
ARTIFICIAL INTELLIGENCE 31

Theory Formation by
Heuristic Search
The Nature of Heuristics II: Background
and Examples

D o u g l a s B. Lena!
C o m p u t e r Sc ience Depar tmen t , S t a n f o r d Universi ty ,

C A 94305, U . S . A .

St.t@~

ABSTRACT
Ahwhine h'arning can be categorized along many dimcnsiotts, an important one o/ ~hich is "degree of
human guidance or forethought'. Thi~ cotztintaon stretches from rote learning, through carefully-
g,ided concept-fon~ation by obsert'ation, ot~t toward independent theory formation. Six)'ears ago. the
,~',t program was constructed as an experiment in this latter kind of leanffng by discot'ery, hs source of
I~);~er ~as a large body of heuristics, rules which guhled it toward fruitful topics of int'estigation,
toward profitable experiments to perform, toward platt~ible hypotheses and definitions. Since that time,
we hate gained a deeper itt~ight into the nature of heuristics and the nature of the process of forming
and extending theories empirically. "The Natttre of llettristics I" paper presented the theoretical basig
for this work, with on emphasis on how heuristics relate to each other. This paper present.~ our
accretion model of theory formation, and git'es many exatnple.~ of it.~ use in producing new discoveries
in t'arious field~. These examples are drawn]'rom runs of a program called Eur~ts~.o, the successor to
AM. that embodies the accretion tnodel and uses a corptt~ of heuristics to guide its behat'ior. Since our
tnodel demands the ability to discoter new heuristics periodically as well a~ new domain objects and
operators, some of oar examples illustrate that process as well. "The Nature of ileuristics Ill" paper
describes the architecture of the EURISKO program, and conchtsiot~ we hate made front its behar'ior.

!. The Learning Spectrum

This paper deals with learning, by which we intend to include all processes
which result in accretion of knowledge. Scction 1 surveys the spcctrum of
learning, from rote memorization to more complex activities. Section 2 focuses
on the far end of the learning spectrum, inductive inference. Section 3 proposes
a model for the far end of that activity, empirical theory formation. That model
accounts for the discovery of new heuristics as well as new task-specific objects
and operations. Finally, Section 4 presents dozens of examples of the model in
action, producing discovcrics in many different fields. The next paper in this

Artificial Intelligence 21 (1983) 31-59
0004-3702/83/000(t-0000/$03.00 (~) 1983 North-l.lolland

32 D.B. L E N A T

series [21] explains the design of the program that made these discoveries,
EURISKO, and draws new conclusions about mechanizing the process of dis-
covery.

Learning can assume many forms, depending on who the ' teacher ' is, how
active a role the learner assumes, what the learner must do to acquire,
assimilate, and accomodate the new knowledge, etc. A large body of thought,
has been assembled on this subject, and it is not the purpose of this paper to
duplicate or even summarize any of that material. The reader is referred to
[11, 13] for the standard philosophical and psychological ideas on concept
formation, [10, 30] for the special cases of theory formation in mathematics and
natural science, [1, 4] for coverage of nonstandard ways of conceptualizing, and
[26] for pointers to other relevant AI work in machine learning.

At one extreme, learning is no more than rote memorization. One might
imagine simply memorizing all multiplication problems which cross one's
purview, but that is a decidedly unacceptable solution to learning how to
multiply. Far more commonly, a human teacher tells the learner specific bits of
information to remember (the multiplication table up to n x n, for a culture
which works in base n), plus an equally mysterious ritual for evoking an answer
(the multiplication algorithm) using that table. Rote learning confers very little
ability to use the memorized information in novel ways, but is of course quite
an efficient method for transferring well-understood knowledge.

A deeper form of learning is by observation, in which case the teacher
provides a (probably carefully-ordered) sequence of stimuli, from which the
learner builds models of the concepts to be apprehended. This usually takes the
form of a series of graded examples, each designed to push slightly on the
concepts formed by its predecessors. Winston's [38] arch-finding program was
such a learner, and more recently whole languages have been built around
learning from sequences of examples (e.g. RrrA [36]).

The nemesis of this approach is inferring conditionality or disjunction. When
you see the teacher do X, does that mean he/she chose to do X instead of
some alternatives, and if so what were the alternatives and how was the choice
made? If two disparate things are both Y's, does that mean that Y admits of a
vast space of examples, or is there some kind of O R in the definition of Y?
�9 The sensitivity of Winston's program and the RrrA language to the order of
presentation of examples was critical. If the teacher is Nature, the learner must
take a more active role, inquiring about the next examples himself, and that
makes the task much more difficult. If he/she is lucky, examples will be easy to
find, and all that must be done is to put them in some order for consideration
and incorporation.

But in most real-life situations, much of the difficult work is in designing and
executing clever experiments just to obtain a few new pieces of data. This type
of learning is guided by~ model, by a theory based upon previously seen data.

N A T U R E OF HEURISTICS 11 33

The aim of those experiments is generally to test the theory, often in the hopes
of finding exceptions which will force t h e theory to develop further to in-
corporate them. Thus, in the case of multiplication, one might examine tables
and algorithms in other bases, multiplication by specific numbers, multi-
plications which yield specific sorts of products, etc. Ultimately, one would gain
a deeper understanding of multiplication, and might have (i) some interesting
new problems to work on, such as an algebraic generalization of the process,
(ii) some powerful new algorithm for multiplying, (iii) some quick ways of
doing some multiplications, and of checking others, and perhaps most
significantly (iv) a deep enough representation of what was happening that
future phenomena (such as division), anomalies (such as ledger errors), and
modifications (such as getting a good algorithm given a new set of trade-offs
on primitive operations) might be done quickly.

The expert rules in MVCIN [34] represent knowledge at the observation level;
indeed, Teiresias [5] learncd new r, ivclN rules by observation. To learn deeper
rules (e.g., those involving causality), r, tvclN would have to explicitly possess a
deeper modcl of how diseases are caused and cured. Each rule might then
explain why it was usually true, in those terms.

Just as r~wciN's rules represent a conceptual advance over the storage of
correlation coefficients (between symptoms and diseases), so a causal model
would represent a further advance. In a novel situation (e.g., a certain drug is
invented or has just run out), the deep understanding of why each rule was
usually true might enable better response.

For instance, here are three rules from an expert system designed to manage
cleanups of chemical spills.

RI : If the spill is sulphuric acid,
then use l ime.

R2: If the spill is acetic acid,
then use l ime.

R3: If the spill is hydrochlor ic acid,
then use l ime.

Now suppose lime runs out, and an acid has been spilled. What should we
use? Perhaps the most closely correlated chemical compound is lye, so lye is
suggested as a replacement. Can we simply go through rules R1-R3 and
replace lime by lye? If we do that, some of the rules still work and some of
them become completely useless (or even worse than useless). What went
wrong?

Let 's take a deeper look into the rationale behind those three rules. Suppose
we had taken the trouble, whenever a rule is typed in, to ask the expert to also
specify its justification:

34 D.B. LENAT

R4: If the spill is sulphuric acid,
then use lime.

Justification: lime neutralizes acid and the compound that forms is insoluble and hence will
precipitate out.

R5: If the spill is acetic acid,
then use lime.

Justification: lime neutralizes the acid.

R6: If the spill is hydrochloric acid,
then use lime.

Justification: lime neutralizes the acid.

What we really want to do is go through RI -R3 and substitute lye for lime
only in those rules which use lime solely to neutralize pl-II i .e . , not in rule RI,
since the compound formed by lye and sulphuric acid is soluble. The point is
that substitutions are more likely to work when you know why the original
compound was being employed in the first place. If sulphuric acid was spilled,
and no lime is available, the human---or program--should search for a com-
pound which neutralizes acid and forms a precipitate.

Not surprisingly, the deeper the model the more costly it is to build. If you
already have a list of variables to monitor, then building up the requisite set of
correlations is quite straight-forward (albeit timeconsuming to obtain con-
vergence). Surface rules, such as MVCXN'S rules and the original versions of
R I - R 3 above, are much more difficult to learn, due to conditionality and
disjunction. Deep rules, such as R4--R6 are even more difficult to learn,
because the justifications are rarely stated explicitly by the expert or (in the
case of forming a theory from observed data) by the world.

But as the problems being dealt with grow in number and complexity, the
flexibility of the deep knowledge eventually outweighs the need for simplicity.
Medical students learn about disease pathways, after all, rather than just
memorizing tables of numbers. Chemists need to know why various
agents are effective against each type of chemical spill. Mathematicians study
proofs and not just results.

Learning by discovery is often referred to as inductive inference; if the
model is deep enough, we call the process inductive theory formation. The next
two sections explore this type of reasoning. Then, in Section 4, several dozen
examples of learning by discovery are examined, spanning many task domains.
The automation of this type of learning is described in [21].

