the domain(s) in 
which his/her programs are to be competent; e.g., the two years that Stefik 
and Friedland spent to learn about molecular biology before doing MOLGEN 
[14]; the decade-long time frame for cYc. This is in contrast to, e.g., research 
that uses the Fifteen Puzzle, or cryptarithmetic, as its domain. Even in physics, 
where Nature so far has been remarkably elegant, it is still strongly cost- 
effective to expend the enormous time and money to build and use a SLAC or 
a CERN or a superconducting super-collider. 

We may be exhausting the range of potent experimental AI theses that can 
be carried out in two years, by a student starting more or less from scratch; 
witness the trend to give the Computers and Thought Award to increasingly 
less recent graduates. The presence of a large, widely-accessable "testbed" KB 
should enable a new round of important theses. 

People do prefer--and should prefer--the simplest consistent hypothesis 
about any phenomenon. That doesn't make the hypotheses correct, of course 

[20]. A few examples: 

• Early astronomers with poor instruments had no problem with a geocen- 
tric model. When one friend of Wittgenstein's ridiculed them for making 
this error, he replied "Ah, yes, how foolish. But I wonder what it would 
have looked like if the sun did go around the earth?" 

• Biologists, who are unable to perform experiments on evolution, or even 
get precise data on it, can still believe it operates so quickly as it does, 
using nothing more than random mutation, random generate-and-test--a 
simple, elegant, appealing, but (as we in AI found out empirically) 
woefully inadequate problem-solving method. 

• James Wilkinson, a fellow of the Royal Society and one of the world's 
leading numerical analysts, spoke at Stanford in 1974 about bugs in early 
twentieth century methods of numerical integration. These algorithms had 
"proofs", and were used (to a couple iterations only) by human beings 
armed only with pencil and paper. Those people, by the way, were called 
"computers". The introduction of the high-speed electronic digital compu- 
ter provided the next round of "criticism"--namely, truncation errors 
made the algorithms unstable--which led to the next round of improve- 
ment in that field. 

• Lakatos [21] presents the historical series of mathematicians' retreats from 
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the initial form of the Euler-Descartes conjecture to increasingly longer, 
less elegant versions, with more and more terms getting added to take 
obscure cases and exceptions into account. 

A quarter century ago, Simon provided the spectacular image of an ant on a 
beach: though its path is complex, that is due to the complexity of the beach, 
not the ant. It is a beautiful hypothesis that thinking might be based on such 
simple mechanisms; i.e., that the apparent complexity of the human mind is an 
illusion, reflecting a very simple, very general problem solver thrust into a 
complex environment. With apologies to Wittgenstein, and to Newell and 
Simon, we reply, "Ah, yes, but I wonder what it would look like if the mind 
were filled with--and dependent upon--knowledge?" 

Eventually, we will want layers of increasing "neatness". E.g., in physics, 
students learn each year that last year's equations were a special case. We 
always try to reason at the highest, most superficial, most efficient level at 
which we can, and delve down one level deeper when we are forced to. But 
devoting so much effort to the attempt at "neatness" today just drains time and 
intellectual energy away from the prime enterprise of the field. 

Many AI researchers quest for an elegant solution in a desperate desire for 
scientific respectability. The name of our field--artificial intelligence--invites 
everyone to instantly form an opinion. Too bad it wasn't called quantum 
cognodynamics. But perhaps, by interposing a layer of mathematical formal- 
ism, we can come to be accepted as hard scientists. Hence the physics-envy! 

Formalizing has never driven any early science along. In designing new drug 
molecules, the biochemist knows it's too inefficient to apply Schr6dinger's 
wave equation to compute the energy minimizations, hence from his/her point 
of view the fact that such a deep understanding even exists is irrelevant to the 
task at hand. S/he relies on crude design heuristics, and the drug companies 
using this methodology occasionally are enriched. As Minsky remarked about 
the A* algorithm in 1970: "Just because it's mathematical doesn't mean it 
deserves to be taught." 

There are actually three separate extreme "aesthete" positions we are 
arguing against here! In caricature, the first one is the CMU "Soar" (and MIT 
Robotics) school of letting simple mechanisms give rise to slightly less simple 
behavior, and then claiming that that will scale up and eventually give rise to 
human-level intelligence. In that world view, one does not need to assemble a 
large knowledge base, the machine learner will acquire it automatically. Rod 
Brooks at MIT goes one step further, denying that one needs even a repre- 
sentation scheme for knowledge [6]. 

Again in caricature, the second one is the Stanford (and elsewhere) Logic 
Group school of formalizing some aspect of reasoning (e.g., analogy), pro- 
gramming it to run on a few simple examples, and claiming that that will scale 
up, that that obviates the need for a huge KB, and besides the important thing 
is the theorems isn't it? Actually, to be fair, several of these researchers, such 
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as John McCarthy, Mike Genesereth, and Pat Hayes, have been strong 
advocates of the need for a large KB eventually; they just believe that there 
are various tools required to build it which we don't have at present, formal 
tools which they are researching. 

The third, increasingly popular type of aestheticism is the trend to highly 
parallel (e.g., connectionistic) and ever faster devices. The trouble is that most 
difficult tasks in knowledge-rich areas can't be highly parallelized. If we were 
to set a billion people to work trying to find a cure for cancer, we wouldn't find 
one in 0.2 seconds. Each cancer experiment takes months or years to perform, 
and there are only a moderate number of promising experiments to do at any 
one time; their results will determine what the next round of promising 
experiments should be. 

Parallelism is useful at one extreme for implementing very carefully en- 
gineered algorithms (e.g., systolic algorithms), and at the other extreme for 
allowing a community of meaningfully-individuated agents act independently, 
asynchronously. For most technical tasks, until we understand the task very 
well, the size of such an actor community that we can design is typically only 

-100. 
The time to perform a task often increases exponentially with its size (e.g., 

looking ahead n moves in chess). Taking a microcoding approach or a 
parallelizing approach cuts off a constant factor; taking a knowledge-based 
approach may add a constant overhead but more importantly, for the long run, 
it may chip at the exponent. On the other hand, it is worth remarking that 
there are some special tasks where the desired level of performance (x- 
coordinate) is fixed: just barely beating all humans at chess, just barely 
understanding spoken words in real time, tracking the space shuttle in real 
time, etc. In such a case, getting a large enough constant factor speedup really 
could solve the problem, with no need to apply the KP, BH, or EH. As our 
ambition to attack ever more difficult problems grows, though, the exponential 
nature of the search hurts worse. 

8.2. Our position regarding expert systems 

The KP underlies the current explosion of work on expert systems (ESs). 
Still, there are additional things our position argues for, that are not yet 
realized in today's ESs. Knowledge space in toto is not a homogeneous solid 
surface, but more like a set of self-supporting buttes, and one ought to be able 
to hop from one to its neighbors. But current ESs are too narrow, too 
independent, and too informal, as we discuss below. 

One major power source for ESs, the reason they can be so readily 
constructed, is the synergistic additivity of many rules. Using a blackboard [11] 
or partitioned rule sets, it is possible to combine small packets of rules into 
mega-rules: knowledge sources for one large expert system. 

The analogue at the next higher level would be to hook hundreds of large 
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ESs together, and achieve even greater synergy. That dream repeatedly fails to 
materialize. Why? As we increase the domain of each "element" we are trying 
to couple together, the "semantic glue" we need gets to be larger and more 
sophisticated. The "gluing" or communicating is made all the more difficult by 
the unstated and often ambiguous semantics that typically exist in a single ES. 
We discussed, earlier, how the cYc project at MCC has been driven toward 
increased formality and precision as they have labored to build that large 
system. It seems to us that it will require the construction of such a system, as 
mandated by the Breadth Hypothesis, and built not haphazardly but with a 
clean and formalized semantics, before the true potential of ES technology will 
be realized. 

Plateau-hopping requires breadth 
To harness the power of a large number of disparate expert systems will 

require something approaching full consensus reality--the millions of abstrac- 
tions, models, facts, rules of thumb, representations, etc., that we all possess 
and that we assume everyone else does. Moreover, the ESs will need to be 
coded in a clean, formal representation, and integrated into a global ontology 
of knowledge. 

The INTERNIST program is carefully engineered to do a good job of 
diagnosing diseases from symptoms. But consider coupling it to a machine 
learning program, which tries to speculate on new disease mechanisms for 
epidemiology. The knowledge in INTERNIST isn't stored in "the right way", and 
much of the needed mechanism knowledge has already been compiled away, 
condensed into numeric correlations. Clancey encountered similar difficulties 
when he tried to adapt MYCIN's diagnostic KB to teach medical students [8]. 

As we try to combine ESs from various tasks, even somewhat related tasks, 
their particular simplifications and idiosyncracies prevent synergy. The sim- 
plifying was done in the interests of highly efficient and competent problem 
solving; breadth was not one of the engineering goals. 

This naturally results in each ES being a separate, simplified, knowledge 
universe. When you sit down to build an ES for a task--say scheduling 
machines on a factory floor--you talk to the experts and find out the compiled 
knowledge they use, the ways they finesse things. For instance, how do they 
avoid general reasoning about time and belief? Probably they have a very 
simple, very specialized data structure that captures just the bits of information 
about time and belief that they need to solve their task. How do they deal with 
the fact that this milling machine M has a precise location, relative to all the 
others; that its base plate is a solid slab of metal of such and such a size and 
orientation; that its operator is a human; that only one operator at a time can 
use it; etc.? 

If someone accidentally drills a hole through the base plate, most human 
beings would realize that the machine can still be used for certain jobs but not 
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for others--e.g., it's okay if you want to mill a very large part, but not a very 
small one that might fall through the hole! People can fluidly shift to the next 
more detailed grain size, to reason out the impact of the hole in the base plate, 
even if they've never thought of it happening before; but the typical ES would 
have had just one particular level built in to it, so it couldn't adapt to using the 
crippled milling machine. 

Sometimes the ES's precipitous fall into incompetent behavior is obvious, 
but sometimes its explanations remain dangerously plausible. Meta-rules about 
the system's area of competence can guard against this accidental misuse, but 
that is just a patch. A true solution would be to provide a broad KB so that (1) 
the plateau sloped off gently on all sides, and (2) we could hop from one ES's 
plateau or butte to another. 

