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ABSTRACT 
Ahwhine h'arning can be categorized along many dimcnsiotts, an important one o/ ~hich is "degree of 
human guidance or forethought'. Thi~ cotztintaon stretches from rote learning, through carefully- 
g,ided concept-fon~ation by obsert'ation, ot~t toward independent theory formation. Six )'ears ago. the 
,~',t program was constructed as an experiment in this latter kind of leanffng by discot'ery, hs source of 
I~);~er ~as a large body of heuristics, rules which guhled it toward fruitful topics of int'estigation, 
toward profitable experiments to perform, toward platt~ible hypotheses and definitions. Since that time, 
we hate gained a deeper itt~ight into the nature of heuristics and the nature of the process of forming 
and extending theories empirically. "The Natttre of llettristics I" paper presented the theoretical basig 
for this work, with on emphasis on how heuristics relate to each other. This paper present.~ our 
accretion model of theory formation, and git'es many exatnple.~ of it.~ use in producing new discoveries 
in t'arious field~. These examples are drawn ]'rom runs of a program called Eur~ts~.o, the successor to 
AM. that embodies the accretion tnodel and uses a corptt~ of heuristics to guide its behat'ior. Since our 
tnodel demands the ability to discoter new heuristics periodically as well a~ new domain objects and 
operators, some of oar examples illustrate that process as well. "The Nature of ileuristics Ill" paper 
describes the architecture of the EURISKO program, and conchtsiot~ we hate made front its behar'ior. 

!. The Learning Spectrum 

This paper deals with learning,  by which we intend to include all processes 
which result in accretion of knowledge. Scction 1 surveys the spcctrum of 
learning, from rote memorization to more complex activities. Section 2 focuses 
on the far end of the learning spectrum, inductive inference. Section 3 proposes 
a model for the far end of that  activity, empirical theory formation. That model 
accounts for the discovery of new heuristics as well as new task-specific objects 
and operations. Finally, Section 4 presents dozens of examples of the model in 
action, producing discovcrics in many different fields. The next paper in this 

Artificial Intelligence 21 (1983) 31-59 
0004-3702/83/000(t-0000/$03.00 (~) 1983 North-l.lolland 



32 D.B. L E N A T  

series [21] explains the design of the program that made these discoveries, 
EURISKO, and draws new conclusions about mechanizing the process of dis- 
covery. 

Learning can assume many forms, depending on who the ' teacher '  is, how 
active a role the learner assumes, what the learner must do to acquire, 
assimilate, and accomodate the new knowledge, etc. A large body of thought, 
has been assembled on this subject, and it is not the purpose of this paper to 
duplicate or even summarize any of that material. The reader is referred to 
[11, 13] for the standard philosophical and psychological ideas on concept 
formation, [10, 30] for the special cases of theory formation in mathematics and 
natural science, [1, 4] for coverage of nonstandard ways of conceptualizing, and 
[26] for pointers to other relevant AI work in machine learning. 

At one extreme, learning is no more than rote memorization. One might 
imagine simply memorizing all multiplication problems which cross one's 
purview, but that is a decidedly unacceptable solution to learning how to 
multiply. Far more commonly, a human teacher tells the learner specific bits of 
information to remember  (the multiplication table up to n x n, for a culture 
which works in base n), plus an equally mysterious ritual for evoking an answer 
(the multiplication algorithm) using that table. Rote  learning confers very little 
ability to use the memorized information in novel ways, but is of course quite 
an efficient method for transferring well-understood knowledge. 

A deeper  form of learning is by observation, in which case the teacher 
provides a (probably carefully-ordered) sequence of stimuli, from which the 
learner builds models of the concepts to be apprehended.  This usually takes the 
form of a series of graded examples, each designed to push slightly on the 
concepts formed by its predecessors. Winston's [38] arch-finding program was 
such a learner, and more recently whole languages have been built around 
learning from sequences of examples (e.g. RrrA [36]). 

The  nemesis of this approach is inferring conditionality or disjunction. When 
you see the teacher do X, does that mean he/she chose to do X instead of 
some alternatives, and if so what were the alternatives and how was the choice 
made? If two disparate things are both Y's, does that mean that Y admits of a 
vast space of examples, or is there some kind of O R in the definition of Y? 
�9 The sensitivity of Winston's program and the RrrA language to the order  of 
presentation of examples was critical. If the teacher is Nature,  the learner must 
take a more active role, inquiring about the next examples himself, and that 
makes the task much more difficult. If he/she is lucky, examples will be easy to 
find, and all that must be done is to put them in some order  for consideration 
and incorporation. 

But in most real-life situations, much of the difficult work is in designing and 
executing clever experiments just to obtain a few new pieces of data. This type 
of learning is guided by~ model, by a theory based upon previously seen data. 
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The aim of those experiments is generally to test the theory, often in the hopes 
of finding exceptions which will force t h e  theory to develop further to in- 
corporate them. Thus, in the case of multiplication, one might examine tables 
and algorithms in other bases, multiplication by specific numbers, multi- 
plications which yield specific sorts of products, etc. Ultimately, one would gain 
a deeper  understanding of multiplication, and might have (i) some interesting 
new problems to work on, such as an algebraic generalization of the process, 
(ii) some powerful new algorithm for multiplying, (iii) some quick ways of 
doing some multiplications, and of checking others, and perhaps most 
significantly (iv) a deep enough representation of what was happening that 
future phenomena (such as division), anomalies (such as ledger errors), and 
modifications (such as getting a good algorithm given a new set of trade-offs 
on primitive operations) might be done quickly. 