Why should AI be concerned with computer programs which learn by
discovery? One obvious answer is AI's interest in the mechanization of any
human cognitive activity. There is another, more powerful reason, however.
The standard approach to expert system-building involves extracting know-
ledge from human experts, and yet many of the young, explosively-growing,
important fields have no human experts yet, and have few rules of thumb for
guiding explorations in them. In such virgin territory, discovery programs may

NATURE OF HEUR1S'IICS It 35

bc the fastest route to gaining a preliminary understanding, to conceptualizing
the useful new objects, operations, and heuristics of those fields.

2. Inductive Inference

Many everyday tasks which we refer to as requiring 'intelligence' involve the
making of decisions in the absence of completc information: While driving to
work in the morning, what route is best at that particular hour? What did that
announcer say? Is that a police car behind me?

In each case, how is a plausible solution obtained? Each of us has, over the
ycars, built up a large collection of more or less general rules of thumb. A
typical rule might be "After 8 a.m. the expressway gets crowdcd". One then
applies these rules to the current situation. Although each rule is quite
minuscule in scope, their union suffices to cover most common situations.

Scientists who have studied such phcnomena have frequently selcctcd quite
restricted inductive activities for their subjects. Perhaps the simplest inductive
inference task is that of scqucnce extrapolation. One is given the opening few
terms of a sequence, and askcd to guess what thc next term is:

I ! 8 l 2 7 1 6 4 1 125 I ??

Notice how we assume somc kind of simplicity measure on the solution space;
really, any answer is legally possible.

The informal rules for this task include the conccpt of splitting the sequence
into two or more subsequences (as in this case, every second term is '1'), the
notion of successive differences (thcrcby yielding a new sequence which may be
easier to extrapolate), and finally the notion of repeating and composing all
these preceding techniques until the sequence is reduced to one that is
rccognized by inspection (such distinguished sequences might include: constant
ones, the integers in order, their squares, their cubes, the prime numbers, the
Fibonacci sequencc, etc.).

Using just such a simple model, it is quite easy to build a computer program
that out-performs humans at this task, and this was done in the early 1950s [29].
Tasks which draw upon a much larger data base (e.g., cryptograms) cannot be
so easily mechanized.

A full step more sophisticated than sequence extrapolation is the task of
concept formatiotz. In the psychologists' experiments, a subject learns to dis-
criminate when a stimulus is and is not an exemplar of the concept to be
mastered. Again, simple models exist and lead to concise, effective computer
programs for this kind of inductive task [6, 38].

"Fhis classificatory activity historically precedes a more comparative and
eventually a metric kind of concept formation. Ultimately, one crosses the
fuzzy boundary and begins to rio theory formation [2, II]. But even at this
sophisticated level, we claim our same simple model suttices: one applies
his/her rules of thumb to the current situation.

36 D.B. LENAT

Artificial Intelligence work has demonst ra ted--of ten to the dismay of the
researcher-- that many apparent ly deductive tasks actually demand a large
amount of inductive reasoning. Thirty years ago, the automation of foreign
language translation by machine seemed quite within reachmunti l the first such
programs were written. One apocryphal story has the sentence " the spirit is
willing but the flesh is weak" translated word by word into Russian as "tht~
vodka is fine but the meat is rot ten".

The same need for inductive reasoning was found when AI at tempted to
write programs for such 'deductive' activities as proving a theorem and
identifying a molecule based on its mass spectrogram. The whole recent
emphasis on frames [25] and scripts [33] is merely the realization that much of
our everyday life is spent in forming simple theories about our environment.
Based partly on limited sense data and based heavily on past experiences, we
have a tentative model of the room we're in, the state of mind of o u r
companions, the immediate future, etc. So inductive inference permeates our
lives, at all levels.

Yet nowhere is the use of inductive reasoning so explicit as in the process of
scientific research. The scientific method reads like a recipe for induction:
constrain attention to a manageable domain, gather data, perceive regularity in
it, formulate hypotheses, conduct experiments to test them, and then use their
results as the new data with which to repeat this cycle again.

The preceding discussion suggests that a good task domain in which to
investigate inductive thinking is science itself. Thus, one expects to find
psychological studies of scientists in vivo, and AI programs which carry out
simple kinds of scientific research. Both have been unduly sparse.

The first notable AI program which attempted to mechanize a scientific-
method activity was DENDRAL, and there have been only a handful of attempts
since, most of them emerging from Stanford's Heuristic Programming Project
[7]; but see also [22, 32, 37].

There has been a gradual realization that the scientist's rules of thumb
should be elicited explicitly. With this has come the discovery that one's
conscious rules are not sulticient to account for creative scientific behavior. By
various techniques, such as confronting the expert with a case in which his
decision is inconsistent with his stated rule set, the knowledge engineer elicits
additional judgmental rules that the expert used without conscious control.
This process--knowledge acquisition from an expert-- is a bottleneck in the
process of building expert systems today. Tile neck of the bottle is narrow
indeed for those fields in which there is as yet no human expert. Inquiries into
inductive reasoning, such as the projects reported in this paper, may eventually
enable programs to learn some of the needed heuristics on their own.

We can recap the central argument of Sections 1 and 2 as follows: real-world
learning spans a spectrum, from rote to discovery. Surprisingly often, even
when carrying out tasks we think of as deductive, we are at the inductive
discovery end, because Nature provides much less help than does a human

N A T U R E OF HEURISTICS II 37

teacher. Under these conditions, effective learning requires a strong model of
the domain. Induction, using a deep model, is precisely what we mean by
theory formation, which is the subject of this paper. The world is too complex
to be modelled deeply in any formal way, but a dynamically-growing body of
heuristics might suffice. Heuristics span the sorts of guidance needed to cope
with the world, and they can be accretcd and improved gradually. Even this
sort of model is difficult to build, as heuristics are not easily elicited from
experts (and there are many important new fields where experts hardly exist
yet). The EURmKO research programme is built on the hope that heuristics can
help at this meta-icvel as well, help in building and extending and testing new
heuristics.

3. The Accretion Model of Theory Formation

The AM program assumed a simplified model of theory formation. Based on its
behavior, we added Steps 5 and 6, producing the following revised model, upon
which the EUrUSKO program is based. In the next section, we carry through
about forty examples, from five of EURiSKO'S domains, to illustrate this model.

Accretion model of theory formation
Step 1. Given some new (not fully explored) definitions, objects, operations,

rules, etc., immediately gather empirical data about them: find examples of
them, try to apply them, etc.

Step 2. As this progresses, try to notice regularities, patterns, and exceptions
to patterns, in the data.

Step 3. From these observations, form new hypotheses and modify old ones.
In a world over which you have some control, design and carry out experiments
to test these hypotheses.

Step 4. As a body of conjectures develops, economize by making new
definitions that shorten the statement of the most useful conjectures. The
entire cyclic process now typically begins anew at Step 1, given these new
definitions as grist.

Step 5. As the above loop (Steps 1--4) proceeds, it will become necessary
from time to time to abstract some new specific heuristics, by compiling the
learner's hindsight.

Step 6. On even more rare occasions, it will become necessary to augment or
shift tile representation in which the domain knowledge is encoded.

Step 7. For all steps in this model, even Steps 5, 6, and 7, it suffices to collect
and use a body of heuristics, informal judgmental rules which guide the
explorer toward the most plausible alternatives and away from the most
implausible ones.

There are several assumptions in this model, most of which are easy to
satisfy for human learners and not so trivial for machine learners. Step I

38 D.B. LENAT

assumes the ability to gather data oneself. In most fields, this means employing
some instruments to sense or record phenomena, and despite the micro-
computer revolution most instruments are still designed to present their results
to human eyes and ears, and to accept their inputs and instructions from
human hands and feet. Conceptualizing in the world of recombinant DNA is
fine, but a program which proposed an experiment or a new lab procedure
would have to pause while a human expert carried it out and reported the
results. The only fields where a kind of direct sensing of and experimenting
with the environment is possible today is the category of fields which are
internally formalizable, that is, for which machine-manipulable simulations or
axiomatizations exist. This includes the various fields of mathematics, games,
programming, and precious few others. Certainly simulators can be found in
other areas, but the program would be trapped in whatever world the simula-
tion defined. For instance, suppose a program is supposed to form theories
about physics, and we supply a (Newtonian) simulator. It may carry out any
number of experiments, but it will never achieve more than a rediscovery of
Newtonian mechanics (perhaps a reformulation such as Lagrange's), for its
world genuinely is nonrelativistic. Most of the fields which AM and EURISKO
explore are internally formalizable, or are carefully-selected subfields of other
disciplines, subfields which do admit an adequate machine formalization.

Step 2 in the model innocuously requests tile learner to be observant for
rccognizable patterns. That assumes that he/she/it has a large store of known
patterns to rccognize, or is working in a world where an adequate set can be
learned very quickly. Langley [14] presented a comprehensive listing of very
general low-level pattern-noticing rules, and an appendix to [5] presented many
higher-level ones found in AM. Both BACON and AM assumed that tile noticing
'demons' could be largely domain-independent, and, while that has worked so
far, it bears repeating that it is only an assumption. Human beings, of course,
already possess a rich store of facts and images to match against; the process of
'rccognizing' blends continuously into 'analogizing'.