This brings up a point which is appropriate both to ESs and to the aesthetes 
(Section 8.1) as well. Both positions tacitly assume a kind of global consistency 
in the knowledge base. Inconsistencies may exist for a short period, but they 
are errors and must be tracked down and corrected. We expect, however, that 
this is just an idealized, simplified view of what will be required for intelligent 
systems. Namely, we advocate: 

The Local Consistency Hypothesis. There is no need--and probably not even 
any possibility--of achieving a global consistent unification of several expert 
systems' KBs (or, equivalently, for one very large KB). Large systems need 
local consistency. 

The Coherence Hypothesis. Moreover, whenever two large internally consis- 
tent chunks C 1 , C 2 are similar, their heuristics and analogies should cohere; 
e.g., if the "going up" metaphor usually means "getting better" for C 1 , then it 
should again mean "getting better" for C2, or else it should not apply at all 

there. 

As regards local consistency, consider how physics advanced for many 
decades with inconsistent particle and wave models for light. Local consistency 
is what permits each knowledge-space butte to be independent of the others; as 
with large office buildings, independent supports should make it easier for the 
whole structure to weather tremors such as local anomalies. In a locally 
consistent system, inferring an inconsistency is only slightly more serious than 
the usual sort of "dead-end" a searcher runs into; the system should be able to 
back up a bit and continue on. Intelligent behavior derives not from the razor's 
edge of absolute true versus absolute false--from perfect matching--but rather 
is suggested by plausibility heuristics and supported by empirical evidence. 

Coherence is what keeps one from getting disoriented in stepping from one 
KB butte to its neighbor. Having the metaphors line up coherently can make 
the hops so small that one is unaware they have hopped at all: "Her academic 
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career, her mood,  and her prospects were all going up."  See [22] for many 
more examples, and a more detailed discussion of this phenomenon.  Coher- 
ence applies at the conceptual level, not just at the word level. It is not so 
much the words "going up" as the concept, the script of moving upwards, that 
applies coherently in so many situations. 

9. Problems and solutions 

Problem 1. Possible "in-principle" limitations. There  are several extremes that 
one can point to where the Knowledge Principle and Breadth Hypothesis might 
be inapplicable or even harmful: perceptual and motor tasks; certain tasks 
which must be performed in small pieces of real time; tasks that involve things 
we don' t  yet know how to represent well (the word "ye t "  is very important 
here); tasks for which an adequate algorithm exists; tasks so poorly understood 
that no one can do it well yet; and (until our proposed large KB becomes a 
reality) tasks involving large amounts of common sense. 

Just as we believe that language faculties will require a large consensual 
reality KB, we expect it to be invaluable in most of the image understanding 
process (beyond retina-level edge detection and similar operations). 

Our response- - in  principle and in c y c - - i s  to describe perception, emotion,  
motion, etc., down to some level of detail that enables the system to under- 
stand humans doing those things, and /o r  to be able to reason simply about 
them. As discussed under Problem 2, below, we let a large body of examples 
dictate what sorts of knowledge, and to what depth, are required. 

A similar answer applies to all the items which we don' t  yet know very 
clearly how to represent.  In building c ¥ c ,  e.g., a large amount  of effort in the 
first five years was spent on capturing an adequate body of knowledge 
(including representations and problem-solving strategies) for time, space, 
belief, substances, and so on. We did not set out to do this, the effort was 
driven completely empirically, completely by need, as we examined snippets of 
encyclopedia and newspaper articles and had to develop machinery to repre- 
sent them and answer questions about them. Our response is a tactical 
hypothesis, not a strategic one; we would find it interesting if it is falsified, but 
the effect would be negligible on our overall research strategy. 

Tasks which can be done without knowledge, or which require some that no 
one yet possesses, should be shied away from. One does not use a hammer to 
type with. 

The huge KB mandated by the Breadth Hypothesis is AI's "mattress in the 
road".  Knowing that we can go around it one more time, AI researchers build 
a system in six months that will perform adequately on a narrow version of task 
X; they don' t  pause for a decade to pull the mattress away. This research 
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opportunity is finally being pursued; but until cYc or a similar project 
succeeds, the knowledge-based approach must shy away from tasks that 
involve a great deal of wide-ranging common sense or analogy. 

The remainder of the problems in this section are primarily pragmatic, 
engineering problems, dealing with the mechanics of constructing systems and 
making them more usable. As can be seen from our response to the in- 
principle limitations, we personally view Problem 1 in that very same category! 
That is a view based on the EH, of course. 

Problem 2. How exactly do we get the knowledge? Knowledge must be 
extracted from people, from databases, from the intelligent systems' KBs 
themselves (e.g., thinking up new analogies), and from Nature directly. Each 
source of knowledge requires its own special extraction methods. 

In the case of the cYc project, the goal is to capture the full breadth of 
human knowledge. To drive that acquisition task, Lenat and his team examine 
pieces of text (chosen from encyclopediae, newspapers, advertisements, and so 
on), sentence by sentence. They aren't just entering the facts stated, bu t - -  
much more importantly--are encoding what the writer of that sentence 
assumed the reader already knew about the world. These are the facts and 
heuristics and simplified models of the world which one would need in order to 
understand the sentence, things which would be insulting or confusing for the 
writer to have actually stated explicitly (e.g., if coke is commercially consumed 
to turn ore into metal, then coke and ore must both be worth less than metal). 
They also generalize each of these as much as possible (e.g., the products of 
commercial processes are more valuable than their inputs). Another useful 
place they focus is the inter-sentential gap: in a historical article, what actions 
should the reader infer have happened between each sentence and the next 
one? Yet another focus: what questions should anyone be able to answer 
having just read that article? These loci drive the extraction process. Eventual- 
ly, c v c  itself began helping to add knowledge, by proposing analogues, 
extending existing analogies, and noticing gaps in nearly symmetric structures. 

This methodology will collect, e.g., all the facts and heuristics about 
"Water" that newspaper articles assume their readers already know. This is in 
contrast to, for instance, naive physics and other approaches that aim to 
somehow capture a deeper theory of "Water" in all its various forms. 

Problem 3. How do we adequately represent it? Human experts choose or 
devise representations that enable the significant features of the problem to 
remain distinguished, for the relevant connections to be quickly found, etc. 
Thus, one can reduce this to a special case of Problem 2, and try to elicit 
appropriate representations from human experts, cYc takes a pragmatic 
approach: when something proves awkward to represent, add new kinds of 
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slots to make it compactly representable. In extreme cases, add a whole new 
representation language to the toolkit. Besides frames and "rules" and our 
formal constraint language (described above), we use stored images and neural 
nets as representation schemes. Images are useful for users to point at; e.g., to 
say something about the strike plate of a door  lock- - i f  you don' t  happen to 
know what it's called, but you could pick it out instantly given a photo of a 
door  lock. Statistical space partitioning (neural nets) may be useful for certain 
kinds of user modeling (e.g., gesture level), and the cYc group is currently 
training one on examples of good analogizing, so as to suggest promising 
"hunches"  of new analogies to investigate, an activity which cYc will then do 
symbolically. 

The quality of the solutions to many of these "Problems",  including this one, 
depend on the quality of our system's emerging ontology. What category 
boundaries are drawn; what individuals get explicitly represented; what is the 
vocabulary of predicates (slots) with which to describe and interrelate them, 
etc.? Much of the 1984-89 work on cYc has been to get an adequate global 
ontology; i.e., has been worrying about ways to represent knowledge; most of 
the 1990-94 work will be actually representing knowledge, entering it into 
cYc. That  is why we have "only"  a million entries of cYc's KB today, but 
expect dozens of times that many in 1994. 

Problem 4. How will inference be done in cYc? The representation chosen 
will of course impact on what inference methods are easy or difficult to 
implement. Our inclination was, once again, to apply EH: when we en- 
countered some kind of operation that needed to be performed often, but it 
was very inefficient, then we adjusted the representation or the inference 
methods available, or both. As with Problem 3, there is a temptation to early 
specialization: it is a local optimum, like swerving around a mattress in the 
road. Pulling this mattress aside means assembling a large repertoire of 
reasoning methods, and heuristics for choosing, monitoring, and switching 
among them. When we first prepared this article, such a toolkit of methods was 
merely an expectation; today (as described earlier), we have two dozen such 
inference engines, each with its own optimized justification maintenance 
system (and each capable of running "forward"  or "backward") .  

To illustrate one of those inference methods briefly, consider "transfers- 
Through".  If I tell you that Michael's last name is Douglas, and Michael's 
father is Kirk, then you infer that Kirk's last name is Douglas. If you see a car 
with snazzy wire wheels, and I tell you that Fred owns that car, then you infer 
that Fred owns those wheels. One could represent such inferencing by general 
i f - then rules; for instance, " I f  x's last name is y, and x's father is z, then guess 
that z's last name is y . "  So many such rules were added to cYc, though, that 
we defined a new inference template (predicate, slot . . . .  ) called "transfers- 
Through".  There is a frame representing the transfersThrough relationship, 
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and one of its slots contains a definition in our constraint language, of the 
form: 

(ForAII slots s l ,  s2) ((transfersThrough sl s2)<::> 

[(ForAII x, y, z) (sl x y) and (s2 x z) : f f (s l  x z)]) 

We're often asked how we expect to efficiently "index"--find relevant 
partial matches--as the KB grows larger and larger. The implicit assumption 
behind that question is that the problem gets worse and worse as the KB size 
grows. Our answer therefore often appears startling at first glance: wait until 
our programs are finding many, far-flung analogies, but inefficiently, i.e. only 
through large searches. Then investigate what additional knowledge people 

bring to bear, to eliminate large parts of the search space in those cases. Codify 
the knowledge so extracted, and add it to the system. This is a combined 
application of the Difficult Problems Hypothesis and the EH. It is a claim that 
the true nature of the indexing problem will only become apparent--and 
solvable--in the context of a large problem running in an already very large 

KB. 
Earlier, we sketched an opportunistic (nonmonolithic) control structure 

which utilizes items in the control-strategy region of the KB. As with partial 
matching, we expect that meta-level control mechanism to be more, and more 
easily, fleshed out as the system grows. 

In other words, the large and increasing size of the KB makes certain tasks 
less difficult, due to having a large and representative sample of cases one 
ought to try to make efficient. That holds for choosing specialized inference 
engines, for meta-level control, and for partial matching. 