The expert rules in MVCIN [34] represent knowledge at the observation level; 
indeed, Teiresias [5] learncd new r, ivclN rules by observation. To learn deeper  
rules (e.g., those involving causality), r, tvclN would have to explicitly possess a 
deeper  modcl of how diseases are caused and cured. Each rule might then 
explain why it was usually true, in those terms. 

Just as r~wciN's rules represent a conceptual advance over the storage of 
correlation coefficients (between symptoms and diseases), so a causal model 
would represent a further advance. In a novel situation (e.g., a certain drug is 
invented or has just run out), the deep understanding of why each rule was 
usually true might enable better  response. 

For instance, here are three rules from an expert system designed to manage 
cleanups of chemical spills. 

RI :  If the spill is sulphuric acid, 
then  use l ime. 

R2: If the spill is acetic acid, 
then  use l ime. 

R3: If the spill is hydrochlor ic acid, 
then  use l ime. 

Now suppose lime runs out, and an acid has been spilled. What should we 
use? Perhaps the most closely correlated chemical compound is lye, so lye is 
suggested as a replacement.  Can we simply go through rules R1-R3 and 
replace lime by lye? If we do that, some of the rules still work and some of 
them become completely useless (or even worse than useless). What went 
wrong? 

Let 's  take a deeper  look into the rationale behind those three rules. Suppose 
we had taken the trouble, whenever a rule is typed in, to ask the expert to also 
specify its justification: 
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R4: If the spill is sulphuric acid, 
then use lime. 

Justification: lime neutralizes acid and the compound that forms is insoluble and hence will 
precipitate out. 

R5: If the spill is acetic acid, 
then use lime. 

Justification: lime neutralizes the acid. 

R6: If the spill is hydrochloric acid, 
then use lime. 

Justification: lime neutralizes the acid. 

What we really want to do is go through RI -R3  and substitute lye for lime 
only in those rules which use lime solely to neutralize pl-II i .e . ,  not in rule RI,  
since the compound formed by lye and sulphuric acid is soluble. The point is 
that substitutions are more likely to work when you know why the original 
compound was being employed in the first place. If sulphuric acid was spilled, 
and no lime is available, the human---or program--should search for a com- 
pound which neutralizes acid and forms a precipitate. 

Not surprisingly, the deeper  the model the more costly it is to build. If you 
already have a list of variables to monitor,  then building up the requisite set of 
correlations is quite straight-forward (albeit timeconsuming to obtain con- 
vergence). Surface rules, such as MVCXN'S rules and the original versions of 
R I - R 3  above, are much more difficult to learn, due to conditionality and 
disjunction. Deep rules, such as R4--R6 are even more difficult to learn, 
because the justifications are rarely stated explicitly by the expert or (in the 
case of forming a theory from observed data) by the world. 

But as the problems being dealt with grow in number and complexity, the 
flexibility of the deep knowledge eventually outweighs the need for simplicity. 
Medical students learn about disease pathways, after all, rather than just 
memorizing tables of numbers. Chemists need to know why various 
agents are effective against each type of chemical spill. Mathematicians study 
proofs and not just results. 

Learning by discovery is often referred to as inductive inference; if the 
model is deep enough, we call the process inductive theory formation. The next 
two sections explore this type of reasoning. Then, in Section 4, several dozen 
examples of learning by discovery are examined, spanning many task domains. 
The automation of this type of learning is described in [21]. 

Why should AI be concerned with computer  programs which learn by 
discovery? One obvious answer is AI's interest in the mechanization of any 
human cognitive activity. There is another, more powerful reason, however. 
The standard approach to expert system-building involves extracting know- 
ledge from human experts, and yet many of the young, explosively-growing, 
important fields have no human experts yet, and have few rules of thumb for 
guiding explorations in them. In such virgin territory, discovery programs may 
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bc the fastest route to gaining a preliminary understanding, to conceptualizing 
the useful new objects, operations, and heuristics of those fields. 

2. Inductive Inference 

Many everyday tasks which we refer to as requiring 'intelligence' involve the 
making of decisions in the absence of completc information: While driving to 
work in the morning, what route is best at that particular hour? What did that 
announcer say? Is that a police car behind me? 

In each case, how is a plausible solution obtained? Each of us has, over the 
ycars, built up a large collection of more or less general rules of thumb. A 
typical rule might be "After  8 a.m. the expressway gets crowdcd".  One then 
applies these rules to the current situation. Although each rule is quite 
minuscule in scope, their union suffices to cover most common situations. 

Scientists who have studied such phcnomena have frequently selcctcd quite 
restricted inductive activities for their subjects. Perhaps the simplest inductive 
inference task is that of scqucnce extrapolation. One is given the opening few 
terms of a sequence, and askcd to guess what thc next term is: 

I ! 8 l 2 7  1 6 4  1 125 I ?? 

Notice how we assume somc kind of simplicity measure on the solution space; 
really, any answer is legally possible. 

The informal rules for this task include the conccpt of splitting the sequence 
into two or more subsequences (as in this case, every second term is '1'), the 
notion of successive differences (thcrcby yielding a new sequence which may be 
easier to extrapolate), and finally the notion of repeating and composing all 
these preceding techniques until the sequence is reduced to one that is 
rccognized by inspection (such distinguished sequences might include: constant 
ones, the integers in order,  their squares, their cubes, the prime numbers, the 
Fibonacci sequencc, etc.). 

Using just such a simple model, it is quite easy to build a computer  program 
that out-performs humans at this task, and this was done in the early 1950s [29]. 
Tasks which draw upon a much larger data base (e.g., cryptograms) cannot be 
so easily mechanized. 

A full step more sophisticated than sequence extrapolation is the task of 
concept formatiotz. In the psychologists' experiments, a subject learns to dis- 
criminate when a stimulus is and is not an exemplar of the concept to be 
mastered. Again, simple models exist and lead to concise, effective computer  
programs for this kind of inductive task [6, 38]. 