The activity in Step 3 is largely one of generalization (of regularities noticed)
followed by specialization (into new specific questions and cases which
experiments can test). The latter activity once again presumes access to tile
wor ld--e i ther through direct sensors and effectors, or via a simulation (or
formalization) good enough to provide answers to previously unasked ques-
tions. Deeply embedded into this point is a set of metaphysical assumptions
about the world: most phenomena should be be explainable by a small set of
simple laws or regularities, knowledge comes from rational inquiry, causality is
inviolable, coincidences have meaning, etc.

The fourth step in the model appears simple enough, but a subtle difference
crops up in the results obtained mechanically and by people. Even though two
bodies of (new) definitibns may be isomorphic, there is great psychological
import attached to appropriate naming of the new concepts. Humans can draw
upon their rich reserve of metaphor and imagery once again; programs must

N A T U R E OF i-tEUI~,ISTICS 11 39

work hard to do much bet ter than names like c,000sl. Large blocks of code in
both At,! and EURISKO deal with choosing names for newly-defined concepts, but
even so most of these are noncreative mergings of old names, and a human is
often consulted for more evocative concept names. Step 4 also assumes that
new terms are introduced to shorten hypotheses and conjectures and the
s tatements of other terms ' definitions; while that is true, humans may have
other reasons for introducing new terms: completeness (e.g., extending a
metaphor in which several other terms already have meanings), symmetry (e.g.,
defining the complement of a useful subset), etc.

Step 5 assumes that heuristics can be synthesizcd, kept track of, evaluated,
modified, etc., just as any domain object or operat ion could be. This was not
part of Ar~I'S model, and it limited Ar~l's behavior as a result. This point glibly
requires that, as new knowledge is gleaned, new heuristics somehow come into
being, rules which can guide the explorer using the new concepts. While this
does happen ' somehow' for human beings, any program which explores new
territory must possess a concrete method for acquiring the needed new
heuristics.

Step 6 makes the analogous assumption for representat ion of knowledge:
that the program can reason about, produce, and modify new pieces of its own
representat ion hmguage. A simple case of this is when EUR~SKO defines a new
kind of slot for its frame-like language. The synthesis and modification of
heuristics is potentially explosive, so must be a rare activity; the synthesis and
modification of the learner 's (program's) representat ion for knowledge must be
an even rarer event.

Step 7 assumes that a large body of heuristics is available, can be efficiently
accessed, provides the requisite guidance, etc. The italicised clause in Step 7
indicates that it applies to every one of the steps in the model, even to Steps 5,
6 and 7. That means that a body of heuristics can guide the discovery,
evaluation, and modification of heuristics; a body of heuristics can guide the
evolution of the representat ion being employed; and, finally, a body of heuris-
tics can guide the application of heuristics in each situation.

The model has many shortcomings and poor reflections of reality built into
it. Obviously one does not follow Steps 1--6 in a precise loop, ad infinitum, but
rather carries out many of the activities in parallel. Occasionally a kind of
back-up is called for, when a result is found to be in error. Uncertainty in data
and reported results is inevitable, and this makes it cost-effective to double
check earlier results whenever possible. The model of course says nothing
about a field developing abnormally due to funding, emergence or death of
individual practitioners, mores and taboos, results in other fields (often ap-
parently unrelated nontechnical fields like politics, economics, or religion), and
so forth.

We add to the model our r that each step involves inductive
reasoning, that each step can be adequately modelled as a search. These
searches take place in immense search spaces (e.g., the space of all possible

40 D.B. LENAT

regularities to look for, the space of all possible new definitions to make), and
the heuristics serve to constrain the generation of, and the exploration of those
spaces.

By and large, most technical fields appear today to follow this Baconian
development, perhaps with occasional upheavals as described in [12]. Bear in
mind that from now on this model will be a s s u m e d to be adequate; neither the
examples presented subsequently in this section nor the programs described in
later sections are designed to test that model, but rather merely to opera-
tionalize, illustrate, and employ the model to good effect. Only the long-range
success or failure of this research programme has anything to say about tile
adequacy of the model, and even that is weakly suggestive evidence at best.

4. Examples of Using IIeuristics to Guide Theory Formation

Our purpose here is to illustrate the basic model of learning by discovery,
specifically Step 7: the use of heuristic rules to guide a researcher. To do that,
we provide dozens of examples drawn from disparate domains, including finite
set theory, elementary number theory, naval fleet design, VLSI device physics,
and LXSP programming. In each case, the examplcs we provide are taken from
the actual behaviors of the AM and EUmSKO programs. Occasionally, a non-
technical example from 'everyday life' is provided, and those were not

generated by the programs.
Rather than organizing these examples by task domain, we have chosen to

highlight Step 7 by organizing them by heuristic. Thus, we will state a heuristic
or two, and give examples of its use in several fields. Some of these examples
result in new heuristics being synthesized and added to the set guiding
EUmSKO'S behavior, and some result in new types of slots being defined and
added to EUalSr~O'S representation language. The key idea is that the same
heuristics can be used for all three 'levels' of activity (inducing domain
concepts, heuristics, and representations).

It is worth noting that these heuristics are far more specific than the general
'weak methods' [27] such as hill-climbing, generate and test, and means--ends
analysis. They are also much more general than the domain-specific rules
usually incorporated into expert systems [7], such as those mentioning terms
like king-side, ketones, or carcinoma. Consider, as our first example heuristic
R7.

4.1. Making parts coincide

117: if f is an interesting function which takes a pair of A's as inputs,
then define and study the coalesced function g(a) = ~f(a, a).

Let us examine some. app l ica t ions o f R7 in the doma in o f e lemen ta ry f in i te
set theory. If f is 'Set Intersection', then R7 applies, because f takes a pair of
sets as its arguments. R7 suggests studying the function Intersect(s, s). The AM

NA"I'UI~,E OF HEURISTICS It 41

program carried through this line of reasoning, and (following Step 3 in our
accretion model of theory formation) began choosing random examples of sets
to run the Self-Intersect function on. But every time it was run, that function
returned its original argument. Thus, R7 led AM to the conjecture t ha t - -
empirically at l e a s t I a set intersected with itself is unchanged. If f is 'Set-
Union', again the coalesced function is the same as the identity function, and
R7 thus leads to the realization that unioning a set with itself leaves it
unchanged. If f is 'Set-Difference', g(s) = s - s = [~: i.e., a set minus itself is
always (again, at least empirically on a few hundred cases examined) the empty
set. The same result occurs when f is 'Symmetric-Difference'. If f is 'Member-
of', then the coalesced function computes Member(s, s), which is never True,
thus leading to the conjecture that a set is never an element of itself and, less
directly, the concept of infinity. If f is 'Set-Equality' , then the coalesced
function is computing Equal(s, s), which is always True. This leads to tile
result that a set is always equal to itself. Given some simple generalization
abilities, those last two experiences led tile program to define two extreme types
of relations (binary predicates), those for which P(x, x) always holds (reflexive
relations) and those for which P(x, x) never holds (antireftexive relations).

But R7's usefulness is not limited to set theory. Analogues to the above
results accrue when R7 is applied to various logical functions, such as XOR,
OR, AND, IMPLIES, etc. In elementary number theory, one function which
satisfies the condition of R7 is addition. R7 suggests defining Plus(x, x); i.e., the
doubling function. When f is multiplication, R7 produces a new function g
which is squaring. When f is subtraction, g is always 0, leading to the result
that x - x = 0. When f is division, g is always 1, leading to yet another useful
regularity. When f is 'divides-into', R7 leads to the conjecture that x always
divides x. Similar minor results are obtained when f is gcd, lcm, rem, >, and
rood.

Turning to computer science, one can consider what happens when f is
Compile'. The resultant function g computes Compile(c, c), which takes an

optimizing compiler c, hopefully written in the same language L which it
compiles, and runs c on c, thereby turning out a (probably) faster compiler for
L. Focusing on a specific language such as LISP, R7 suggested NCONC(I, l)
which makes a list l circular, and INTERSECY(/, l) which eliminates multiples
copies of elements from l. CONS(/, l) and APPEND(/ , l) are useful for building
arbitrarily large list structures. PROGN(/ , l) led to the notion of side effects
(when comparing its behavior to simply evaluating l).

Turning to less technical domains, R7 can help in both understanding and
generating plot twists in stories; that is, view them as scripts [33] with a large
number of slots which are the arguments to the script. R7 then says to watch
for---or consider--what happens when a pair of the slots are filled in with the
same value. In the Theft scripf, for example, three of the slots are 'thief',
'victim', and 'investigator'. Many dramas have been based on all three of the
possible 'cases of co-occurrence. Most languages have prefixes, such as our

42 D.B. L E N A T

'Auto- ' and 'Self-', which effectively perform the kind of coalescing called for
by R7.