Problem 5. How can someone interact "naturally" with KB systems? Know- 
ledge-based systems built so far share with their knowledge-free predecessors 
an intolerant rigidity of stylistic expression, vocabulary, and concepts. They 
rarely accept synonyms and pronouns, never metaphors, and only acknowledge 
users willing to wear a rigid grammatical straitjacket. The coming few years 
should witness the emergence of systems which begin to overcome this 
problem. As is only fitting, they will overcome it with knowledge: knowledge 
of the user, of the system's domain, of discourse, of metaphor. They will 
employ pictures, gestures, and sound as well as text, as means of input and 
output. Many individual projects (such as EYE) and expert system tools (such 
as  KEE) are already moving in this direction. 

Problem 6. How can you combine several enterers'/systems' knowledge? One 
solution is to sequentialize the entry, but it's not a good solution. Many 
EMYCIN-based programs designated someone to be the knowledge base czar, 
with whom all the other experts would discuss the knowledge to be entered. 
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EURISKO, built on RLL, tried explicitly enforced semantics. Each slot was given 
a description of its intended use, constraints that could be checked statically or 
dynamically (e.g., each rule's If-maybe-relevant slot should take less CPU time 
to execute than its If-truly-relevant slot). When someone enters rules that 
violate that constraint, the system can complain to them, to get everyone back 
on track using the same semantics again, cYc extends this to implicitly 
enforced semantics: having such a large existing KB that copy and edit is the 
clearly favorite way of entering new knowledge. When one copies and edits an 
existing frame, virtually all of its slots' semantics (and even most of their 
values!) carry right over. 

We are not talking about just text-editing here, but rather a problem-solving 
process in its own right, which cYc should monitor and assist with. Already, 
CYC makes guesses about which "slots" will exist on the new "frame",  which 
entries on the value will carry over, which will need to be changed, if they're 
to be changed then will the new entries be idiosyncratic (e.g., monarch) 
or predictable based on other information about this new frame (e.g., 
majorExports). 

Although this discussion has assumed that inconsistency should be detected 
and stamped out, there is a much more fundamental long-range solution to the 
problem of inconsistent KBs: live with them! Problem 7 describes this position: 

Problem 7. How should the system cope with inconsistency ? View the knowl- 
edge space, and hence the KB, not as one rigid body, but rather as a set of 
independently supported buttes. Each butte should be locally consistent, and 
neighboring buttes should be maximally coherent. These terms are described in 
Section 8.2. The power of such systems should derive, then, not from perfect 
matching, but rather from partial matching, heuristic guidance, and (ultimate- 
ly) confirming empirical evidence. Systems such as we are describing must 
encompass several points of view; they are "open"  in the sense of Hewitt [18]. 
It should be possible for new knowledge to compatibly and safely flow among 
them. At a much more exotic level, one can imagine mental immune systems 
providing (in the background) constant cross-checking, healthy skepticism, 
advice, and criticism. 

Problem 8. How can the system builder, and the system user, not get lost? 
"Gett ing lost" is probably the right metaphor to extend here, because what 
they need to do is to successfully navigate their way through knowledge space, 
to find and/or  extend the relevant parts. Many systems, including cYc, are 
experimenting with various exploration metaphors and orientation tools: 
helicoptering through semantic nets; exploring a museum with Alician entry 
into display cases and posters, etc. Both of these are physical spatial 
metaphors, which allow us to use kinesthetic memory to some extent, as the 
enterer or user gets more and more familiar with the layout of the KB. 
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On a typical day in mid-1989, ten to thirty people are logged into cYc's 
Knowledge Server, all actively adding to its KB simultaneously. Thus, one's 
world sometimes changes out from under one a bit, adding to the relevance 
of the (dis)orientation metaphor. For more elaborately scripted interface 
metaphors, see True Names [49], Riding the Torch [42], or Knoesphere [26]. 
For instance, the latter suggests clip-on filters to shade or highlight certain 
aspects of what was seen; models of groups and each individual user; and 
simulated tour-guides with distinct personalities. 

Problem 9. How big a fraction of  "consensus reality" do you need to represent, 
before the "crossover" occurs and language understanding is a better knowledge 
entry paradigm? We believe the answer is around 30-50%. Why? When 
communicating with an intelligent entity, having chosen some concept X, we 
would expect the "listener" to be familiar with X; if it fails several times in a 
row--of ten!-- then it is missing too much of consensus reality. A similar 
argument applies to analogizing, and to generalizing. Now to have a 30% 
chance for the chosen analogue to be already known by the listener, he/she/it  
might have to know 30% of the concepts that are analogized to. But how 
uniformly are good analogues distributed in concept space? Lacking more data, 
we assume that they are uniformly distributed, which means the system should 
embody 30% of the full corpus of consensus reality. The distribution is quite 
possibly not uniform, which is why (the EH again) we need to build the KB 
and see. 

I0. Conclusion: Beyond local maxima 

Our position includes the statements: 

• One must include domain-specific knowledge to solve difficult problems 
effectively. 

• One must also include both very general knowledge (to fall back on) and 
very wide-ranging knowledge (to analogize to), to cope with novel situa- 
tions. 

• We already have plenty of theories about mechanisms of intelligence; we 
need to proceed empirically: go off and build large testbeds for perform- 
ing, analogizing, ML, NL . . . . .  

• Despite the progress in learning, language understanding, and other areas 
of AI, hand-crafting is still the fastest way to get the knowledge into the 
program for at least the next several years. 

• With a large KB of facts, heuristics, and methods, the fastest way will, 
after some years, tip toward NL (reading online textual material), and 
then eventually toward ML (learning by discovery). 
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• The hand-crafting and language-based learning phases may each take 
about one decade, partially overlapping (ending in 1994 and 2001, respec- 
tively, although the second stage never quite "ends"), culminating in a 
system with human-level breadth and depth of knowledge. 

Each of those statements is more strongly believed than the one following it. 
There is overwhelming evidence for the KP and EH. There is strong evidence 
in favor of the BH. There is a moderate basis for our three-stage program. 
And there is suggestive evidence that it may be possible to carry out the 
programs this century. 

As a partial application of the Breadth Hypothesis, consider the task of 
building a knowledge-based system covering most of engineering design. 
Interestingly, this task was chosen independently by the Japanese EDR 
project, by Bob Kahn's fledgling National Research Institute, and by Feigen- 
baum at Stanford. All three see this task as a moderate-term (-1994) goal. It is 
certainly much broader than any single expert system, yet much narrower than 
the universal knowledge base mandated by the BH. 

Slightly narrower "lawyers' workstations" or "botanists' workstations", etc., 
are similar sorts of compromises (partial applications of BH) worth working 
on. They would possess a crown of very general knowledge, plus their specific 
field's next level of generalities, useful representations, etc., and some detailed 
knowledge including, e.g., methods for extracting and using entries in that 
field's online databases. These have the nice side effect of enticing the experts 
to use them, and then modify them and expand them. 

The impact of systems mandated by the KP and BH cannot be overesti- 
mated. Public education, e.g., is predicated on the unavailability of an 
intelligent, competent tutor for each individual for each hour of their life. AI 
will change that. Our present entertainment industry is built largely on passive 
viewing; AI will turn "viewers" into "doers". What will happen to society as 
the cost of wisdom declines, and society routinely applies the best of what it 
knows? Will a knowledge utility arise, like the electric utility, and how might it 
(and other AI infrastructures) effect what will be economically affordable for 
personal use? 

When we give talks on expert systems, on commonsense reasoning, or on AI 
in general, we are often asked about the ethical issues involved, the mental 
"environmental impact" it will have, so to speak, as well as the direct ways it 
will alter everyday life. We believe that this technology is the analogue of 
language. We cannot hold AI back any more than primitive man could have 
suppressed the spread of speaking. It is too powerful a technology for that. 
Language marks the start of what we think of as civilization; we look back on 
pre-linguistic cultures as uncivilized, as comprised of intelligent apes but not 
really human beings yet. Can we even imagine what it was like when people 
couldn't talk with each other? Minsky recently quipped that a century from 
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now people might look back on us and wonder "Can you imagine when they 
used to have libraries where the books didn't talk to each other?" Our distant 
descendants may look back on the synergistic man-machine systems that 
emerge from AI, as the natural dividing line between "real human beings" and 
"animals". We stand, at the end of the 1980s, at the interstice between the first 
era of intelligent systems (competent, thanks to the KP, but quite brittle and 
incombinable) and the second era, the era in which the Breadth Hypothesis 
will finally come into play. 

Man-Machine Synergy Prediction. In that "second era" of knowledge systems, 
the "system" will be reconceptualized as a kind of colleagular relationship 
between intelligent computer agents and intelligent people. Each will perform 
the tasks that he/she/it  does best, and the intelligence of the system will be an 
emergent of the collaboration. 

The interaction may be sufficiently seamless and natural that it will hardly 
matter to anyone which skills, which knowledge, and which ideas resided 
where (in the head of the person or the knowledge structures of the computer). 
It would be inaccurate to identify Intelligence, then, as being "in the 
program". From such man-machine systems will emerge intelligence and 
competence surpassing the unaided human's. Beyond that threshold, in turn, 
lie wonders which we (as unaided humans) literally cannot today imagine. 

Appendix A. Goals and strategies for AI research 

In Section 6, we briefly touched on the common confusion between AI goals 
and AI strategies. The next two sections list nine of each. As we mentioned in 
the body of the paper, much confusion in our field stems from several entries 
appearing on both lists. If one researcher chooses, say, the ultimate goal of 
language understanding, then they could approach that strategically in several 
ways. E.g., humans first learn language by discovery, by imitating others' 
sounds, noting correlations and inducing simple vocabulary and grammar rules. 
Later, as we enter school, we further improve our language abilities by taking 
English classes, i.e., by discussing in natural language the fine points of English 
vocabulary and grammar and composition. 

Scientific disciplines not only adopt a paradigm, in the early stages they are 
partitioned into subfields by paradigm. If more than one paradigm remains 
viable for any length of time, it will soon come to see itself as a different 
discipline altogether and split off; AI faced this around 1970 with cognitive 
psychology, and is facing this again now with robotics and vision. People can't 
mentally focus on too much at once, and paradigms provide some of the 
obligatory cognitive simplifying. 
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All 9 × 9 pairs of the form (goal, strategy) could in principle be separate 
paradigms. Today there are only a small fraction of that number, and the 
groupings that have developed are in many cases poorly matched; e.g., all pairs 
of the form (x, Learning) unioned with (Learning, x),  come together for 
machine learning workshops every year. This leads to confusion and mis- 
communication--often unrealized by both parties! Let's give an illustration of 
this phenomenon, still in the domain of machine learning. When they say they 
are working on analogy, they might mean either one of the following: 

(1) They are using analogy as a strategy to pursue some other AI goal G. 
For instance, they might be building a program whose goal is to parse or 
disambiguate English sentences by analogy. 