"Fhis classificatory activity historically precedes a more comparative and 
eventually a metric kind of concept formation. Ultimately, one crosses the 
fuzzy boundary and begins to rio theory formation [2, II]. But even at this 
sophisticated level, we claim our same simple model suttices: one applies 
his/her rules of thumb to the current situation. 
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Artificial Intelligence work has demonst ra ted--of ten  to the dismay of the 
researcher-- that  many apparent ly  deductive tasks actually demand a large 
amount of inductive reasoning. Thirty years ago, the automation of foreign 
language translation by machine seemed quite within reachmunti l  the first such 
programs were written. One apocryphal story has the sentence " the spirit is 
willing but the flesh is weak" translated word by word into Russian as "tht~ 
vodka is fine but the meat is rot ten".  

The same need for inductive reasoning was found when AI at tempted to 
write programs for such 'deductive' activities as proving a theorem and 
identifying a molecule based on its mass spectrogram. The whole recent 
emphasis on frames [25] and scripts [33] is merely the realization that much of 
our  everyday life is spent in forming simple theories about our environment.  
Based partly on limited sense data and based heavily on past experiences, we 
have a tentative model of the room we're in, the state of mind of o u r  
companions, the immediate future, etc. So inductive inference permeates our  
lives, at all levels. 

Yet nowhere is the use of inductive reasoning so explicit as in the process of 
scientific research. The scientific method reads like a recipe for induction: 
constrain attention to a manageable domain, gather data, perceive regularity in 
it, formulate hypotheses, conduct experiments to test them, and then use their 
results as the new data with which to repeat this cycle again. 

The preceding discussion suggests that a good task domain in which to 
investigate inductive thinking is science itself. Thus, one expects to find 
psychological studies of scientists in vivo, and AI programs which carry out 
simple kinds of scientific research. Both have been unduly sparse. 

The first notable AI program which attempted to mechanize a scientific- 
method activity was DENDRAL, and there have been only a handful of attempts 
since, most of them emerging from Stanford's Heuristic Programming Project 
[7]; but see also [22, 32, 37]. 

There  has been a gradual realization that the scientist's rules of thumb 
should be elicited explicitly. With this has come the discovery that one's 
conscious rules are not sulticient to account for creative scientific behavior. By 
various techniques, such as confronting the expert with a case in which his 
decision is inconsistent with his stated rule set, the knowledge engineer elicits 
additional judgmental rules that the expert used without conscious control. 
This process--knowledge acquisition from an expert-- is  a bottleneck in the 
process of building expert systems today. Tile neck of the bottle is narrow 
indeed for those fields in which there is as yet no human expert. Inquiries into 
inductive reasoning, such as the projects reported in this paper, may eventually 
enable programs to learn some of the needed heuristics on their own. 

We can recap the central argument of Sections 1 and 2 as follows: real-world 
learning spans a spectrum, from rote to discovery. Surprisingly often, even 
when carrying out tasks we think of as deductive, we are at the inductive 
discovery end, because Nature provides much less help than does a human 
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teacher. Under these conditions, effective learning requires a strong model of 
the domain. Induction, using a deep model, is precisely what we mean by 
theory formation, which is the subject of this paper. The  world is too complex 
to be modelled deeply in any formal way, but a dynamically-growing body of 
heuristics might suffice. Heuristics span the sorts of guidance needed to cope 
with the world, and they can be accretcd and improved gradually. Even this 
sort of model is difficult to build, as heuristics are not easily elicited from 
experts (and there are many important new fields where experts hardly exist 
yet). The EURmKO research programme is built on the hope that heuristics can 
help at this meta-icvel as well, help in building and extending and testing new 
heuristics. 

3. The Accretion Model of Theory Formation 

The AM program assumed a simplified model of theory formation. Based on its 
behavior, we added Steps 5 and 6, producing the following revised model, upon 
which the EUrUSKO program is based. In the next section, we carry through 
about forty examples, from five of EURiSKO'S domains, to illustrate this model. 

Accretion model of theory formation 
Step 1. Given some new (not fully explored) definitions, objects, operations, 

rules, etc., immediately gather empirical data about them: find examples of 
them, try to apply them, etc. 

Step 2. As this progresses, try to notice regularities, patterns, and exceptions 
to patterns, in the data. 

Step 3. From these observations, form new hypotheses and modify old ones. 
In a world over which you have some control, design and carry out experiments 
to test these hypotheses. 

Step 4. As a body of conjectures develops, economize by making new 
definitions that shorten the statement of the most useful conjectures. The 
entire cyclic process now typically begins anew at Step 1, given these new 
definitions as grist. 

Step 5. As the above loop (Steps 1--4) proceeds, it will become necessary 
from time to time to abstract some new specific heuristics, by compiling the 
learner's hindsight. 

Step 6. On even more rare occasions, it will become necessary to augment or 
shift tile representation in which the domain knowledge is encoded. 

Step 7. For all steps in this model, even Steps 5, 6, and 7, it suffices to collect 
and use a body of heuristics, informal judgmental rules which guide the 
explorer toward the most plausible alternatives and away from the most 
implausible ones. 