One of the tasks which we examine in more detail in [21] is the design of
naval fleets, specifically an annual competition based on a large collection of
published constraints and a simulator capable of resolving battles between a
pair of fleets. For example, if hull armor is increased on a ship, then formulae
allow one to calculate tile additional cost, weight, loss in agility, gain in
protection against various types of damage, additional engine capacity and fuel
required, etc. One type of craft which is commonly included is a fighter, which
is carried into the area by a carrier. Following RT, the possibility was con-
sidered of building fighters that could transport themselves into the battle area;
due to the way the constraints were set up, this turned out to be a very
powerful-- i f bizarre---design tactic. Essentially, each fighter was equipped with
just enough 'sailing' and 'launching' equipment for it not to need a carrier.
Once airborne, this excess equipment was jettisoned. EURXSKO originally un-
covered this tactic more or less accidentally, but did not properly appreciate its
significance; EURISKO now has heuristics which we believe wouM have success-
fully rated it highly. This design tactic caused the rules publishers to modify
the constraints, so that in 1982 one could not legally build such a thing.

A second use of R7 in tile naval design task, one which also inspired a rules
change, was in regard to the fuel tenders for the fleet. The constraints specified
a minimum fractional tonnage which had to be held back, away from battle, in
ships serving as fuel tenders. R7 caused us to consider using warships for that
purpose, and indeed that proved a useful decision: whenever some front-line

~P.doped Channel
1 L " tile tile

0 [~ tile

Metal
tile

Channel
tile

I P.do~ped
tile

"2!
N-doped

tile

NOT(A)

FIG. 1. A side-view diagram of a single (leftmost) piece of metal controlling two gates. The regions
labelled 'channel ' are intrinsic channcl , coated with a thin oxide layer on both their top and bot tom
surfaces. If the input A is I, a connection exists across the bot tom channel , and the rightmost n-doped
region is brought to 0, therefore ihe output (rightmost metal tile) is 0. If the input A is 0, a connection
exists across the top channel , and the r ightmost p-doped region is brought to 1, therefore the output is

1. Note that the two metal regions are not touching.

NATURE OF IIEURISTICS II 43

ships were moderately (but not totally) damaged, they traded places with the
tenders in the rear lines. This maneuver was explicitly permitted in the rules,
but no one had ever employed it except in desparation near the end of a
nearly-stalemated battle, when little besides tenders were left intact. Due to the
unintuitive and undesirable power of this design, the tournament directors
altered the rules so that in 1982 and succeeding years the act of 'trading places'
is not so instantaneous. The rules modifications introduced more new synergies
(loopholes) than they eliminated, and one of those involved having a ship
which, when damaged, fired on (and sunk) itself so as not to reduce the overall
fleet agility.

We give one final example of the application o f R7, this time in the domain
of designing three-dimensional VLSI devices [20]. Each gate consists of a piece of
metal (actually any conductor, e.g., polysilicon) either above or below an
oxide-coated piece of intrinsic channel material. Flanking the channel are two
regions of doped semiconductor material. One application of R7 which is in
standard practice is to make a doped region from one gate and a doped region
from an adjacent gate coincide (i.e., be the same physical region). A new,
three-dimensional application of R7 was to allow tile piece of metal to serve
simultaneously as the control for a gate above it and below it. See Fig. 1. One
specific use for this was in the design of the single-gate inverter, shown in Fig.
1. This was the first high-rise VLSI chip successfully fabricated [8].

4.2. Generalizing rare predicates

For our next series of examples, consider the following heuristic.

R8: If a predicate P rarely returns True,
then define a new one which is similar to, but more general than, P.

By a predicate we mean s imp ly a func t i on whose range is the set {T rne ,
False}. By negat ing the predicate, R8 also can be wr i t t en : i f a predicate rare ly
returns False, then define new specializations of it. When R8 is relevant, its
then-part places a new task on the agenda, namely that of generalizing P.
When attended to, other heuristics must decide on plausible ways to generate
such new predicates. We give examples of this process below.

In the domain of elementary set theory, one predicate rarely satisfied
(empirically, on randomly chosen sets from a fixed universe) is Set-
Equality(s 1, s2). One algorithm for computing this is:

Step 1. If s I and s2 are both empty, return True.
Step 2. Choose an element of s I (if s l is empty, return False).
Step 3. Verify that it is in s2 (else return False).
Step 4. Remove it from both s 1. and s2.
Step 5. Recur; i.e., go to Step 1.

One way to generalize this predicate is to modify its algorithm, say by

44 D.B. LENAT

eliminating Step 3, tile verification of the chosen element being in s2. What
happens in Step 4, then? One possible interpretation is that the item is re-
moved from s I and (if it is present in s2) from s2 as well; that makes the predicate
computed by the algorithm 'Superset-of ' . A second version of Step 4 (that ,~.!
discovered) removed some item from s I and some i tem from s2. The algorithm
now takes a pair of sets, strips e lements from each of them', and rcpeats this over
and over again. If one becomes empty before tile other, it returns False, but if they
both become empty simultaneously, it returns True. Thus, the new algorithm tests
whether or not the two sets have the same number of elements. This new
predicate, Same-Length, is of course an extraordinarily useful test and led Ar~t to
the concept of Cardinality.

A dilferent generalization of Set-Equality occurs if we modify Step 2 in the
above algorithm so that if s l empty, it returns True instead of False. The new
predicate being computed is now Subset-of.

Turning from sets to numbers, one important predicate is Divides. Here is an
algorithm for computing whether n divides evenly into m:

Step 1. Factor n into a bag (multiset) of primes.
Step 2. Factor m into a bag of primes.
Step 3. Call S U B B A G (similar to SUBSET) on tile two previous results.

As before, heuristic R8 may apply, say in a situation where large numbers
are involved and very few of them divide evenly into each other. One way to
generalize the Divides prcdicate is to modify the above algorithm, say by
replacing S U B B A G by a call on one of its generalizations: D O E S - I N T E R -
SECT, S H O R T E R - T H A N , SUBSET, etc. These yield, respectively, three
new predicates on numbers: N O T - R E L A T I V E L Y - P R I M E , F E W E R - F A C -
TORS, and an interesting predicate that has no concise English name. Indeed,
all three of these are generalizations of D I V I D E S ; i.e., whenever
DIVIDES(n , m) returns True, so do the three new predicates. The last two
predicates may or may not lead to a dead-end, but the first one led into an
exploration of relative primeness, which is known to be a fruitful area.

R8 is useful in geometry, where rigid predicates such as Equal-Polygons were
relaxed by ^ra into fruitful tests such as Congruent, and interesting (if not too
useful) ones such as Equi-side-lengths and Sharing-a-common-angle.

4.3. Inverting exlrema

A very different, but equally potent heuristic is the one which counsels
examining extreme cases of known relations.

R9: If f is a known, interesting function, and b is a known, interesting, extreme subset of its
range,

then define and study f-I(b).

In the realm of finite sets, one interesting function is httersection. Its range is
Sets, and an extreme kind of set might be an extremely small set, say the empty

N A T U R E OF I IEURISTICS It 45

set. Thus R9 recommends defining pairs of sets whose intersection is empty:
but this is just the powerful and useful concept of disjointness. A related use of
R9, with f = Intersection and b--Singletons, defines the relation that holds
between pairs of sets when they have precisely one element in common; chains
of such sets are useful in more advanced mathematical constructions.

R9 is more powerful in number theory than in set theory, however. One
application was made by ^M, with] '= Divisors-of and b = Doubletons. That
defined the set of numbers with precisely two divisors--namely, prime num-
bers. Actually, R9 also caused the definition of the set of numbers with three
divisors, the set of numbers with one divisor, etc., as well. A related use
occurred when R9 caused the definition of numbers with an extremely large
number of divisors. Some unusual relations were noticed about such numbers.
Later, once primes had been shown to be a useful albeit extreme kind of
number, R9 applied again, with f = Divisors-of and b = Primes. "ltlat is, R9
defined the set of numbers having a prime number of divisors. Whether or not
anything was ever proved about that concept, it is intuitively pleasing as the
right sort of new definition to make and investigate. It turned out, incidentally,
that the only such numbers are all primes to some power, indeed they are of
the form pq-Z, for some primes p and q.

In the naval fleet design task, R9 was used quite heavily. The functions f in
that simulated world apply to the design and behavior of fleets and of
~ndividual ships: FleetComposition, Agility, Armor, WeaponVariety,
TimeToEngage, etc. R9 caused the early consideration of ships (and fleets)
with extreme values for these functions. This proved fortuitous, as the ultimate
design did settle on a fleet containing almost all identical ships, each with
nearly minimal agility, maximal armor, maximal weapon variety, almost all of
which engaged with the enemy immediately, etc. One extremal ship employed
in the 1981 tournament was a tiny but incredibly agile ship, with no offense
whatsoever, that simply could not be hit. Although this was no longer legal in
1982, a ship with massive offensive capability and n o defense was instrumental
in that new fleet.

In the VLSI design task, R9 was used to focus attention on various kinds of
goals: designing a circuit with minimal power usage, maximal speed, minimal
volume, minimal number of separate masks required, and so on. R9 encouraged
focusing on one such extreme at a time, and often these partial results could be
melded together into solutions satisfying several of the constraints at once. For
instance, reducing volume, power, and cycle time all reinforce each other,
encouraging more cubical chip designs, more foldings.