(2) They are using some other strategy S, such as knowledge engineering, as 
the power source in a program whose task is to discover and flesh out 
analogies. In that case their program's final output would be a data 
structure that humans somehow recognize as symbolizing an analogy; 
but that data structure might be built by a set of if-then rules, or a 
neutral net, or by talking with a human being, etc. 

The trouble is that, today, they are equally likely to mean they're pursuing 
analogy as a strategy or as a goal. 

A. 1. Nine ultimate goals o f  A I  

We share, or are sympathetic to, almost all of these: 

• Understand human cognition. The goal is to understand how people think, 
not to have machine artifacts to put to work. Try for a deeper knowledge 
of human memory, problem-solving abilities, learning, decision making in 
general, etc. 

• Cost-effective automation. The goal is to replace humans at various tasks 
requiring intelligence. This goal is met by programs that perform as well as 
the humans currently on the job; it doesn't matter if the programs think 
like people or not. The harder the problems it can solve, and the faster it 
solves them, the smarter it is. 

• Cost-effective intelligence amplification. The goal is to build mental pros- 
theses that help us think better, faster, deeper, more clearly . . . . .  Sci- 
ence's goal--and measure of success--is how much it augments human 
being's leg muscles, immune system, vocal cords, and (in this case) brain. 
This goal further divides depending on whose performance is being so 
amplified: do we want to amplify the average person's ability to diagnose 
disease, or the average GP's ability, or the world's best diagnostician's? 

• Superhuman intelligence. The goal is to build programs which exceed 
human performance. Crossing that particular threshold could lead to an 
explosion of progress: technological innovation in manufacturing, theoreti- 
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cal breakthroughs, superhuman teachers and researchers (including AI 
researchers), and so on. 

• General problem solving. Be able to solve--or  at least plausibly a t tack- -a  
broad range of problems, including some from fields you've never even 
heard of before. It doesn't  matter if the programs perfectly fit human 
performance data, nor does it matter if they are at an expert's level. The 
point is that intelligent creatures can get somewhere on almost any 
problem; intelligence is flexibility and breadth of mind, not depth in some 
narrow area. 

• Coherent discourse. This is similar to the Turing test. The goal is to 
competently communicate with people, using complete sentences in some 
natural human language. A system is intelligent iff it can carry on a 
coherent dialogue. 

• Autonomy. This goal holds that a system is intelligent iff it can, on its own 
initiative, do things in the real world. This is to be contrasted with, say, 
merely planning in some abstract space, or "performing" in a simulated 
world, or advising a human who then goes off and does things. The idea is 
that the real world is always so much more complex than our models of it, 
that it is the only fair test of the programs we claim to be intelligent. 

• Learning (induction). This goal is to have a program that chooses what 
data to gather and how; gathers it; generalizes (or otherwise converts) its 
experiences into useful new beliefs, methods, heuristics and representa- 
tions; and reasons analogically. 

• Information. Having stored lots of facts about a wide range of topics. This 
is more of a "straw man"  view than the others, as it could be satisfied by 
an online textual encyclopedia, or even by a hardcopy one! The other 
views all require the intelligent entity not merely possess information but 
also use it appropriately. 

A.2. Broad strategies for achieving those goals 

Most of these are not our strategies: 

• Duplicate low-level cognitive performance. Get your program to duplicate 
even micro-level measurements that psychologists have gathered from 
human subjects, such as memory storage and recall times, STM size, 
forgetting rate, errors, etc. Hopefully, if you do that, then your program's 
internal mechanisms will be similar to humans' ,  and your program will be 
able to scale up the same way that human low-level mechanisms scale up 
(even though we don't  know how that is, we won't  have to know if we get 
the lowest level built the same way). One variation is to use slightly less 
low-level mechanisms (such as Soar's chunking), but still the idea is that 
repeated application of simple IPS processes let intelligence emerge. 
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• Duplicate low-level structure. Mimicking the human brain's architecture 
will lead to mimicking its functionality. This strategy traditionally makes 
the further assumption that McCulloch-Pit ts  threshold logic is the right 
level at which to abstract brain cell structure (rather than, e.g., at the 
chemical and enzymatic levels). It gained attention as perceptrons, and 
now enjoys a renaissance due to the promise that VLSI technology holds 
for soon producing parallel neural nets of immense size. 

• Simulate a society o f  mind. This is yet another variant on the "duplicate 
and hope"  strategy, but this one is not so low-level as either of the 
previous two strategies. Build a program that consists of hundreds of 
specialized mental beings or ac tors - - th ink  of them as kludged knowledge 
sources- -and  marshall them to solve problems by cooperating and com- 
municating among themselves. This is how Nature managed to evolve us, 
and it may be the easiest way for us to in turn evolve AI. 

• Knowledge engineering. Talk with human experts who perform the task, 
and extract from them the facts, representations, methods, and rules of 
thumb that they employ in doing the task. Encode these in a running 
prototype system, and then extract more and more knowledge, as the 
program runs and makes mistakes which the expert can easily t rans la te- -  
in con tex t - - in to  additional pieces of knowledge that should have been in 
the system all along. Have faith that this incremental knowledge acquisi- 
tion will attain an adequate level of competence.  

• Natural language understanding. Have a program talk with people, read 
articles, etc. People achieve intelligence that way; so can machines! 

• Learning (induction). Build a program that can learn. Then let it. People 
get to be smart by learning, starting from a tabula rasa; so can machines. 

• Formalizing and advanced reasoning. Marshall a toolkit of sophisticated 
deductive procedures for maintaining consistency and inferring new asser- 
tions. Having such a set of snazzy mechanisms will be necessary and 
sufficient. The strong version of this view says "It  worked for physics; we 
must strive to find the 'Maxwell's equations of thought ' ."  The mild version 
is more conservative: "As you formalize, you find the gaps in your 

understanding." 
• Intelligence amplification. Build some intelligent interfaces that allow us to 

write programs more easily, or synthesize ideas more rapidly, etc. Then let 
these improved man-machine  systems loose on the problem of achieving 
AI, whichever goal we choose to define it. In other words, instead of 
tackling the AI task right away, let's spend time getting prostheses that let 
us be smarter, then we'll come back to working on "real"  AI. 

• Superhuman intelligence. An  extreme form of the previous strategy. Build 
a program that does AI research just slightly better  than people do, and 
then go sit on a beach while it investigates low-level cognition, or language 
understanding, or whatever your chosen AI goal is. 
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Reply to Brian Smith* 

We have chosen to write a separate response to Brian Cantwell Smith's 
review of our position paper, rather than to respond by making changes and 
additions to the text of our article. Corresponding to each of Cantwell Smith's 
five sections, we highlight the issues upon which he and we appear to disagree; 
make a judgment about whether this is (a) just a misunderstanding, or (b) a 
genuine difference of opinion; and attempt a clarification. 

1. Introduction 

1. a. Mistakenly attributed beliefs1 

In his long footnote 2, Smith accuses us of "an astounding reversal" in the 
last four years, a change in goals and methods from "coding up everything in 
the encyclopedia" to "the complement of the encyclopedia". All this reflects is 
his finally listening to what we've been saying for the past six years (since 
before the EYE project began). E.g., as we wrote in an article published in 
January 1986: 

"General knowledge" can be broken down into a few types. First, 
there is real world factual knowledge, the sort found in an ency- 
clopedia. Second, there is common sense, the sort of knowledge 
that an encyclopedia would assume the reader know without being 
told (e.g., an object can't be in two places at once). [13] 

And, as we went on to state there--and in all our talks and articles since 
1984--looking at articles, advertisements, snippets of conversations, etc., is 
useful as a tool to drive human knowledge enterers to introspect concretely on 
that unstated underlying commonsense knowledge. For example, cYc knowl- 
edge enterers often make use of absurd supermarket tabloid headlines and 
articles, not because we want CYC to believe those things (!), but rather 
because they provide a natural introspective ice-breaker, namely asking oneself 
"Now why do I find that headline hard to believe?" Indeed, in a much earlier 

* See article by B.C. Smith on pp. 251-288 of this volume.  
As  just explained, this s e c t i o n - - l . a - - i s  a collection of remarks  to "set  the record straight" in 

cases where  we feel that Section 1 of Smith has misrepresented  or misunders tood our  position. We 
regret the  necessity to include any of this " a "  type material ,  and endeavor  to be as brief as possible 
in the " a "  subsections.  
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article written about Alan Kay's Knoesphere project (which in some ways was 
the precursor to cYc),  our position was already clear: 

Something which is absent for a typical encyclopedia but must be 
present in the Knoesphere KB is commonsense knowledge. This 
includes everyday physics, models of human i n t e r ac t i o n . . ,  as well 
as facts and heuristics about teaching, question-answering, imagery, 
analogy, etc. We intend to spend much of the coming decade in 
research trying to build such a core [of everyday concepts] [10]. 

In that same long footnote,  Smith accuses us of being "considerably more 
optimistic" four years ago than today, about the chances for success in getting 
something like cYc to succeed. Although we don' t  discuss such things in our 
article, quite the reverse trend has occurred. When cYc began, back in late 
1984, we estimated it had a low (less than one in ten) chance of succeeding. 
Year by year, our optimism has grown; we now put its chances at better than 
50-50. Yes, we spent most of the early years in thrashing out a representation 
language and ontology, and now we're spending most of the effort using that 
(rather than fighting it) to do knowledge entry. Smith interprets that as a 
negative indicator, but we interpret it as an extremely positive and encouraging 
pattern. The time for pess imism--or  perseverence- -was  5 years ago, not 

today. We chose perseverence,  and it has paid off. 
In that same footnote,  Smith claims our estimate of the size of the required 

KB has increased over the years. That 's  true (it correlates with our decreasing 
naivete), but even back in 1983 [10] our estimate was 300k frames for factual 
knowledge, and a similar volume for commonsense knowledge. Assuming 
about 100 individual assertions per concept, that number (600k frames, 60 
million assertions) is not so far away from our best guess today (1 million 
frames, 100 million assertions). Perhaps some of the confusion came from 
mixing the two units of measure: concepts (frames) and individual assertions. 