There are several assumptions in this model, most of which are easy to 
satisfy for human learners and not so trivial for machine learners. Step I 
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assumes the ability to gather data oneself. In most fields, this means employing 
some instruments to sense or record phenomena,  and despite the micro- 
computer  revolution most instruments are still designed to present their results 
to human eyes and ears, and to accept their inputs and instructions from 
human hands and feet. Conceptualizing in the world of recombinant DNA is 
fine, but a program which proposed an experiment or a new lab procedure 
would have to pause while a human expert carried it out and reported the 
results. The  only fields where a kind of direct sensing of and experimenting 
with the environment is possible today is the category of fields which are 
internally formalizable, that is, for which machine-manipulable simulations or 
axiomatizations exist. This includes the various fields of mathematics, games, 
programming, and precious few others. Certainly simulators can be found in 
other  areas, but the program would be trapped in whatever world the simula- 
tion defined. For instance, suppose a program is supposed to form theories 
about physics, and we supply a (Newtonian) simulator. It may carry out any 
number of experiments, but it will never achieve more than a rediscovery of 
Newtonian mechanics (perhaps a reformulation such as Lagrange's), for its 
world genuinely is nonrelativistic. Most of the fields which AM and EURISKO 
explore are internally formalizable, or are carefully-selected subfields of other 
disciplines, subfields which do admit an adequate machine formalization. 

Step 2 in the model innocuously requests tile learner to be observant for 
rccognizable patterns. That assumes that he/she/it has a large store of known 
patterns to rccognize, or is working in a world where an adequate set can be 
learned very quickly. Langley [14] presented a comprehensive listing of very 
general low-level pattern-noticing rules, and an appendix to [5] presented many 
higher-level ones found in AM. Both BACON and AM assumed that tile noticing 
'demons'  could be largely domain-independent,  and, while that has worked so 
far, it bears repeating that it is only an assumption. Human beings, of course, 
already possess a rich store of facts and images to match against; the process of 
'rccognizing' blends continuously into 'analogizing'. 

The  activity in Step 3 is largely one of generalization (of regularities noticed) 
followed by specialization (into new specific questions and cases which 
experiments can test). The latter activity once again presumes access to tile 
wor ld--e i ther  through direct sensors and effectors, or via a simulation (or 
formalization) good enough to provide answers to previously unasked ques- 
tions. Deeply embedded into this point is a set of metaphysical assumptions 
about the world: most phenomena should be be explainable by a small set of 
simple laws or regularities, knowledge comes from rational inquiry, causality is 
inviolable, coincidences have meaning, etc. 

The fourth step in the model appears simple enough, but a subtle difference 
crops up in the results obtained mechanically and by people. Even though two 
bodies of (new) definitibns may be isomorphic, there is great psychological 
import attached to appropriate naming of the new concepts. Humans can draw 
upon their rich reserve of metaphor  and imagery once again; programs must 
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work hard to do much bet ter  than names like c,000sl. Large blocks of code in 
both At,! and EURISKO deal with choosing names for newly-defined concepts, but 
even so most of these are noncreative mergings of old names, and a human is 
often consulted for more  evocative concept names. Step 4 also assumes that 
new terms are introduced to shorten hypotheses and conjectures and the 
s tatements  of other  terms '  definitions; while that is true, humans may have 
other  reasons for introducing new terms: completeness (e.g., extending a 
metaphor  in which several other terms already have meanings), symmetry (e.g., 
defining the complement  of a useful subset), etc. 

Step 5 assumes that heuristics can be synthesizcd, kept track of, evaluated, 
modified, etc., just as any domain object or operat ion could be. This was not 
part of Ar~I'S model,  and it limited Ar~l's behavior  as a result. This point glibly 
requires that, as new knowledge is gleaned, new heuristics somehow come into 
being, rules which can guide the explorer  using the new concepts. While this 
does happen ' somehow'  for human beings, any program which explores new 
territory must possess a concrete method for acquiring the needed new 
heuristics. 

Step 6 makes  the analogous assumption for representat ion of knowledge: 
that the program can reason about,  produce,  and modify new pieces of its own 
representat ion hmguage. A simple case of this is when EUR~SKO defines a new 
kind of slot for its frame-like language. The synthesis and modification of 
heuristics is potentially explosive, so must be a rare activity; the synthesis and 
modification of the learner 's  (program's)  representat ion for knowledge must be 
an even rarer event. 

Step 7 assumes that a large body of heuristics is available, can be efficiently 
accessed, provides the requisite guidance, etc. The  italicised clause in Step 7 
indicates that it applies to every one of the steps in the model,  even to Steps 5, 
6 and 7. That  means that a body of heuristics can guide the discovery, 
evaluation, and modification of heuristics; a body of heuristics can guide the 
evolution of the representat ion being employed;  and, finally, a body of heuris- 
tics can guide the application of heuristics in each situation. 

The  model has many shortcomings and poor  reflections of reality built into 
it. Obviously one does not follow Steps 1--6 in a precise loop, ad infinitum, but 
rather  carries out many of the activities in parallel. Occasionally a kind of 
back-up is called for, when a result is found to be in error.  Uncertainty in data 
and reported results is inevitable, and this makes  it cost-effective to double 
check earlier results whenever  possible. The  model of course says nothing 
about  a field developing abnormally due to funding, emergence or death of 
individual practitioners, mores and taboos, results in other fields (often ap- 
parently unrelated nontechnical fields like politics, economics, or religion), and 
so forth. 

We add to the model  our  r that each step involves inductive 
reasoning, that each step can be adequately modelled as a search. These 
searches take place in immense search spaces (e.g., the space of all possible 
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regularities to look for, the space of all possible new definitions to make), and 
the heuristics serve to constrain the generation of, and the exploration of those 
spaces. 

By and large, most technical fields appear today to follow this Baconian 
development, perhaps with occasional upheavals as described in [12]. Bear in 
mind that from now on this model will be a s s u m e d  to be adequate; neither the 
examples presented subsequently in this section nor the programs described in 
later sections are designed to test that model, but rather merely to opera- 
tionalize, illustrate, and employ the model to good effect. Only the long-range 
success or failure of this research programme has anything to say about tile 
adequacy of the model, and even that is weakly suggestive evidence at best. 