In the programming domain, R9 was applied to good effect with f = Time.
This focused attention on applications of functions that took abnormally long
or short times to compute. Strange results were obtained, such as a function
which determines if two equal list structures are EQ to each other by measur-
ing the time it takes E Q U A L to return a value! (In that case, f was actually
Time-of-Equal, and b was the set of abnormally fast times, relative to the mean

46 D.B. LENAT

time for computing EQUAL.) This line of inquiry eventually led to the
definition of LISP objects which could n e v e r be EQUAL-but-not-EQ---namely
atoms. Another use of R9 in the LISP programming world was with f = NCONC
and b = Circular-lists. This yielded a quite atypical algorithm for computing
whether one list structure is a subtree of another (namely, perform N C O N C

and then test to see if the result is circular).
Nontechnical uses of R9 abound; we present here only two related ones. lI

f = Employed-As, the function that maps a person to the set of jobs he/she
holds, then some extreme kinds of values might be abnormally large sets (> 1
member) or extremely small sets (< 1 member), since almost everyone has
exactly one job. These two derived concepts correspond to moonlighters and
the unemployed. If f is Income, which maps a person to his annual gross
earnings, then R9 would cause the definition of Lowlncome and Highlncome
categories of people. Notice how this sets the stage for noticing, say, that
moonlighters, as a group, do not have significantly higher incomes than those
who hold down just one job.

4.4. Noticing fortuitous bargains

So far we have looked at three heuristics for generating plausible new concepts
and conjectures. The next heuristic we consider is concerned with evaluating
such new discoveries for intercstingncss.

RId: If some normally-inefficient operation can be done quickly on X's,
then X is a more interesting concept than previously thought.

After working with sets for a long time, suppose one introduces the notion of
a list. Many of the operations which were slow on sets, can now be speeded up.
For instance, Insert need no longer check that the item it is inserting is not
there already; thus it takes constant time instead of linear time to perform. The
predicate Equal can simply march down the tvr lists in order, halting
whenever there is a discrepancy, so it now runs faster too. These make Lists a
more attractive concept, and worth exploring further; heuristic R10 is the rule
that makes this judgement.

In number theory, representing numbers as bags of primes (their prime
factors) makes multiplication very speedy, though it does make addition and
subtraction crawl. But because it does speed up s o m e operations, it was judged
(by RI0) interesting enough to remember it, and indeed that representation
does turn out to be useful, e.g., in some proofs in number theory.

We shall illustrate R10 in a nontechnical setting: consider the various
representations one might employ to convey the instructions for assembling a
bicycle. There could be an exploded-view diagram of the bike, a linear
sequence of verbal commands, a predicate-calculus axiomatization of some of
the pieces (their structfire, function, and assembly), a set of production rules
which embody the expertise to assemble it, etc. Each representation is parti-

NA'I-URE OF I IEURISTICS II 47

cularly good at somc types of infcrcnce, and bad at others. The exploded view
is great for telling which pieces touch which others, or where a specific piece
goes. The linguistic instructions are good for step-by-step assembly, but may be
quite frustrating when problems develop which are not covered in the in-
structions. The predicate cnlcuhts may bc good at answering derived questions,
such as: what set of tools should 1 prepare ahead of time; what might be
causing tile rear axle bearing to wear out so often? The production rules might
bc bcst at responding to whatcvcr situation the asscmbler was in, but might be
nearly impossible to ' look ahead ' at in a browsing, planning, or doublcchccking
mode. Each of these representations is worth studying and having, because it
makes some operations very quick, operat ions which arc very costly in other
representations. This illustrates Rill, but is also the basic reason for having and
using multiple representations of knowledge.

4.5. Gathering empirical data

One of thc most important types of tasks the theorizer performs is that of data
gathering. Our next heuristics, R I i , RI2, and RI3, are three techniques for
finding instances of a concept about which we wish to know more.

R 11: If you want to find examples of some concept C with a recursive Defn,
then from the 'base step" of the recursion, read off a trivial example.

Rf2: If you want to find examples of some concept C with a recursive Defn, and you know
some examples of C already,

then plug the examples into the recursive step of the definition and unwind that step to
produce a new, longer example.

R 13: If you want to find examples of some concept C, and you know some function F whose
range is C,

then find some instances of F in action; the values returned are C's.

Suppose we have dctined 'Sets ' , but have not looked at any examples of
them so far. How might wc find some? R I I says to look at tile definition of
Sets, which might say that s is a set if it is empty, or if its first clement is
nowhere else inside the set, and, when you strip off that first clement, what you
have left satisfies the same definition of set:

IsSet(s) = dfS = { } or AND(Notlnsidc(CAR(s),CDR(s)),IsSct(CDR(s))).

Here we assume that C D R is any repeatable function which strips oil" a l l .

element of a set, and C A R is a function that yields the value of that
stripped-off element. Sets are represented as tJsP lists with no repeated ele-
ments permitted, hence C A R and CDR can have their usual IJsr' definitions.

RI I applies to the task of generating examples of sets and says to locate the
base step of the definition, which i s ' s = { }'. This does indecd supply a trivial
example of a set, namely the empty set.

48 D.B. LENAT

R12 says to plug a known example of a set into the recursive step of the
definition and 'unwind' it. So we find the recursive step. IsSet(CDR(s)), set up
an equation of the form C D R (s) = (known example), and plug the empty set
(written NIL in LISP) in as the known example: C D R (s) = NIL. This sets up a
small, well-defined problem: create a LISt' list structure whose CDR is NIL. A
bit of LlSP knowledge about CONS suffices, namely that CONS(x, x) has a CDR
which is x. (Incidentally, this piece of knowledge was generated by R7's
defining of Se l fCONS(x)= CONS(x, x), and subsequent exploration of Self-
CONS.) Thus a new example of a set should be CONS(NIL,NIL), which is
{{ }}, which is indeed a valid new example. R12 can apply again, with the
known example being {{ }} this time, further unwinding the definition to
produce a longer example.

R13 also applies to the task of finding examples of Sets. It says to look for
functions whose range is 'Sets'; this might include Intersect, Union, PowerSet,
Symmetric-Difference, etc. Now that a few examples of Sets exist, R13 suggest
plugging them in as inputs to these various functions, and often a new set is
generated as the output. For instance, the PowerSet of {{ }} is {{ }, {{ }}}.

The instance-finding heuristics can be used to find examples of functions as
well as objects, and numeric concepts as well as set-theoretic concepts. Con-
sider the arithmetic function for multiplication; here is a definition for it:

Times(x, y) = ef if x = 0 then 0
else Plus(y, Times(x - 1, y)) .

R l l finds the base step and immediately generates a few examples of the
form Times(0 ,9)= 0, T imes (0 ,0)=0 , Times(0, 1)=0 , etc. R12 locates the
recursive call on Times, and notes that when x - 1 = 0~ T i m e s (x - 1 , 9)= 0 .
Unwinding this produces the example: Times(l , 9) = Plus(9, 0) = 9. The third
heuristic, R13, also can be employed to find instances of Times. In this
application of R13, the function F found is Apply (i.e., FunCall), and R13
causes the definition of Times to be applied to randomly chosen examples of
Domain(Times), i.e., to pairs of natural numbers. A pair of numbers is chosen
randomly, the LISP code which defines Times executed, and the record of
(inputs, output) is recorded as a new example of Times in action.

In the device physics world, a 'Device' is defined as a structure built out of
primitive regions and smaller devices. When trying to find new devices, R l l is
relevant, and draws our attention to the simplest types of devices, namely those
that consist of a single region of some type of material. R12 is then useful for
causing us to put these simple devices together into bigger and bigger
configurations. Once we have several devices, RI3 is useful, since there are
several operations that take a device or two and yield a new one: Reflect-
Device. OverlayDevice's, Abut, Optimize, FoldDevice, etc.

NATURE OF HEURISTICS It 49

4.6. Overlapping concepts

The next heuristic, RI4, says it is worthwhile to focus attention on the overlap
of two promising concepts, when such an overlap is known to exist.

1::114: If some (but not most) examples of X are also examples of Y, and some (but not most)
examples of Y are also examples of X,

then define and study the intersection of X and Y; this new concept is a specialization
of both X and Y, and defined by conjoining their definitions.

In number theory, Ar, I used RI4 heavily, intersecting classes of interesting
numbers. E.g., which primes are also palindromes?

RI4 was used in set theory in an analogous manner , especially a variant
which could be applied to operations as well as objects. For example, it
sometimes happens that two set-theoretic functions yield the same answer; e.g.,
the PowerSet of set s l sometimes equals the UICIosure of another set s2 (i.e.,
the closure of s2 under all possible intersections and unions). One example is
s l = {a, b, c}, s 2 = {{a, b}, {a, c}, {b, c}}. A heuristic related to RI4 (and to R7
as well) caused the definition of a new binary predicate (a relation), which takes
two sets and returns True ill" the second's UICIosure equals the first's power
set. Analogues of this 'basis ' concept are quite useful in topology.