Again in that footnote,  Smith confuses the pragmatic necessity of having 
several inference engines (to do efficient justification maintenance) with the 
theoretical "p lank"  of ours which continues to state that sophisticated infer- 
ence procedures alone won't  solve all your problems (literally and figuratively) 

if you lack knowledge. 
We're almost ready to leave Smith's footnote 2. Smith implies, near the end 

of it, that we believe that all the theoretical foundations of AI will be complete 
by 1994. We certainly do not believe that. In fact, a host of fundamental 
research questions may be uncovered by this work, and become seen as 
important. E.g.,  one can successfully build a bridge over a stream without 
much theoretical understanding of engineering and physics, and the enterprise 
of doing so is quite likely to reveal many new issues to begin to investigate, 
issues that eventually lead to the development  of a theory. The same situation 
occurs when high energy experimental physicists gather data about collisions at 
new energy levels, etc.. etc. It's foolish never to theorize, but it's commonplace 
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for empirical experiments and constructions to outstrip (and drive) the de- 
velopment of theory, especially in a field's first few centuries of life. In its early 
stages, a theory may be little more than a plausible generalization of a class of 
recently observed phenomena. Theory building must--and does--go on in the 
absence of complete sets of data to characterize; and experiments must--and 
do--go on in the absence of complete theories. 

Finally, we can leave footnote 2! A few lines later, Smith mistakenly 
attributes to us the absurd claim that "just a million f r ames . . ,  could intellig- 
ently manifest the sum total of human knowledge". That is most definitely not 
what we believe, or claim, or hope. Rather, our hope is that that order of 
magnitude (i.e., about 1 million "frame-fulls" or about 100 million assertions) 
will suffice for crossing the point where knowledge acquisition could be more 
profitably done by natural language understanding (reading online texts and 
"discussing" the difficult parts) rather than continuing to build the KB manual- 
ly, one assertion at a time. We may span much of the breadth of human 
knowledge, but of course not the depth--one of the main uses of such a KB 
will be as a substrate on which to build the next generation of knowledge-based 
systems which do go into depth in particular areas. 

Moreover, we certainly don't restrict ourselves to frames, though the 
majority of the assertions can be cast as simple P(x, y) statements. Our 
philosophy is to not flinch from building special-purpose machinery (for 
representation, for control, for interfacing, etc.) to handle the most commonly 
occurring cases, and to thus have a series of increasingly general (and ineffici- 
ent) mechanisms even though most of the very general ones are rarely used. 

In the case of representation, we use frames for most of the assertions in the 
KB, but we of course have to have a way to represent disjunctions, set- 
theoretic constraints, quantified statements, etc., and so we have a constraint 
language (similar to predicate calculus with equality) as well. 

For most human users browsing through the KB and editing it, it's proven 
useful to present assertions P(u, v , . . . )  which share a common first argument u 
clumped together--i.e.,  to have what appears to be a frame-based interface. 
There are by now half a dozen different editing and browsing tools, some of 
them quite un-framelike (built around semantic nets, or a metaphor to a 
museum floorplan, or predicate calculus). While many humans prefer frame- 
like anchorings, the most common interface to/from other (non-cYc-based) 
application programs has been straight constraint language expressions. Al- 
though this is not the place to discuss "standards" for knowledge representa- 
tion, we expect that whatever interlingua develops and becomes adopted will 
likely be based around something which is similar to that. See, e.g., 
Genesereth's proposal for KIF [1]. 

In the case of control structure, we again see a series of increasingly general 
(and inefficient) rules of inference--inference engines--and once again the 
most specific ones are the most efficient and the most frequently used. E.g., we 
could express the fact that "children(x, y) iff parents(y, x)" using general 
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i f - then  rules, Horn  clause rules . . . . .  all the way down to the special-purpose 
mechanism " inverse"  (i.e.,  by asserting inverse(children, parents)). The latter 

is not just shorter  to state, it is much faster to " run"  (e.g., to later retract, to 

not show up later in irrelevant situations while searching for a proof,  etc.) 

because the maintenance of inverse(r,  s) assertions has been thoroughly 

worked out ahead of time in cYc. 

1.b. Genuine disagreements 2 

We do believe that clever control structures alone are no substitute for large 

amounts  of cached knowledge. Of  course some amount  of e f fo r t - -pe rhaps  as 

high as 20% of the two person-centuries of  effort in getting cYc to its 

mid-1990's "crossover  point"  must deal with in fe rence- -wi th  symbol mani- 

pulating methods to do deduction and induction (including abduction, analogy, 

and so on). 
We do believe that a decade of flat-out work will get us through "stage 1" in 

our research program. Smith is welcome to begin his "decades of debate" ;  

meanwhile,  we are happy to announce that cYc is halfway through its one 
decade lifetime and still on schedule. Yes, of course there is "a  middle rea lm",  

Brian, but it is immense.  A brief paper  can do little more  than tantalize, and 
we encourage the reader  to go through [12] for a several hundred page foray 

into that middle realm. 

2. Conceptual tunneling 

2.a. Mistakenly attributed beliefs 

We are as aware as anyone of the range of application of expert system 
technology t o d a y - - a n d  its limitations. We have written about  that in numerous  
books and articles over  the past fifteen years. An expert  system can' t  be a 

nurse because of the heavy reliance on sight, hearing, etc., the need for 
frequent and subtle motor  activity and h a n d - e y e  coordination, the need to 
provide inter-personal warmth and support ,  etc. Could an expert  system in 

principle one day write a good textbook on nursing, or design a new device 

used in nursing? To that we would answer affirmatively, and astonishingly 
enough so would Smith. We are pleased in a way that Smith views our general 
principles as tautologous. Not so many years ago, and still today in many 
academic circles, they would be quite controversial.  

His attributing a trivial Analogical Method to us is a bit unfair. Immediate ly  

2 As explained earlier, this section--l.b--discusses the genuine disagreements that we have with 
Section 1 of Smith, answers some of his objections to our position, and presents our disagreements 
with his position as stated therein. 
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after we state it, we explain why it's too general and weak to be useful, and 
how it can and should be specialized. We have a useful specification of the 
notion of causality, a family of "causes" relations, and a calculus for using 
them to predict (deductively), to explain (abductively), and to help us epis- 
temologically to favor one explanation over another. 

Yes, we know "these issues have been investigated for years". We've been 
doing some of the investigating! He accuses us of not being aware that 
"analogy requires a notion of relevant similarity", which is odd given the detail 
with which we discussed that in [9]. And as the previous paragraph indicated, 
we've proceeded a long way further than that in the intervening years. 

2.b. Genuine disagreements 

The need for formulation: Simple problems can of course be solved without 
explicitly formulating them--else the meta-meta . . . . .  level recursion would 
never end. But difficult ones require formulation. You may grasp your coffee 
mug unconsciously, but you probably don't design an airplane that way. At 
least not a plane I'd care to be the first to fly in. Raw perception and low-level 
muscle coordination are not part of what we were calling knowledge, though of 
course propositions about what you have perceived, about the act of your 
perceiving it, etc., are knowledge. 

This ties in to his remark about children not having explicit mental models 
(formulations, representations). Two remarks are in order here. First, although 
Smith (and the colleagues he cites) tell us we don't need such things, they don't 
propose any alternative. Second, we don't care whether that's "really" how 
people solve problems and get around in the real world--we're AI scientists, 
not cognitive psychologists. And we feel that, in limited domains, the best 
computational scheme to get programs to duplicate human-level problem- 
solving behavior is through explicit formulation (and logical manipulation of 
same). 

How dare we try to build this KB: We are not so pessimistic (or perhaps so 
perfectionistic) as Smith. In our opinion, AI has progressed to the point where 
it's worth trying to build the large, broad KB: we do know ways to adequately 
represent a vast variety of knowledge, we do know enough about ontology and 
ontological engineering to choose and debug an adequate set of collections, 
predicates (slots), and so on. If we fail, then the next set of important lessons 
for AI are likely to emerge by tackling this large empirical task, rather than by 
micro-experiments or sterile philosophical argument. 

Are we sure about the one million frame number (100 million assertions)? 
Of course not. But we have lots of supportive evidence, based not just on the 
three estimates we gave in our article, but also based on the thousands of 
man-years of effort spent on building knowledge-based systems in the past 
fifteen years. Yes, by now we feel we do have the right to estimate how many 
"frames" it will take. 
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Smith chooses visual imagery as his examples (recognizing faces; the expres- 
sion on a person's face gradually changing)--even though we explicitly claimed 
we would not tackle perception head-on. On the other hand, knowledge about 

facial expressions can and should be part of the large KB, and it is easy to see 
that a small number of assertions suffices to predict the change in expression 
when one goes from glee to horror, and a moderate number of assertions to 
predict the change in emotional state as one loses control of one's vehicle. Yes, 
one can sit around for decades and bemoan the impenetrable mystique of the 
human intellect, and make grand arguments for why it is unknowable, or one 
can sit down and try to penetrate it. 

The heart of this disagreement is made clear over the issue of whether we in 
AI should use computers to test (i.e., verify or falsify) our hypotheses and 
surprise us (our view), versus merely as fancy word processors to articulate and 
clarify one's hypothesis (his view). 

As Guha 3 reminds us, 

One of the things we have learnt from so many years of science is 
that given any hard problem it is wise to break it down into 
separate pieces, solve these, and put the solutions together. But for 
Brian Smith, perception, inference, representation are all one 
complex integrated (nondecomposable) problem that has to be 
dealt with at one shot. The idea that he (or anyone else) can do this 
seems rather optimistic. Divide and conquer is really a pretty good 
idea. 

It's a bit much for Smith to presume that he knows what discouraged 
Winograd and we don't; but granting for the sake of argument it was the 
problem of "genuine semantics", we claim that this problem gets easier, not 
harder, as the KB grows. In the case of an enormous KB, such as EYE's, for 
example, we could rename all the frames and predicates as G001, G002 . . . . .  
and--using our knowledge of the world--reconstruct what each of their names 
must be. While this does not guarantee that the genuine meanings of the 
concepts have been captured, it's good enough for us. After all, how does one 
guarantee that one's neighbor shares thesame meanings for terms? The answer 
is that one doesn't, at least not formally or exhaustively. Rather, in practice, 
one defeasably assumes by default that everyone agrees, but one keeps in 
reserve the ubiquitous conflict resolution method that says "one may call into 
question whether they and their neighbor are simply disagreeing over the 
meaning of some terms". 

Near the end of Section 2, Smith raises the question of how a set of symbols 
relates to the world. He, better than most people, knows how many person- 
centuries have been lost on this issue. Programmers were writing working 
programs long before people developed fancy semantics for programming 

3 Persona l  c o m m u n i c a t i o n .  
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languages. Surely he drives a car and uses other  devices without "really 
knowing" how they work. In a similar fashion, we hope to use symbol 
structures to represent things without "really knowing" the answer to this 
question. 