4. Examples of Using IIeuristics to Guide Theory Formation 

Our purpose here is to illustrate the basic model of learning by discovery, 
specifically Step 7: the use of heuristic rules to guide a researcher. To do that, 
we provide dozens of examples drawn from disparate domains, including finite 
set theory, elementary number theory, naval fleet design, VLSI device physics, 
and LXSP programming. In each case, the examplcs we provide are taken from 
the actual behaviors of the AM and EUmSKO programs. Occasionally, a non- 
technical example from 'everyday life' is provided, and those were not 

generated by the programs. 
Rather than organizing these examples by task domain, we have chosen to 

highlight Step 7 by organizing them by heuristic. Thus, we will state a heuristic 
or two, and give examples of its use in several fields. Some of these examples 
result in new heuristics being synthesized and added to the set guiding 
EUmSKO'S behavior, and some result in new types of slots being defined and 
added to EUalSr~O'S representation language. The key idea is that the same 
heuristics can be used for all three 'levels' of activity (inducing domain 
concepts, heuristics, and representations). 

It is worth noting that these heuristics are far more specific than the general 
'weak methods' [27] such as hill-climbing, generate and test, and means--ends 
analysis. They are also much more general than the domain-specific rules 
usually incorporated into expert systems [7], such as those mentioning terms 
like king-side, ketones, or carcinoma. Consider, as our first example heuristic 
R7. 

4.1. Making parts coincide 

117: if f is an interesting function which takes a pair of A's as inputs, 
then define and study the coalesced function g(a)  = ~f(a, a). 

Let  us examine  some. app l ica t ions o f  R7 in the doma in  o f  e lemen ta ry  f in i te  
set theory. If f is 'Set Intersection', then R7 applies, because f takes a pair of 
sets as its arguments. R7 suggests studying the function Intersect(s, s). The AM 
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program carried through this line of reasoning, and (following Step 3 in our 
accretion model of theory formation) began choosing random examples of sets 
to run the Self-Intersect function on. But every time it was run, that function 
returned its original argument. Thus, R7 led AM to the conjecture t ha t - -  
empirically at l e a s t I a  set intersected with itself is unchanged. If f is 'Set- 
Union',  again the coalesced function is the same as the identity function, and 
R7 thus leads to the realization that unioning a set with itself leaves it 
unchanged. If f is 'Set-Difference',  g(s) = s -  s = [~: i.e., a set minus itself is 
always (again, at least empirically on a few hundred cases examined) the empty 
set. The same result occurs when f is 'Symmetric-Difference'.  If f is 'Member-  
of', then the coalesced function computes Member(s, s), which is never True,  
thus leading to the conjecture that a set is never an element of itself and, less 
directly, the concept of infinity. If f is 'Set-Equality' ,  then the coalesced 
function is computing Equal(s, s), which is always True.  This leads to tile 
result that a set is always equal to itself. Given some simple generalization 
abilities, those last two experiences led tile program to define two extreme types 
of relations (binary predicates), those for which P(x, x) always holds (reflexive 
relations) and those for which P(x, x) never holds (antireftexive relations). 

But R7's usefulness is not limited to set theory. Analogues to the above 
results accrue when R7 is applied to various logical functions, such as XOR, 
OR, AND, IMPLIES, etc. In elementary number theory, one function which 
satisfies the condition of R7 is addition. R7 suggests defining Plus(x, x); i.e., the 
doubling function. When f is multiplication, R7 produces a new function g 
which is squaring. When f is subtraction, g is always 0, leading to the result 
that x -  x = 0. When f is division, g is always 1, leading to yet another  useful 
regularity. When f is 'divides-into', R7 leads to the conjecture that x always 
divides x. Similar minor results are obtained when f is gcd, lcm, rem, >,  and 
rood. 

Turning to computer  science, one can consider what happens when f is 
Compile'.  The  resultant function g computes Compile(c, c), which takes an 

optimizing compiler c, hopefully written in the same language L which it 
compiles, and runs c on c, thereby turning out a (probably) faster compiler for 
L. Focusing on a specific language such as LISP, R7 suggested NCONC(I, l) 
which makes a list l circular, and INTERSECY(/,  l) which eliminates multiples 
copies of elements from l. CONS(/, l) and APPEND(/ ,  l) are useful for building 
arbitrarily large list structures. PROGN(/ ,  l) led to the notion of side effects 
(when comparing its behavior to simply evaluating l). 

Turning to less technical domains, R7 can help in both understanding and 
generating plot twists in stories; that is, view them as scripts [33] with a large 
number of slots which are the arguments to the script. R7 then says to watch 
for---or consider--what  happens when a pair of the slots are filled in with the 
same value. In the Theft  scripf, for example, three of the slots are 'thief', 
'victim', and 'investigator'. Many dramas have been based on all three of the 
possible 'cases of co-occurrence. Most languages have prefixes, such as our  
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'Auto- '  and 'Self-', which effectively perform the kind of coalescing called for 
by R7. 

One of the tasks which we examine in more detail in [21] is the design of 
naval fleets, specifically an annual competition based on a large collection of 
published constraints and a simulator capable of resolving battles between a 
pair of fleets. For example, if hull armor is increased on a ship, then formulae 
allow one to calculate tile additional cost, weight, loss in agility, gain in 
protection against various types of damage, additional engine capacity and fuel 
required, etc. One type of craft which is commonly included is a fighter, which 
is carried into the area by a carrier. Following RT, the possibility was con- 
sidered of building fighters that could transport themselves into the battle area; 
due to the way the constraints were set up, this turned out to be a very 
powerful-- i f  bizarre---design tactic. Essentially, each fighter was equipped with 
just enough 'sailing' and 'launching' equipment for it not to need a carrier. 
Once airborne, this excess equipment was jettisoned. EURXSKO originally un- 
covered this tactic more or less accidentally, but did not properly appreciate its 
significance; EURISKO now has heuristics which we believe wouM have success- 
fully rated it highly. This design tactic caused the rules publishers to modify 
the constraints, so that in 1982 one could not legally build such a thing. 