The converse of R14 is also useful.

RI5: If a concept already has a conjunction in its definition,
then define and study the concepts one gets by separating the conjuncts.

In the fleet design problem, for example, each ship was presumed to have
some military capabilities. Looking at the definition of such capabilities, they
fall into two groups, which we might call offensive and defensive. Separating
those two notions is quite useful. Often, RI5 generates what turn out to be
e x t r e m e concepts.

The major bug in using RI5 is that ' (A N D x y) ' can mean two quite different
things in LiSt':

(i) X and y are simultaneous conditions to be checked;
(ii) if x is verified to be true, then it makes sense to chcck y.
In (ii), if x is false, then trying to check y might or might not lead to a LiSP

error. By splitting the conjunction, the new concept whose definition checks
only y may well cause an error when it is evaluated. These bugs can sometimes
lead to serendipitous discoveries. One fortuitous accident occurred in the VLSI
design task, where A N D was serving in role (ii). The final test involved
checking neighbors of a region on a rectangular grid, and the preceding
conjuncts tested the array subscripts. When all but the final conjunct were
eliminated, the array automatically 'wrapped around' , in the sense that a cell

50 D.B. L E N A T

on the rightmost boundary thought its right neighbor was a cell on tile leftmost
boundary of the array (and vice versa). This led to a remarkably small design
for a tlip-tlop, and when it was scrutinized the 'bug ' was revealed. Nevertheless
that memory cell design can be realized in three dimensions, on the surface of a
M6bius strip. See Fig. 2.

1 1

G2 G1

N3 NI
A " " B

N3 NI

N4 1 N4

0 0

0 1

N4 C N1 C N2 :!~ Substrate Layer
(

. . . . ' -,

== :(32 : :~ Metal Layer

i

N2 C N3 C N4 i, Substrate Layer

i
1 0

1=1(3. 2. Conventional circuit diagram for a flip-flop, and a side-view of the tiny design r-URISKO
produced due to a programming bug which it itself introduced. If that configuration of regions is
produced in three dimensions, given a half-twist, and the ends joined, then that M6bius st rip device will
indeed duplicate the functionality of the full flip-flop.

N A T U R E OF HEUI~,ISTICS It 51

4.7. Making conjectures

One important activity in theory formation is the synthesis of hypotheses and
conjectures. How are these done? Earlier, when stating our accretion model of
theory formation, we claimed that heuristics could guide those proccsses. Here
is one such het, ristic:

R16: If the first few examples of a concept C have just been found,
then examine a typical one, and see what properties if satisfies; then see if any of those

properties is satisfied by all examples of C.

For example, heuristic R9 above caused aM to consider the set of numbers
with exactly three divisors. It found a few examples of that set, and looked at a
typical one, 9 (the divisors of 9 are 1, 3, and 9). What propcrties does 9
satisfy? It is odd, it is a perfect square, it is one larger than a power of 2, etc.
Now look at the othcr few examples we found: 4, 25, 49. The only property
that holds for all of them is the one about being a perfect square, so that is
formed into a conjecture.

In point set topology, RI6 helps us find most of the theorems of the form
"The (product, intersection) of two (Closcd, Finitc) (Hausdorff,
Regular, Compact ) s p a c c s is (Closed, Finite, Normal, T I ) ." In set
theory, R I 6 leads to de Morgan 's laws and many other common rcsuhs.

In the VLSI design world, after the first device was designcd using the JMOS
cross device LOmSKO found [20], it was observed that it was difficult to produce
masks for and difficult to fabricate, but extremely small and fast. Several other
propert ies were noted, but the ones just ment ioned seemed to hold across all
subsequent devices using the cross device.

In the fleet design world, once a new design was testcd in simulated combat ,
several charactcristics of the conflict were noted (speed of victory, final state of
the victor, amount of tactical decision-making required, etc.). These were
formed into proto-conjectures, which were then tested by subsequent mock
battles, and any which held over most of the simulations were believed as
empirically valid. Thus R I 6 was a chief 'workhorse ' in finding conjectures in
several domains.

4.8. Multiple paths to the same discovery

Heuristics often lead to tile same concept or conjecture in several ways, along
quite distinct paths. In one run of/,,st, the same body of heuristics ended up
defining multiplication in four different ways: as repeated addition, as the size
of the Cartesian product of two sets, as repeated unioning, and finally by
unioning the powersets of two sets. The concept of prime numbers was also
derived in more than one way. Consider:

52 D.B. LENAT

R17: If an analogy is strong between A and B, but there is a conjecture (For all b in B . . .)
whose analog is false,

then define the subset of A for which the analogous conjecture holds.

R18: If a concept has a complement (negation) which is much smaller (rarer),
then explicitly define and name that complement.

One of the earliest and strongest number theory analogies is between
addition and multiplication. They have identities (0 and I, respectively), they
are commutative, they each take a pair of numbcrs and produce a new number,
etc. But one property that each natural number (bigger than 1) has is that it can
be expressed as the sum of two smaller natural numbers, q'he analogous
conjecture would say that all natural numbers (bigger than, say, 2) can be
expressed as the product of two smaller natural numbers. Of course that's false,
but I?,17 causes us to define the set of numbers for which it's t rue- -namely the
composite numbers. R18 has us also define the numbers for which the con-
jccture fails--namely the prime numbers. This is a second way in which prime
numbers are defined, quite different from the scenario using R9 wc prcscntcd
earlier.

4.9. Anticipating bugs and special cases

Sometimes a heuristic is an expert at anticipating a bug that may arise.

R19: If you've just generalized C into a new concept G,
then beware that G isn't really just the same as C. To doublecheck: are there any other

specializations of G, and if so, have you looked for examples of them yet? If it turns
out to be true, at least you have a conjecture about C.

In the set theory domain, Sets was generalized into UnorderedStructures. At
that time, only examples of Sets were known, so RI9 almost forgot about
UnorderedStructures. But in doublechecking, it found some examples of Bags,
thereby preserving the existence of all three concepts.

In the number theory world, we generalized Numbers-which-equal-their-
number-of-divisors--which was simply {1, 2 } i i n t o Numbers-which-are-no-lar-
ger-than-their-number-of-divisors. Unfortunately, this, too, seemed to include
only the numbers 1 and 2 as examples; RI9 was the heuristic that had us check
that. After extcnsive doublechccking, we gave up and discarded Numbers-
which-are-no-larger-than-their-number-of-divisors. However, we were left with
a new, tiny conjecture.

In programming, this 'false generalization' trap is even more prevalent. Since
programs are carefully engineered artifacts, they are often quite optimized.
l"hus, replacing EQ by EQUAL, say, in most places (in ap i cce of code which
defines a concept) serves only to slow it down slightly, not truly generalize it.
Some code mutation operations, such as adding unused extra arguments to a
concept 's use definition, are almost guaranteed to be No-Ops. Indeed, most

NA'FURE OF IIEURISTICS It 53

small changes to a program are either of no effect or of immense (usually
catastrophic) effect. The analogy to biological mutation is clear; see [19].

4.10. Broadening a concept

One kind of activity the theory builder engages in sounds quite risky but is
surprisingly often fruitful:

R20: If an operation C is useful, and is to be generalized somehow,
then consider just widening the domain of C; that is, try to apply C to more inputs, and

s e e which can be accepted.

In finding the values for infinite series, for instance, mathematicians per-
formed operat ions on them that they knew were unjustifiable and might lead to
errors (such as systematically rearranging the terms, or pretending tile series
were differentiable). These methods often came up with the right answer, from
which it was easier to go back and prove that that was the right answer.
Differentiation and rearrangement can sometimes be fruitfully applied outside
thcir ' legal ' domains.

Many times we write programs that can be run on slightly illegal arguments;
for instance, a numerically-oriented I.isr predicate that is based around
E Q U A L and S O R T may very well be runnable (meaningfully) on lists.

In VLSI dcsign, many of the ' iambda rules' in [23] are constraints which can
be violated with impunity. The constraints are set up to guarantee the circuit
will work, and are stricter than they have to be to permit a configuration that
will probably work. Almost all of EURtSKO'S VLSI designs, not surprisingly its
best ones, simultaneously violate many of these constraints. In these cases,
components are not placed at random; rather, we follow useful (though not
guaranteeable) placement strategies.

4.11. Evaluating new concepts

Many criteria for judging interestingness are domain-specific, but some of the
most important ones are quite general. R10 was such a heuristic; here is
another:

R21: If exactly 1 element of a class satisfies an interesting property,
thetl that class becomes more intersting. This is especially true of a function that always

produces an output satisfying this property.

In set theory, when computing power sets, it was noticed that exactly one
element of the power set is empty, and that the largest element is equal to the
original set itself. The power of R21 is blunted in many set-theory instances,
however, as, when the output of a function is a set, it is always certain that no
two elements will be identical. Thus 'exactly one ' is often no more rigorous
than 'at least one ' .