There  are two issues, then, as regards our disagreement with Smith about 
how "solved" the problems are about deduction and control. The first issue is 
how t o - - a n d  whether t o - - c o m e  up with a formalism in which to state relevant 
information. The second issue is how to actually use these formalisms to state 
the axioms. We are claiming that AI has found at least reasonable candidates 
for the former,  and that it's finally time to really start doing the latter. Another  
way to look at what we are saying is that at the current state of the field, the 
maximum gain/ improvement  can be obtained by building KBs. Not that we are 
going to have a fully human-level intelligent agent in 1994, but that better  
A I - - a  whole new and qualitatively different set of exper iments - -can  be done 
in 1995, using as a substrate the large KBs constructed between now and then. 

3. The structure of  the middle realm 

3.a. Mistakenly attributed beliefs 

Question 1: Explicit representation 
Smith seems to massively misunderstand what we meant by "explicit".  E.g.,  

he says "L&F are even more committed to explicit representation than 
adherents of logic", which to us is a non-sequitor. What we mean by "explicit" 
is a representation with a declarative semantics. Thus, we might say a program 
P represents X even if there is no data structure in P that means exactly X, so 
long as X follows from other  data structures (where "follows f rom" is given 
shape by the declarative semantics). 

We are pragmatists and engineers; t radesmen, not philosophers. We are 
happy to use any tool that helps us in some specialized ways, and that includes 
implicitly represented knowledge. Despite myriad examples of such (which 
Smith mentions in his footnote 13) that we use in our programs, the evidence 
still supports our expectation that the vast majority of the contents of cYc will 
be declarative, and we view the gradual translation of knowledge into increas- 
ingly declarative form as both inevitable and desirable. (There  is also often an 
extra level of translation, from declarative into efficient "compiled"  form, and 
this final stage is also probably inevitable and futile.) 

Question 5: Multiple representations of knowledge 
We are of course not arguing that any one narrow representation (such as 

frames and slots) is enough; see our earlier comments about our formal 
constraint language, etc. Nevertheless, it's important  to remark that binary 
predicates (slots on frames) are--surprisingly o f t en - -qu i t e  adequate,  and such 
awkwardnesses as arise in trying to represent some new situation can often be 
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remedied just by slotizing (creating specialized new slots). E.g.,  there are now 

about 50 slotized forms of constraints on s lots--what  sort of frames can legally 
have them, what sort of entries can legally fill them, how many entries they can 
have, and so o n - - a n d  we almost never have to resort to writing a full-fledged 
constraint language expression. Indeed,  most of those slotized constraints were 
introduced (as new slots) to eliminate the need for the various constraint 
language expressions we had to write. Smith might say that all this is still just 
one "grammar"  for representa t ion- - tha t  the frames and slots are a special case 
of the constraint language. In that case, we count this as a genuine disagree- 
ment rather than a mistakenly attributed belief. 

Question 7 
We could not understand Smith's words here (his use of "tradit ional" early 

on in this discussion, his use of "non-representat ional  experience" late in the 
discussion, his "LISP" example about (LENGTH '(A B C)) which seems to be just 
a discourse example, etc.). So we're not sure if he misunderstood us or 
genuinely disagrees. 

Resource-limited computation is an important part of our systems' design 
(e.g., the different GET levels in CYC), and we also rely on explicit meta-level 
reasoning about strategies, progress being made, time of day, models of the 
particular people using the system at present, etc. 

Question 8 
Smith cites Rosenschein's system as an example of "moving beyond logic's 

familiar representational assumptions". Our understanding of that system, 
though, is that it is built solidly on modal logic. It illustrates our assumption 
that one can reason adequately, using propositions, even about phenomena 
which people intuitively feel are somehow gestalt, mysterious, non-decom- 
posable. 

Question 9 
A 200% incorrect misreading by Smith. Of course inference is impor tan t - - i t  

lets you just represent log n of the KB you'd otherwise have to represent if you 
tried to cache everything (n is the average depth of reasoning chain your 
system goes through). As mentioned in our article, cYc has dozens of 
specialized inference procedures,  not just one (as do most AI programs) or 
zero (as Smith seems to think it does). Our point was not to advocate a 
100-million-assertion KB in lieu of a small one plus some inference m e t h o d - -  
rather,  it's to advocate a 100-million-assertion KB plus dozens of inference 
methods as being just barely enough to get us from stages 1 to 2 in our 
three-stage research program. It does appear,  by the way, that most com- 
monsense inference is rather sha l low- -2 -6  "rule firings" deep--shal low com- 
pared to, say, playing master-level chess or proving a difficult theorem. Still, 
n = 3 means log3(total assertions) = 100 million. So it would be absurd to even 
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consider an equivalent n = 0 KB (it would have to have 10100108 assertions in 

it!) 
Why did we say 200% instead of 100%? Because he is also wrong in saying 

that reasoning is central to the logicist position. Some mathematical logicians 
might say it is, but most computer science logicians would say that knowledge 
is (see, e.g., McCarthy's Missouri Program; Pat Hayes'  Second Naive Physics 
Manifesto [7]; and so on). 

Question 10: Does meaning bottom out? 
There are at least two senses in which we shout a negative answer; and one 

way in which we murmur an affirmative one. First, we have a very strong belief 
in the "gray box" view of knowledge and- -hopefu l ly - -our  large KB. "Gray  
box" means that one typically treats the thing as black box, as primitive, but 
when confronted by some novel problem, or the need to analogize, etc., one 
can open the black box and examine, modify, etc., the substructure that 
comprises it. A simple example of "gray boxing" is what we do with cars--we 
treat them as black boxes so long as they work. Other examples include the 
route we take to work every day; our use of an English dictionary which is 
itself written in English; etc. Of course, in practice, cYc and any such KB is of 
necessity finite. This does not concern us overmuch. Why? Sometimes, there 
are boxes which are (currently) still black to all of humani ty--such as when we 
delve down to physical phenomena whose mechanisms are not yet understood; 
and most of us get by in the world quite well with a much larger fraction of 
black boxes than that. 

The second way in which we claim meaning doesn't bottom out in an atomic 
base is illustrated by cYc's use of metaphorical sensibility. There are caches of 
popular metaphors, and in addition each slot P has a measure of how sensible 
(or common) it would be to say X when one actually meant P(X). E.g., agent 
and physicalExtent have high metaphorical sensibility; one often says "The US 
did such and so" when they mean "Some agent of the US did such and so"; 
and one often says "Joe is huge" when one means "Joe's  body--his  physical 
extent-- is  huge." So one can state assertions like "Russia is angry", 
"Granadas guzzle gasoline" or " the relentless sun",  and have them dis- 
ambiguated and interpreted as (albeit much longer) legal (nonmetonomous) 
expressions. 

The third way of looking at this issue, the one in which we murmur an 
affirmative answer to the question "Does meaning bottom out?" ,  is to say that 
at any fixed level of abstraction, yes it does bottom out. We effectively drew on 
compositional semantics, above, to change this superficial Yes answer into a 
No, but we suspect that Smith does not believe in compositional semantics. 

Question 11: Autonomous semantics 
To the extent permitted by current sensors and effectors, the knowledge in 

cYc has autonomous semantics, cYc explicitly represents itself as a Program, 
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its current " run"  as an Event,  the users logged onto it as Human,  their activity 
as KnowledgeEntering,  etc. The frames about computer  mice, mousing, and so 
on, tie in to actual events (as when a user moves their mouse or clicks a button; 
in such cases, cYc frames get created and /o r  modified). The user's actions 
cause revisions in the user's model (cYc frames), and that user model 
determines in a great many situations how cYc treats the user. The knowledge 

in the KB about people - - such  as eating and sleeping--is  used to help guess 
why a user isn't responding at 12:30 pm or 12:30 am. And so on. 

In areas where there is no meaningful over lap--such as ChurningCream 
In toBu t t e r - - the  semantics are of necessity not autonomous.  We do not believe 
that they need to be in order  to understand and reason intelligently about those 
concepts (how many of us have ever made butter,  after all?), and perhaps that 
is the crux of a genuine disagreement between Smith and us on this issue. 

Question 12: Representing "'as" 
Far from ignoring the k, 'as' questions",  the basic motivation for our paper 

and our current research (Feigenbaum's LSKB for engineering, and Lenat 's  
cYc) is very much the brittleness of current systems. And much of that 
brittleness is due to what we have called the representation trap: using variable 

names pregnant with meaning- -pregnant  to the user, but barren to the system. 
We choose to solve the "as"  question empirically, by having our systems 

incrementally approach understanding. For instance, when a new piece of text 
is digested into cYc, a set of questions is raised, questions which "anyone 
ought to be able to answer."  If cYc gets wrong answers, its KB is augmented. 
And the cycle repeats. Eventually, $DETENTE will not mean any less for the 
computer  than "de ten te"  means to us. 

The final part of question 12 is the necessity of representing several different 
points of view for, say, the concept of detente. In cYc, we have a scheme for 
handling recursively nested propositional attitudes (e.g., Israel is afraid that 
Iran believes that Iraq expects that the USA will soon want to provoke a 
conflict with Russia in the Mid-East). To do this efficiently, we represent 
various sub-abstractions of the actors (e.g., Iran as Israel believes it to be) and 
have rules for projecting knowledge and beliefs, goals and dreads and expecta- 
tions, from the "ou te r "  world to the next " inner"  world. One need only 
explicitly store the exceptions to what these projection rules would conclude. 
These rules are typically only run in a backwards direction, for efficiency 
reasons (this makes it increasingly costly to accurately simulate an actor with 
vastly different knowledge and reasoning methods than you have. Luckily, or 
perhaps by choice, we rarely have to deal with intelligent entities that don' t  
share a large amount  of knowledge with us.) And the various sub-abstractions 
are only created if we have something special to say about them, only if they 
have lasting importance. (Below, we discuss temporal sub-abstractions of 
actors and other objects.) 
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As stated in our general remark, above, this is the generous interpretation of 
his question 12. The less generous one would say that this is a genuine 
disagreement, and an irreconcilable one based on differences of faith. Even 
should we succeed in producing a generally acknowledged intelligent artifact, 
he might still refuse to acknowledge it on the grounds of this dimensional 
disagreement. 