A second use of R7 in tile naval design task, one which also inspired a rules 
change, was in regard to the fuel tenders for the fleet. The constraints specified 
a minimum fractional tonnage which had to be held back, away from battle, in 
ships serving as fuel tenders. R7 caused us to consider using warships for that 
purpose, and indeed that proved a useful decision: whenever some front-line 
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FIG. 1. A side-view diagram of a single (leftmost) piece of metal  controlling two gates. The  regions 
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1. Note that the two metal regions are not touching. 
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ships were moderately (but not totally) damaged, they traded places with the 
tenders in the rear lines. This maneuver was explicitly permitted in the rules, 
but no one had ever employed it except in desparation near the end of a 
nearly-stalemated battle, when little besides tenders were left intact. Due to the 
unintuitive and undesirable power of this design, the tournament directors 
altered the rules so that in 1982 and succeeding years the act of 'trading places' 
is not so instantaneous. The rules modifications introduced more new synergies 
(loopholes) than they eliminated, and one  of those involved having a ship 
which, when damaged, fired on (and sunk) itself so as not to reduce the overall 
fleet agility. 

We give one final example of the application o f  R7, this time in the domain 
of designing three-dimensional VLSI devices [20]. Each gate consists of a piece of 
metal (actually any conductor, e.g., polysilicon) either above or below an 
oxide-coated piece of intrinsic channel material. Flanking the channel are two 
regions of doped semiconductor material. One application of R7 which is in 
standard practice is to make a doped region from one gate and a doped region 
from an adjacent gate coincide (i.e., be the same physical region). A new, 
three-dimensional application of R7 was to allow tile piece of metal to serve 
simultaneously as the control for a gate above it and below it. See Fig. 1. One 
specific use for this was in the design of the single-gate inverter, shown in Fig. 
1. This was the first high-rise VLSI chip successfully fabricated [8]. 

4.2. Generalizing rare predicates 

For our  next series of examples, consider the following heuristic. 

R8: If a predicate P rarely returns True, 
then define a new one which is similar to, but more general than, P. 

By  a predicate we mean s imp ly  a func t i on  whose range is the set {T rne ,  
False}. By  negat ing the predicate, R8 also can be wr i t t en :  i f  a predicate rare ly  
returns False, then define new specializations of it. When R8 is relevant, its 
then-part places a new task on the agenda, namely that of generalizing P. 
When attended to, other  heuristics must decide on plausible ways to generate 
such new predicates. We give examples of this process below. 

In the domain of elementary set theory, one predicate rarely satisfied 
(empirically, on randomly chosen sets from a fixed universe) is Set- 
Equality(s 1, s2). One algorithm for computing this is: 

Step 1. If s I and s2 are both empty, return True. 
Step 2. Choose an element of s I (if s l is empty, return False). 
Step 3. Verify that it is in s2 (else return False). 
Step 4. Remove it from both s 1. and s2. 
Step 5. Recur; i.e., go to Step 1. 

One way to generalize this predicate is to modify its algorithm, say by 
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eliminating Step 3, tile verification of the chosen element being in s2. What 
happens in Step 4, then? One possible interpretation is that the item is re- 
moved from s I and (if it is present in s2) from s2 as well; that makes the predicate 
computed by the algorithm 'Superset-of ' .  A second version of Step 4 (that ,~.! 
discovered) removed some item from s I and some i tem from s2. The algorithm 
now takes a pair of sets, strips e lements  from each of them', and rcpeats  this over  
and over  again. If one becomes empty  before tile other,  it returns False, but if they 
both become empty  simultaneously, it returns True. Thus, the new algorithm tests 
whether  or not the two sets have the same number  of elements.  This new 
predicate,  Same-Length,  is of course an extraordinarily useful test and led Ar~t to 
the concept of Cardinality. 

A dilferent generalization of Set-Equality occurs if we modify Step 2 in the 
above algorithm so that if s l  empty,  it returns True instead of False. The  new 
predicate being computed is now Subset-of. 

Turning from sets to numbers,  one important  predicate is Divides. Here  is an 
algorithm for computing whether  n divides evenly into m:  

Step 1. Factor n into a bag (multiset) of primes. 
Step 2. Factor m into a bag of primes. 
Step 3. Call S U B B A G  (similar to SUBSET)  on tile two previous results. 

As before, heuristic R8 may apply, say in a situation where large numbers 
are involved and very few of them divide evenly into each other. One way to 
generalize the Divides prcdicate is to modify the above algorithm, say by 
replacing S U B B A G  by a call on one of its generalizations: D O E S - I N T E R -  
SECT, S H O R T E R - T H A N ,  SUBSET,  etc. These yield, respectively, three 
new predicates on numbers: N O T - R E L A T I V E L Y - P R I M E ,  F E W E R - F A C -  
TORS,  and an interesting predicate that has no concise English name. Indeed, 
all three of these are generalizations of D I V I D E S ;  i.e., whenever  
DIVIDES(n ,  m)  returns True, so do the three new predicates. The  last two 
predicates may or may not lead to a dead-end, but the first one led into an 
exploration of relative primeness, which is known to be a fruitful area. 