.54 I:).B.I.ENAT

In the the number theory world, when examining the function that maps a
number onto all its possible factorizations, it was noticed that precisely one
such factorization (for each number) consistcd of a bag of all prime numbers.
R21 was relevant, and it greatly increased the expected worth and interesting-
ness of factorization. R21 also noticed that each number had exactly one
factorization into a bag containing 1 (namely, the number itself and 1). Tha t
proved Icss significant ultimately, but also served to boost interest in fac-
torization.

In VLSI design, one of the first devices produced (due to heuristic R7) was a
piece of mctal that was gating p-doped regions above it and n-doped regions
below it. This device has the nice property that exactly one of the two possible
channels will be on at all times (the upper channel if the metal is low, and the
lower if the metal is high). Here was a device which takes in three inputs and
produces two outputs, and one of those outputs is always going to be 'on ' , R21
thus caused us to focus more attention on this device.

4.12. Synthesizing new heuristics

The preceding clcven subsections exemplified the use of heuristics to syn-
thesize, modify, and evaluate concepts in specific application areas, but we
have omit ted discussion of heuristics operat ing on heuristics. Oftcn, a new
heuristic arises by applying (executing) an existing one which is capable of
generating new heuristics. Consider, for example,

R22: If 2 slots (call them s 1 and s2) of frame F can have the same type,
then define a new heuristic, attached to F, that says:

"I f f is an interesting F, and its s l and s2 are of the same type,
then define and study the situation in which r s s l and s2 values are equal."

This is the most general rule that EUmSKO contains about co-identification. It
has led to many powerful heuristics being synthesized. When F is taken to be
the frame for Functions, some of the slots that may have the same type are
Argl , Arg2, and Value. Applying R22 to the slots Argl and Arg2 yields a new
heuristic that says: " I f f is an interesting function, and both its arguments are
of the same type, then define and study situations in which the two arguments
are equal ." This is just heuristic R7, which has already been shown to be most
useful. Applying R22 to the slots Argl and Value yields another new heuristic,
one which, says it's interesting to find the fixed points of a function. Applying
R22 to the slots Domain and Range, the new heuristic says it's interesting if a
function's domain and range coincide. All three of these heuristics were
produced from the Function frame by R22; R22 can be applicd to many other
general frames with equally powerful results.

Since R22 blatantly deals with the production of new heuristics, it is clearly
labelable as a meta-hettristic. The preceding paragraph shows that one need not

NATURE OF HEURISTICS II 55

represent or treat R22 in any sfiecial way, and indeed R19, discussed earlier,
can be used to detect poor new heuristics as well as poor new domain concepts.
For example, generalizing a noncriterial slot of a heuristic (e.g., the English
text describing it) will not affect its behavior, and R19 would be on the lookout
for just such a mistaken 'generalization' ; indeed a surprising fraction of
a t tempts to generalize heuristics led zumsKo to new ones which are not
perceptibly different from the originals, and R I 9 is even more useful when
working at the meta-levcl than it is at the domain-level.

New heuristics arise frequently (both in real life and in runs of the EURtSKO
program) by specializing some existing, very general heuristic. Since many
specializations are possible, it is worth remember ing (caching) any that turn out
to be particularly useful. Consider, for example:

R23: if l is interesting and can be computed,
then f(x) often shares many of the attributes of x.

This is often incorrect, of course, so it doesn ' t pay to apply it too often. One
useful specialization of it is R9, in which case the 'a t t r ibute ' being preserved is
Interestingness. A similar specialization of R23 says it 's interesting computing
the values of f on any of its interesting arguments. Yet another specialization
says it may use a lot of resources (time and space) to compute and store the
value of f any domain elements which themselves take up a lot of space.

R24: If A is similar to B in a key way, and uses less resources,
then A is interesting and worth preserving.

This heuristic can apply to functions, and indeed one specialization of it is
R10. It applies just as clearly to other heuristics, of course. In [18] we gave
more examples of heuristics which could apply even to themselves (If f is
t imeconsuming and not productive, then forget it; If f is sometimes useful but
always costly, then specialize f and hope for the best). EORlSKO did apply the
latter of these to itself, producing some more efficient, more useful special
cases of it. Here is another heuristic, which applied to heuristics and to domain
concepts.

R25: ff I(Exs(A), Exs(B)) is nearly extreme,
3"hen combine Defn(A) and Defn(B) to yield a new concept's Defn. Prefer combining

functions which are analogous to L

One use of R25 was when f = Syn]metric-Difference, extreme = small, and
combine = conjoin. That yielded heuristic RI4, discussed earlier. Another use
was f = Set-Difference, extreme = small, and combine = AndNot (i.e., A(x, y)
(AND X (nor y))). That produces a heuristic that says " I f only a few examples
of A are not examples of B, theft define and study the concept ' A ' s which are
not ' B ' s . " Another heuristic which applies to recta- and domain-levels alike is:

56 D.B. LENAT

R26: ff s l and s2 are slots filled by the same type of values, and s l (A) is more interesting
than s2(A), and usually s l ' s values are less interesting than s2"s,

then define and study a new concept A', similar to A, by the constraint that s2(A') be
precisely s 1 (A).

One specialization of R26 occurred with s l = NonExamples , s2 - Examples;
the resulting heuristic says " I f the nonexamples of A are more interesting than,
its examples, then define and study that concept whose examples are precisely
A's nonexamples; i.e., the complement of A . " But this is just R18, which we
saw used earlier, so we 've already seen (a special case of) R26 used at the
domain level, in particular defining prime numbers. R26 can also apply at the
level of generating new heuristics. Once, e.g., EURXSr:O applied it with s l =
I fEnoughTime, s2 = IfPotential lyRelevant, A = R26, and decided to produce a
new heuristic R26' which was similar to R26 but explicitly added a clause to the
IfPotential lyRelevant slot, saying "and there is plenty of CPU time available
before going on to the next task". This turned out to be more useful than R26
as it was stated above, because it tends to be such an explosive, time-
consuming rule to fire. Although worries about CPU time are usually less
interesting, less criterial, in this particular rule 's case it was worth noticing the
exception, and rephrasing the rule accordingly. Eventually, the original R26
lost more and more in Worth, as R26' increased, and R26 was finally archived
by EURISKO. Although this was a case of a heuristic applying to itself, R26 (and
R26') can and did apply to other heuristics as well.

5. Conclusions

Our first a t tempts at programs that reasoned inductively were small systems
which tried to induce I~iSP programs from collections of input/output pairs [9,
15]. These experiences led us to conclude that we might learn more about
induction if the program's task were more open-ended, closer to full theory
formation rather than problem solving. This led to the design and construction
of ~a~i [16], which explored e lementary mathematics concepts. AM was guided
by a body of informal heuristic rules, which helped it define useful new objects
and operations, gather data, notice patterns, form conjectures, and evaluate the
interestingness of its discoveries. More recent work, on EURISKO, deals with
several disparate domains, including e lementary mathematics, VLSI device and
circuit design, fleet and ship design~and LISe programming. The examples from
Section 4 conveyed the flavor of EU~ISKO'S processing. Section 4 was anec-
dotal, ra ther than theoretical; we believe the time is not yet to a t tempt a formal
analysis. Section 4.12 accounted for the discovery of several of the earlier
heuristics presented in Sections 4.1--4.11, and, finally, even for some heuristics
which can apply to other heuristics.

It is important to be skeptical of the generality of learning programs, as with
any A I program; is the knowledge base ' just right' (i.e. finely tuned to elicit i t s

N A T U R E OF HEURISTICS II 57

one chain of behaviors)? The answer in earlier induction-program cases was a
clear Yes [9,15], but in the case of At, t, the answer is just as clearly No. The whole
point of the project was to show that a relatively small set of general heuristics
can guide a nontrivial discovery process down paths not preconceived. Each
activity, each task on AM'S agenda, was proposed by some heuristic rule (like
those illustrated in Section 4), which was used time and time again, in many
situations. It was not considered fair to insert heuristic guidance which could
only 'guide ' in a single situation. In fact, all but a few heuristics were written
down ahead of time, before a single line had been coded, before we had much
idea what directions AM would, or even could take; we expected it would
always be working only on set theoretic concepts. EtJRISKO drives this claim
forward, by demonstrat ing that heuristics previously entered in one domain can
successfully guide the exploration of new, quite different domains.

As AM ran longer and longer, the concepts it defined were further and
further from the primitives it began with, and its performance slowed down.
For instance, while it discovered them both, it had no way of telling a priori
that the UFF (all numbers have one unique factorization into primes) would be
more important than Goldbach 's conjecture (all even numbers can be
represented as the sum of two primes). What a human learns, after working in
a new field for a while, is more than the terms, objects, operations, results, etc.;
he /she learns the necessary domain-specific heuristics for operating efficiently
frith those concepts, riM'S key deficiency appeared to be the absence of
heuristics which cause the creation and modification of new heuristics.