3. b. Genuine disagreements 

We begin with a few basic problems with the material he presents before he 
begins discussing the various dimensions. The EC perspective Smith presents is 
too fuzzy to launch an attack against, so we shall restrict ourselves to particular 
"local" disagreements. 

First of all, before he can criticize us or any AI paradigm for not having an 
adequate theory of representation, Smith has to define adequate. We claim 
that it's enough to have model theory, the theory of descriptions, etc. 

The remark about "researchers rallying" around EC signifies nothing; we 
recall similar rallies in AI (e.g., around resolution), not to mention the 
numerous fads in philosophy. Actually, it signifies something a bit worse, given 
that the EC fad has been around longer than the cYc project, and has 
consumed a vastly larger annual budget. To wit, shouldn't they have something 
to show for all those years of work by now (i.e., some theoretical foundations 
built on a computational framework, embodied in programs)? 

Smith seems to assume that the right way to go about developing a field 
(especially something like a logic) is to sit down, get all the foundations 
straight, and then start using it. (In this case, he's groping to try to erect a 
foundation that would compete with logic.) But that's not how the game is 
played. Consider what happened with logic. The big advance came with the 
Principia Mathematica, which was nothing but the cYc for mathematics. 
Building it exercised and honed logic. Tarski, G6del et al. could then--a  
couple of decades later--set the foundations. So the best bet for Smith, and for 
what he calls EC, is to try something real with it. Forget the "decades of 
debate". 

Question 1: Explicit representation 
A trend that Smith begins here, and that we see throughout most of the 

twelve questions, is his equating us with the logic position, as if that somehow 
shows something bad about us. But there is nothing at odds between, say c v c  
and the proposed Advice Taker (as articulated in McCarthy's classic paper over 
thirty years ago; for a more recent update on this point of view, see [14]). The 
difference between the logic position and ours is principally one of focus: we 
think that our research time can best be spent actually trying to build big 
commonsense KBs, and they think it's not time yet, and so they continue 
building tools which eventually will be used to that end. 
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Another trend that keeps recurring in his treatment of these twelve ques- 
tions, and which is first illustrated here, is the following. Smith mentions some 
very general and also very well-known problem (e.g., that explicit representa- 
tion may result in unwarranted definiteness and premature categorization), and 
then slips in (as it were) the EC view toward eventually attacking that problem. 
The unstated parts of such an "argument"  are (a) L&F have an approach to 
attacking it as well, and (b) the EC view is just tha t - -one  untried, fuzzy 
proposal which may or may not solve the problem. To the extent that the EC 
view is defined as "something which solves this problem", it's no wonder it's 
still unarticulated. 

A third trend, which we will stoop to illustrate here, is ironically the sort of 
"tunneling" that he accuses us of. E.g., he goes from a true assertion 
("interpreted code runs slower than compiled code") to an unfair generaliza- 
tion ("explicit representation leads to programs that are poor in general") and 
then back down to a few downright false specializations ("such programs are 
less effective"). But "effectiveness" means what can (ultimately) be derived 
from a program; if explicit representation has any effect on this attribute, it is 
to improve it, not decrease it! Similarly with his next target, "control flow". 
This means something like "how easy is it to decide, and include information 
affecting, what to do next, at each moment" .  Again, if explicit representation 
has any effect on this attribute, it is to improve it, not decrease it! His third 
target here is the negative effect this has on "overall system architecture". But 
that involves things like what knowledge the program can use, for what 
purposes. Given a fixed representation, an explicit one is likely to be usable by 
more types of architectures than an implicit one. 

We shall give here just one more example of Smith's tunneling, and then try 
to restrict our attention to more substantive issues: Late in the question 8 
discussion, Smith discusses the fact that traditional logic does not deal with 
certain issues (how to think creatively about the world, etc.). He then 
concludes that the problem is uncorrectable (we disagree), and logic is there- 
fore woefully all wrong (we disagree), and therefore EC must be the answer 
(even if logic were wrong, this does not follow). 

Question 2: Contextual content 

Smith confuses the common practice of natural languages to economize (the 
meaning of "1989" or " tomorrow" is of course context-dependent) with the 
necessity of a KB to have this confusion. In CYC, e.g., there is a separate frame 
for 1987 in the Gregorian and Hebrew calendars, and a third frame for the 
word (so to speak) "1987", whose referents include both of those Event 
frames. There is little need, or benefit, in having the system itself confused 
about the meanings of "1987", any more than it's useful for a person not to 
understand the meanings--even if that person uses the word "1987" to mean 
one thing at one time and another thing at another time. So CYC in a way 
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appears to have "situated" knowledge, but that is--thankfully!--just a superfi- 
cial phenomenon. 

This is in a way Smith's main point, so let's restate the part of his position 
that we agree with. Consider linguistic utterances (such as "the time is 4 
p.m."). The "meaning" of such utterances is highly dependent on context. 
I.e., one cannot expect the truth of the sentence (by itself) to be preserved if 
you transplant it from one conversation to another. So if our representation 
were going to consist of such (natural) linguistic utterances, we would need 
some notion of context in ascribing meaning to our utterances. 

That much we agree with. But then comes a huge jump in the argument: 
from such natural language utterances, Smith concludes that the same will 
apply to utterances (propositions) in logic. I.e., he jumps to the conclusion that 
one cannot ascribe meaning to a logical assertion independent of context. 

The main argument for this is that utterances in logic are, after all, in some 
sense linguistic statements. The flaw in this argument is that there is a crucial 
difference between sentences in logic and sentences in natural language. 
Natural language sentences presume common sense, user modeling, etc., on 
the part of the listener, and utilize this to become relatively (compared to our 
corresponding logical encoding) terse--at the price of introducing ambiguities 
in word sense, ambiguities in pronominal referents, ambiguities in metaphori- 
cal and analogical references, and ambiguities in the interpretation of ellipses. 
By contrast, our sentences in logic have been "universalized" [16] to the extent 
humanly possible (but see the next paragraph): including explicit clauses that 
refer to the sorts of contextual information that would be omitted in natural 
language utterances. So Smith's argument for why non-situated representations 
are meaningless is just sophism, i.e. relies on a confusion between a natural 
language utterance and a logic utterance. If exactly the same notion of meaning 
etc. held in both, we wouldn't need to invent the formal languages of logic, 
would we? 

There was an important clause in the previous paragraph: " . . .  to the extent 
humanly possible. . ." .  Can we truly "universalize" a sentence? Is it really 
possible for us to unearth all the contextual information and make it explicit 
(without possibly introducing new implicit contextual assumptions?). The 
answer (both from the work of Carnap et al. and from results such as G6del's 
theorem) is that this is indeed very very hard. 4 

Not one place did Smith make it clear what exactly this beast "context" is. 
The moment Smith lapses into what the EC position is, we get lots of fancy 
words used in a very fuzzy sense. E.g., "the egocentricity obtains in virtue of 
the machine's existence, not in virtue of any self-reference." Being that 
"fuzzy" is not bad science--it's simply not science at all. It might be foolhardy 

4 Basically, we have el iminated contextual  information when only a single model  (up to 
isomorphism) satisfies our  axioms. 
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for Lenat and Feigenbaum to be ambitious, but we are at least precise in what 
we say. Mystifying contexts is of no use. Much better  is to try to come to grips 
with it, and we know of no better  tool for this purpose than logic. Just because 
we can't 100% universalize a statement in logic does not mean it is inadequate 
and should be abandoned. 

So, alright, we need to deal with this contextual effect. What this means is 
that we should go and make this concept explicit in our representations and 
this is exactly the stance being pursued today by John McCarthy (what he calls 
"contexts") ,  Guha (what he calls "microtheor ies") ,  and others. 

In a way, Smith's "computat ional  examples" of context-assuming programs 
argue against his position, not for it. When someone at MCC sends a mail 
message to D O U G ,  it reaches me. Why? Because the operating system 
accesses a file which quite clearly defines how to disambiguate such partial 
addresses. I.e.,  it contains a simple yet adequate explicit model of context. 

A similar response applies to his remark that cYc "wouldn' t  know what time 
it was." Natural language interfaces, or other  programs written on top of cYc, 
would have the job of answering such questions. They in turn would call on the 
c v c  KB to do various sorts of disambiguation. The KB in turn has explicit 
models of its being used (in this case, the particular conversation going on at a 
certain date and time, on a certain terminal, what has been said so far, etc.) 
and from that it is straightforward to disambiguate references to " today"  and 

"next  year".  This is not much different from the way the e-mail program 
disambiguates what D O U G  means. 

If you broaden Smith's first two objections (about "explicit representat ion" 
and "not  being si tuated") to the levels that he and his references typically 
in tend- -namely  that a program cannot possibly be intelligent unless it "lives" 
in the real world and has direct sensory exper iences- - then  we patently 
disagree with such mysticism. To dip our toe into Smith's metaphysical swamp, 
we might say "Yes, our KBs are indeed 'somewhere ' :  they are where they are 
being used." That in turn would suggest that they should contain explicit 
models of situations where we expect them to be used, not used, etc., i.e. a 
rich explicit meta-theory about the scope and limitations of use of our systems. 
Just such a scheme was discussed in detail in [11]. 

Question 3: Content depending on use 

We definitely hold that we can and are constructing knowledge bases whose 
content means something; i.e., KBs which have meaningful content indepen- 
dent of any particular use of that knowledge. We are unhappy with the 
somewhat vicious tone that Smith uses in his review about this issue; and we 
find it surprising that he believes in the negation of such a possibility. E.g.,  if 
you consider some of the facts ( "George  Washington was the first President of 
the US A")  and heuristics ( " I f  it's raining, then the ground is probably getting 
wet")  in our large KB, it seems to us that we have precise, commonly agreed 
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upon meanings for each of them, and for each of the terms they mention. We 
may use the second piece of knowledge to answer a variety of questions, such 
as deciding if we should watch where we~'re walking, or to guess whether or not 
the concrete mason will bother  showing up to try to work on our driveway 
today, or to guess at why there is a large puddle of ammonia today in front of 
our spaceship (landed last week on some moon of Jupiter). 

Of course the kind of uses of a proposition may be limited and biased by the 

way we choose to represent it, and we as reasoners are limited by what 
knowledge we choose to represent in the first place. The net effect of this is to 

make there be a pragmatic limit on the multiple uses of the knowledge in a 
KB. There  aren' t  an infinite variety, there is a bias making some more natural 
or efficient, and the choice of contents of the KB limits the in-principle 
macro-level uses (problems tacklable). The net effect is at least multiple-use, if 
not truly use-neutral, knowledge. 