R8 is useful in geometry,  where rigid predicates such as Equal-Polygons were 
relaxed by ^ra into fruitful tests such as Congruent,  and interesting (if not too 
useful) ones such as Equi-side-lengths and Sharing-a-common-angle.  

4.3. Inverting exlrema 

A very different, but equally potent  heuristic is the one which counsels 
examining extreme cases of known relations. 

R9: If f is a known, interesting function, and b is a known, interesting, extreme subset of its 
range, 

then define and study f-I(b). 

In the realm of finite sets, one interesting function is httersection. Its range is 
Sets, and an extreme kind of set might be an extremely small set, say the empty 
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set. Thus R9 recommends defining pairs of sets whose intersection is empty: 
but this is just the powerful and useful concept of disjointness. A related use of 
R9, with f =  Intersection and b--Singletons,  defines the relation that holds 
between pairs of sets when they have precisely one element in common; chains 
of such sets are useful in more advanced mathematical constructions. 

R9 is more powerful in number theory than in set theory, however. One 
application was made by ^M, with ] '=  Divisors-of and b = Doubletons. That  
defined the set of numbers with precisely two divisors--namely, prime num- 
bers. Actually, R9 also caused the definition of the set of numbers with three 
divisors, the set of numbers with one divisor, etc., as well. A related use 
occurred when R9 caused the definition of numbers with an extremely large 
number of divisors. Some unusual relations were noticed about such numbers. 
Later, once primes had been shown to be a useful albeit extreme kind of 
number, R9 applied again, with f =  Divisors-of and b = Primes. "ltlat is, R9 
defined the set of numbers having a prime number of divisors. Whether  or not 
anything was ever proved about that concept, it is intuitively pleasing as the 
right sort of new definition to make and investigate. It turned out, incidentally, 
that the only such numbers are all primes to some power, indeed they are of 
the form pq-Z, for some primes p and q. 

In the naval fleet design task, R9 was used quite heavily. The functions f in 
that simulated world apply to the design and behavior of fleets and of 
~ndividual ships: FleetComposition, Agility, Armor,  WeaponVariety,  
TimeToEngage,  etc. R9 caused the early consideration of ships (and fleets) 
with extreme values for these functions. This proved fortuitous, as the ultimate 
design did settle on a fleet containing almost all identical ships, each with 
nearly minimal agility, maximal armor, maximal weapon variety, almost all of 
which engaged with the enemy immediately, etc. One extremal ship employed 
in the 1981 tournament was a tiny but incredibly agile ship, with no offense 
whatsoever, that simply could not be hit. Although this was no longer legal in 
1982, a ship with massive offensive capability and n o  defense was instrumental 
in that new fleet. 

In the VLSI design task, R9 was used to focus attention on various kinds of 
goals: designing a circuit with minimal power usage, maximal speed, minimal 
volume, minimal number of separate masks required, and so on. R9 encouraged 
focusing on one such extreme at a time, and often these partial results could be 
melded together into solutions satisfying several of the constraints at once. For 
instance, reducing volume, power, and cycle time all reinforce each other,  
encouraging more cubical chip designs, more foldings. 

In the programming domain, R9 was applied to good effect with f = Time. 
This focused attention on applications of functions that took abnormally long 
or short times to compute.  Strange results were obtained, such as a function 
which determines if two equal list structures are EQ to each other  by measur- 
ing the time it takes E Q U A L  to return a value! (In that case, f was actually 
Time-of-Equal,  and b was the set of abnormally fast times, relative to the mean 
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time for computing EQUAL. )  This line of inquiry eventually led to the 
definition of LISP objects which could n e v e r  be EQUAL-but-not-EQ---namely 
atoms. Another  use of R9 in the LISP programming world was with f = NCONC 
and b = Circular-lists. This yielded a quite atypical algorithm for computing 
whether  one list structure is a subtree of another  (namely, perform N C O N C  

and then test to see if the result is circular). 
Nontechnical uses of R9 abound; we present here only two related ones. lI 

f = Employed-As, the function that maps a person to the set of jobs he/she 
holds, then some extreme kinds of values might be abnormally large sets (> 1 
member)  or extremely small sets (< 1 member),  since almost everyone has 
exactly one job. These two derived concepts correspond to moonlighters and 
the unemployed. If f is Income, which maps a person to his annual gross 
earnings, then R9 would cause the definition of Lowlncome and Highlncome 
categories of people. Notice how this sets the stage for noticing, say, that 
moonlighters, as a group, do not have significantly higher incomes than those 
who hold down just one job. 

4.4. Noticing fortuitous bargains 

So far we have looked at three heuristics for generating plausible new concepts 
and conjectures. The next heuristic we consider is concerned with evaluating 
such new discoveries for intercstingncss. 

RId:  If some normally-inefficient operation can be done quickly on X's, 
then X is a more interesting concept than previously thought. 

After  working with sets for a long time, suppose one introduces the notion of 
a list. Many of the operations which were slow on sets, can now be speeded up. 
For instance, Insert need no longer check that the item it is inserting is not 
there already; thus it takes constant time instead of linear time to perform. The 
predicate Equal can simply march down the tvr lists in order,  halting 
whenever there is a discrepancy, so it now runs faster too. These make Lists a 
more attractive concept, and worth exploring further; heuristic R10 is the rule 
that makes this judgement. 

In number theory, representing numbers as bags of primes (their prime 
factors) makes multiplication very speedy, though it does make addition and 
subtraction crawl. But because it does speed up s o m e  operations, it was judged 
(by RI0) interesting enough to remember  it, and indeed that representation 
does turn out to be useful, e.g., in some proofs in number theory. 