To remedy this situation, we conceived the EURISKO project. Its fundamental
assumption was that the task of 'discovering and modifying useful new heuristics'
is qualitatively similar to the task that AM already worked on, namely 'dis-
covering and modifying useful new math concepts ' . Therefore, we assumed, the
heuristic synthesis can be performed by a program just like A~, but in addition
to having frames for objects like Sets and Truth-Values, the initial frames
now include heuristic rules. AM had primitive operators like Coalesce, Compose ,
and. Intersect, to which Eur~mKO added new operators that can work on
heuristics: generate, evaluate, and modify them. Just as nx~ only 'worked '
because it had a large corpus of heuristics to guide it, the EURmKO program
works only thanks to the body of heuristics that guide it. These heuristics,
which one is tempted to call meta-heuristics or recta-rules [5], serve to propose
plausible syntheses and modifications to perform, experiments to try, etc; they
also warn when they detect implausible constructs and actions which the
program is spending time on.

The careful reader will perceive that these activities are more or less the
same as the ones which riM'S heuristics were guiding i t to do (albeit in
mathematics rather than in the domain of heuristic-finding). That similarity led
us to the most important dccisiofi in designing EURISKO; to n o t distinguish
recta-heuristics from heuristics. The same rule m i g h t ~ a n d did---operate on

58 D.B. LENAT

mathenmtical objects, on VLSI circuits, on Traveller fleets, and on other
heuristics.

The revised model of theory formation was presented in Section 3; unlike
the original one on which AM was based, two important new steps were added
(5 and 6), to the effect that heuristics could deal with other heuristics and even
with representat ion of knowledge. The EURISKO program was built embodying
this expanded model, and the reader is referred to [21] for details of its
architecture, results, and our conchtsions from ten thousand hours ' experience
running that program.

ACKNOWLEDGMENT

Productive discussions with John Scely Brown, Bruce Buchanan, Bill Clancey, Randy Davis, Ed
Feigcnbaum, Johan deKleer, George Polya, l lerb Simon, Mark Stefik, and Mike Williams have
heavily influenced this work. EURISKO is written in RLL [17l, a self-describing and self-modifying
representation language constructed by Russ Greiner, Greg Harris, and the author. "l'he three-
dimensional VLSI design work was pursued in collaboration with Bert Suthcrland and Jim Gibbons.
Saul Amarel, Judea Pearl and Elaine Rich provided many useful comments on drafts of this article.
XEROX PAP, C's CIS and Stanford University's HPP provided superb environments (intellectual,
physical, and computational) in which to work. Financial support was provided by ONR (N00014-80-
C-0609), ARPA, and XEROX.

REFERENCES

l. Adams, J.L., Conceptual BIockbtt~ting (Freeman, San Francisco, CA, 1974).
2. Amarel, S., On the automatic formation of a computer program which represents a theory, in:

M.C. Yovits, G.T. Jacobi and G.D. Goldstein (Eds.), Self Organizing S)'stems (Spartan Books,
Washington, DC, 1962).

3. Amarel, S., Representations and modelling in problems of program formation, in: B. Meltzer
and D. Michle (Eds.) l~fachine Intelligence 6 (Edinburgh University Press, Edinburgh, 1971).

4. Seely Brown, J. and VanLehn, K., Repair theory: a generative theory of bugs in procedural
skills, J. Cognitire Set. 4(4) (1980).

5. Davis, R. and Lenat, D., Knowledge Based Systems in Artificial Intelligence (McGraw-Hill,
New York, 1981).

6. Evans, T.G., A program for the solution of geometrlc-analogy intelligence test questions, in: M.
Minsky (Ed.), Semantic bzformation Processing (MIT Press, Cambridge, MA 1968) 271-353.

7. Feigenbaum, E.A., Knowledge engineering: the practical side of artificial intelligence, HPP
Memo, Stanford University, Stanford, C~, 1.98fl

8. Gibbons, J. and Lee, K.F., One-gate-wide CMOS inverter on laser-recrystalized polysilieon,
IEEE Electron DeL'ice Letters 1(6) (1980).

9. Green, C.R., Waldinger, R., Barstow, D., Elschlager, R., Lenat, D., McCune, B., Shaw, D. and
Steinberg, L., Progress report on program understanding systems, AIM-240, STAN-CS-74-444,
AI Lab., Stanford, CA, 1974.

10. Hadamard, J., The Psychology of ltwention in the Afathematical bTeM (Dover, New York,
1945).

"It. ltempel, C.G., Fundamentals of Concept Formation in Empirical Science (University of
Chicago Press, Chicago, IL, 1952).

12. Kuhn, T., The Stn~cture of the Scientific Revolutions (University, of Chicago Press. Chicago, IL,
1976).

NATURE OF ItEURISTICS 11 59

13. l-cfrancois, G.R., Psychological 71wories and Hwnan Leanzing (Wadsworth, Belmont, CA,
1972).

14. Langley, P., Bradshaw, G. and Simon, II., Bacon, 5: the discovery of conse~'ation laws, Proc.
7th lnternat. Joint Conf. Artificial bztelligence, Vancouver, 1981.

15. Lenat, D.B., Synthesis of large programs from specific dialogues, Proc. hltenmt. Syrup. Prot'ing
and lmprot, ing Programs, Le Chesnay, France, 1975.

16. Lenat, D.B., On automated scientific theory formation: a case study using the Ar, t program, in:
J. Ilayes, D. Michie and L.I. Mikulich (cds.), A1achine Intelligence 9 (Halstead, New York,
1979) 251-283.

17. Lenat, D.B. and Greiner, R.D., RLL: a representation language language, Proc. First Annual
l~feeting of the American Association for Artificial Intelligence (AAA1), Stanford, CA, 1980.

18. Lenat, D.B., The nature of heuristics, Artificial Intelligence 19(2) (1982) 189-249.
19. Lenat, D.B., Learning by discovery: three case studies in natural and artificial learning systems,

in: R.S. Michalski, T. Mitchell and J. Carboncll (Eds.), Afachine Leanring (Tioga Press, Palo
Alto, CA, 1982).

20. Lenat, D.B., Sutherland W.R. and Gibbous, J., Heuristic search for new microcircuit struc-
tures, AI Magazine 3 (1982) 17-33.

21. Lenat, D.B., EURISKO: a program that learns new heuristics and domain concepts: the nature of
heuristics Ili: program design and results, Artificial Intelligence 21(I, 2) (1983) 61-98.

22. Mcl)ermott, J., RI, Proc. First Annual ~leeting of tire American Association for Artificial
hztelligence (AAAI), Stanford, CA (1980) 269-271.

23. Mead, C. and Conway, L., hztroduction to VLSI System (Addison-Wesley, Reading, MA, 1980).
24. Minsky, M., Steps toward artificial intelligence, in: E.A. Feigenbaum and J. Feldman (Eds.),

Computers and 77zought (McGraw-Hill, New York, 1963).
25. Minsky, b,1., Frames, in: P. Winston (Ed.), The Psychology of Computer Vision (McGraw-llill,

New York, 1975).
26. Mitchell, T., Utgott, P., Nudel, B. and Banerji, R., Learning problem-solving heuristics through

practice, Proc. 7th bztemat. Joint Conf. Artificial Intelligence, Vancouver, 1981.
27. Newell, A. and Simon, II., Ih~man Problem Soh'ing (Prentice-Hall, Englewood Cliffs, N J,

1972).
28. Newell, A. and Simon, tI., Computer science as empirical inquiry: symbols and search, Comm.

ACM 19(3) (1976).
29. Pivar and Finkelstein, Automation, using LtSP, of inductive inference on sequences, in: E.C.

Berkeley and I).G. Bobrow (Eds.), The Programming Language t.lse: Its Operation and
Applications (Information International, Cambridge, MA, 1954) 125-136.

30. Poincarr, H., 77ze Fo,mdations of Science (I'he Science Press, New York, reprinted, 1929).
31. Polya, G., How to Solt, e It (Princeton University Press, Princeton, NJ, 1945).
32. Reboh. R., Knowledge engineering techniques and tools in the Paoser:crOR environment, Rcpt

No. 243, AI Center, SRI International, Menlo Park, CA, 1981.
33. Schank, R. and Abelson, R.P., Scripts, Plans, Goals and Understanding (Erlbaum, Hillsdale,

NJ, 1977).
34. Shortliffe, E.tI., Computer-Based Medical Cot~sultations: MYCt,V (Elsevier, New York, 1976).
35. Simon, tt.A., The Science of the Artificial ~ I I T Press, Cambridge, MA, 1969).
36. Waterman, D., Exemplary programming in RrrA, in: F. Hayes-Roth and D. Waterman (Eds.),

Pattern Directed b~ference System (Academic Press, New York, 1978).
37. Weiss, S. and Kulikowski, C. and Safir, A., Glaucoma consultation by computer, Comp,aers in

Biology and ~,Iedicine 8 (1978) 25--40.
38. Winston, P.H., Learning structural descriptions from examples, Project MAC TR-231, MIT AI

Lab., Cambridge, MA, 1970.

R e c e i v e d A l t g u s t 1982; revised version received October I9S2