Use-dependent  meaning ("Is there water in the refr igerator?")  does not 
imply we have to abandon the computational framework of logic. It might 
mean not insisting on an absolute account of the world. In fact we (and 
symbolic AI in general) don' t  even take a stance on the existence of such an 
absolute account. On the other  hand, Smith seems to be insisting that there 
indeed exists such an "all independent"  notion of meaning. Yes, of course the 
meaning of the English word "wate r"  depends on the discourse in which it is 
used. This does not imply that we abandon explicit representation. It simply 
a rgues - -and  we would ag ree - - tha t  we should represent knowledge about 
discourses (common types, communication conventions, etc.). A large task? 
Yes. A theoretical impossibility? Hardly. The concept of use-dependent mean- 
ing only undermines the concept of soundness if one is reckless in introducing 
it. 

Smith presumes much too direct a translation between the English word 
"water"  and the term Water in the KB. He is assuming that we opt for a close 
connection, so that the natural language/logic translation is easy. However ,  we 
opt for as "deep"  a representation as possible, one that often is quite far 
removed from the accidents and surface phenomena of English or any natural 
language. 

Smith then goes on to point out some of the assumptions made in our 
research p rogram--such  as compositional semantics. We point them out, too 
[6, 12]. Every research program must have, and does have, numerous assump- 
tions behind it. Not being prepared to make any assumptions leads only to 
apathy or to sterile argument. His approach implies that every problem in AI is 
"AI-comple te" ;  perhaps this explains his hesitation to decompose problems. 

Smith appears to be confusing the role of logic in mathematics (where it was 
used not as a real computational tool but as a precise language in which to state 
a minimal set of axioms from which everything else would follow) and the role 
of logic in AI. Precision (or rather a lack of it) is not even an issue that 
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computer scientists can choose sides on: programs are precise, period. Logic is 
used in AI for its other properties such as having a denotational semantics, 
modularity, etc. 

He frets that "nothing in the KB means anything". Well, there are a lot of 
expert systems out there built on logic that are very useful--their  users would 
not care that Smith feels that they don't  "mean"  anything. Then, at the very 
end of the question 3 tirade, Smith asks us to rely on his "experience". If he 
has scientific evidence as to why we won't  succeed, he needs to be more precise 
than just saying "it is simply my experience". 

Incidentally, a rich and quite readable account of the "bottoming out" of 
metonomy into somatic metaphors is given by Lakoff and Johnson [8]; we 
encourage Smith and other interested readers to examine it. 

Question 4: Consistency mandated? 
We disagree with Smith's comment that logic hates and avoids inconsistency. 

That is a rather dated point of view. Inconsistency at some point is the 
hallmark of any nonmonotonic system, and a vast amount of attention has 
been focused recently on how to deal with this. Perhaps this is again a case of 
his equating logic in math with logic in AI. 

Questions 6 and 8: Only discrete propositions 9. 
We do believe that discrete propositions can arbitrarily closely model 

continuous phenomena. More importantly, they can do it adequately and 
efficiently for real-world problem solving. And they can capture whatever is 
worth capturing about a situation. That is, one need never in principle throw 
up one's hands and say "you just had to be there, I can't describe it!" 

There is nothing to prevent one from adequately describing the terror and 
confusion at a theater fire, or the trials of committee work (here "adequate"  
means that conclusions could be drawn about something involving, say, a 
theater fire, conclusions which enable the problem solver to correctly predict 
victims' reactions and memories, media coverage, pre-catastrophe fire codes, 
etc.). 

Smith's very example disarms him: the implicit assumptions that writers 
build their text upon. We have looked at thousands of such snippets, and 
continue to look at them, chosen from such diverse sources as encyclopedias, 
novels, and newspaper advertisements. Of course there is a tremendous 
amount of unstated assumptions, presumed shared experiences and 
knowledge-- indeed,  that is precisely what we hope to capture and represent in 
cYc. But as for implicit nonconceptual inferences, we have yet to run across 
one. All such apparent references have so far been successfully reduced to 
discrete concepts and propositions involving them. 

Smith seems to be confusing the underlying computational formalism (a 
digital one) and a representation built on top of that. That the former is digital 
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does not much impact on the latter. Does he want us all to go and build analog 
computers? 

He then complains about the limitations of bivariance (having just True and 
False and perhaps a few other symbolic truth values). Our defense is twofold: 
First, the observation that the world is not vague (though language is); and 
second, we symbolic-AI'ers can get far enough with just what we have (far 
enough to, say, one day pass the Turing test). 

As for his abjuration that we must provide more details on what our notion 
of inference i s . . .  we agree. Besides [2-5, 12], we are preparing an article 
dealing specifically with that issue. 

Question 7: Do representations capture all that matters ? 
Earlier, in Section 3.a, we discussed our confusion over Smith's use of 

several terms and examples. There are some disagreements here as well, but 
we shall only call attention to the final line of this section: "there is no way in 
which L&F's system would ever be able to understand the difference between 
right and left." 

We're rather puzzled by this. cYc can know about right and left proposition- 
ally, the same way it knows about hunger and democracy and computers and 
ownership. The assertional right/left knowledge can be related to digitized 
images, room floor plans, asymmetric particle physics phenomena,  etc., but 
this is more of an affectation, a luxury, than a necessity. If a program uses 
"right" and "left"  properly in sentences, answers queries involving it (e.g., 
"Which particular muscles does Connors use in his backhand?") ,  and acts 
appropriately (e.g., "Please open the rightmost pod door, H A L " ) ,  what more 
could be required in order to warrant our admitting that it understands the 
right versus left distinction? 

Question 9: Participation and action crucial? 
Of course participation often helps one understand a situation--especially in 

a field which is pre- or non-theoretical. But even in moderately well-under- 
stood fields it is "optional" (e.g., men can be gynecologists; non-criminals can 
be lawyers; and so on). And what does it mean for a college student to 
"participate" in Einstein's equations or other areas of math and theoretical 
physics? 

Smith seems to believe there must be some fundamental reason we could 
never handle "See you tomorrow",  or knowing that " tomorrow, today will be 
yesterday". Our response is essentially to repeat the above cry that such 
reasoning can easily be formalized and automated. We shall treat this example 
in a bit more detail, to convey the flavor of how we actually handle this sort of 
reasoning in cYc. 

We handle the uttering of "See you tomorrow" by creating a 'frame' E 1 in 
cYc to represent that uttering event (E 1 is an instance of the set of all events). 
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Each event is grounded in time (whether or not the absolute time is known), 
and the meaning of "tomorrow" is clearly the day after this event E I takes 
place. A cYc "frame" E 2 would be created, representing a second event. E~'s 
temporal grounding would be "the day following the day E1 takes place", and 
E 2 would be a seeing or meeting type of event. 

This technique has been known to logicians since 1924. They (as does cvc)  
use an abstract (non-situated) notion of time. Smith claims you can't really 
compare 5 minutes of CPU time and 5 minutes of waiting at a train station. 
They (because of different situations) are simply different, incommensurable 
things. It is difficult for us to take his point of view seriously. 

His more complicated example--and many much more complicated ones-- 
are also straightforwardly handled in cYc. To see how, we must first discuss in 
a bit more detail how cYc handles time. 

There is a pragmatically adequate language for describing pieces of time 
(unifying both set- and point-based abstractions of time), and fifty temporal 
relations--predicates (slots) which relate one piece of time to another. Al- 
though we originally kept separated (a) events and (b) the time intervals over 
which they occur, several years of experience at knowledge entering convinced 
us to combine those, so that each "frame" representing an event may have 
those fifty temporal relation "slots". One important class of events are objects 
(i.e., each object has a starting and ending time, can end-at-the-same-time-as 
another object, and so on). Another important class--a superset of the 
previous one--is temporal sub-abstractions of  objects. Only those objects which 
are useful or required are created and represented explicitly; even more 
importantly for finiteness, only required sub-abstractions of objects are repre- 
sented explicitly (typically, new sub-abstractions are created dynamically as 
required during the solving of a problem). 

Now we can explain how cYC handles the effects of actions occurring and 
time passing: the basic idea is that each (frame representing an) event has 
actors (before, during, and after the event) which are temporal sub-abstrac- 
tions of objects. Rules can thus be stated as to, e.g., the effect of taking a 
time-delay poison; they effect a particular sub-abstraction of the victim which is 
related to the present event's actor (the present event is the taking of the 
poison) in a clearly expressed fashion (expressed using the vocabulary of 
temporal relations). 

4. The logical point of view 

Here again we see Smith confusing the Nilsson kind of logic approach to AI 
(where all that's done with a KB is to prove sentences) and the McCarthy kind 
of logic approach to AI (where a declarative KB is used by all kinds of 
programs). 
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Yes, we are in many ways just a variation on that second "logicist" theme. 
The main difference is that we think it's high time to start trying for "a 
competent axiomatization", that additional work on reasoning is either un- 
necessary or, more likely, should be guided by the difficulties encountered in 
such an attempt. The "dig" about the expressiveness of our language is of 
course unwarranted, as this was a position paper and not an account of our 
current research projects. The dig is also, as so much of his review, simply 
false. See, for example, [12] for a several hundred page account of our 
representation language, inference engines, ontology, and yes, even some 
remarks on our paradigm. 

5. Conclusion 

Smith seems to be saying that AI can't move forward until we solve all the 
problems that have been haunting philosophers for centuries. We have tried to 
clarify why we disagree. 

Just because "wheel-barrows are inadequate to try crossing Europe" does 
not mean that our existing representation technology is inadequate to try 
representing world knowledge: Analogies can of course be false. As we 
discussed, coincidentally, in our paper, this is especially likely if (as in the 
wheel-barrow case) there is no causal basis whatsoever for it, if it was chosen 
merely for dramatic impact on the reader. 

We are hopefully more at the "age of discovery" stage in AI,  where 
attempted ocean crossings will at least point out the inadequacies in our 
current vehicles and lead to improvements, and may lead to some surprising 
discoveries as well, even if we fail to reach our ultimate goal. Of course "work 
lies ahead of us",  but let necessity and utility guide that work, not aesthetism 
and faith. Let's grope towards being Newton, not Aristotle. 

Smith has us pegged correctly at the end, as disagreeing with Yeats' romantic 
but pessimistic mumbo-jumbo. We would say that inanimate objects and lower 
animals can embody truth, but Man (and one day AI) are distinguished 
because they can know it. 
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