We shall illustrate R10 in a nontechnical setting: consider the various 
representations one might employ to convey the instructions for assembling a 
bicycle. There  could be an exploded-view diagram of the bike, a linear 
sequence of verbal commands, a predicate-calculus axiomatization of some of 
the pieces (their structfire, function, and assembly), a set of production rules 
which embody the expertise to assemble it, etc. Each representation is parti- 
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cularly good at somc types of infcrcnce, and bad at others. The exploded view 
is great for telling which pieces touch which others, or where a specific piece 
goes. The linguistic instructions are good for step-by-step assembly, but may be 
quite frustrating when problems develop which are not covered in the in- 
structions. The predicate cnlcuhts may bc good at answering derived questions, 
such as: what set of tools should 1 prepare ahead of time; what might be 
causing tile rear axle bearing to wear out so often? The production rules might 
bc bcst at responding to whatcvcr  situation the asscmbler  was in, but might be 
nearly impossible to ' look ahead '  at in a browsing, planning, or doublcchccking 
mode. Each of these representations is worth studying and having, because it 
makes some operations very quick, operat ions which arc very costly in other  
representations. This illustrates Rill, but is also the basic reason for having and 
using multiple representations of knowledge. 

4.5. Gathering empirical data 

One of thc most important types of tasks the theorizer performs is that of data 
gathering. Our  next heuristics, R I i ,  RI2,  and RI3,  are three techniques for 
finding instances of a concept about which we wish to know more.  

R 11: If you want to find examples of some concept C with a recursive Defn, 
then from the 'base step" of the recursion, read off a trivial example. 

Rf2: If you want to find examples of some concept C with a recursive Defn, and you know 
some examples of C already, 

then plug the examples into the recursive step of the definition and unwind that step to 
produce a new, longer example. 

R 13: If you want to find examples of some concept C, and you know some function F whose 
range is C, 

then find some instances of F in action; the values returned are C's. 

Suppose we have dctined 'Sets ' ,  but have not looked at any examples of 
them so far. How might wc find some? R I I  says to look at tile definition of 
Sets, which might say that s is a set if it is empty,  or if its first clement is 
nowhere else inside the set, and, when you strip off that first clement, what you 
have left satisfies the same definition of set: 

IsSet(s) = dfS = { } or AND(Notlnsidc(CAR(s),CDR(s)),IsSct(CDR(s))). 

Here we assume that C D R  is any repeatable function which strips oil" a l l .  

element of a set, and C A R  is a function that yields the value of that 
stripped-off element.  Sets are represented as tJsP lists with no repeated ele- 
ments  permitted,  hence C A R  and CDR can have their usual IJsr' definitions. 

RI I applies to the task of generating examples of sets and says to locate the 
base step of the definition, which i s ' s  = { }'. This does indecd supply a trivial 
example of a set, namely the empty  set. 
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R12 says to plug a known example of a set into the recursive step of the 
definition and 'unwind' it. So we find the recursive step. IsSet(CDR(s)), set up 
an equation of the form C D R ( s ) =  (known example), and plug the empty set 
(written NIL in LISP) in as the known example: C D R ( s ) =  NIL. This sets up a 
small, well-defined problem: create a LISt' list structure whose CDR is NIL. A 
bit of LlSP knowledge about CONS suffices, namely that CONS(x, x) has a CDR 
which is x. (Incidentally, this piece of knowledge was generated by R7's 
defining of Se l fCONS(x)= CONS(x, x), and subsequent exploration of Self- 
CONS.) Thus a new example of a set should be CONS(NIL,NIL),  which is 
{{ }}, which is indeed a valid new example. R12 can apply again, with the 
known example being {{ }} this time, further unwinding the definition to 
produce a longer example. 

R13 also applies to the task of finding examples of Sets. It says to look for 
functions whose range is 'Sets'; this might include Intersect, Union, PowerSet, 
Symmetric-Difference, etc. Now that a few examples of Sets exist, R13 suggest 
plugging them in as inputs to these various functions, and often a new set is 
generated as the output. For  instance, the PowerSet of {{ }} is {{ }, {{ }}}. 

The instance-finding heuristics can be used to find examples of functions as 
well as objects, and numeric concepts as well as set-theoretic concepts. Con- 
sider the arithmetic function for multiplication; here is a definition for it: 

Times(x, y) = ef if x = 0 then 0 
else Plus(y, Times(x - 1, y ) ) .  

R l l  finds the base step and immediately generates a few examples of the 
form Times(0 ,9)=  0, T imes (0 ,0 )=0 ,  Times(0, 1 )=0 ,  etc. R12 locates the 
recursive call on Times, and notes that when x - 1  = 0~ T i m e s ( x - 1 ,  9 )=  0 .  
Unwinding this produces the example: Times(l ,  9) = Plus(9, 0) = 9. The third 
heuristic, R13, also can be employed to find instances of Times. In this 
application of R13, the function F found is Apply (i.e., FunCall), and R13 
causes the definition of Times to be applied to randomly chosen examples of 
Domain(Times), i.e., to pairs of natural numbers. A pair of numbers is chosen 
randomly, the LISP code which defines Times executed, and the record of 
(inputs, output)  is recorded as a new example of Times in action. 

In the device physics world, a 'Device'  is defined as a structure built out of 
primitive regions and smaller devices. When trying to find new devices, R l l  is 
relevant, and draws our  attention to the simplest types of devices, namely those 
that consist of a single region of some type of material. R12 is then useful for 
causing us to put these simple devices together into bigger and bigger 
configurations. Once we have several devices, RI3 is useful, since there are 
several operations that take a device or two and yield a new one: Reflect- 
Device. OverlayDevice's, Abut, Optimize, FoldDevice, etc. 
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4.6. Overlapping concepts 

The next heuristic, RI4,  says it is worthwhile to focus attention on the overlap 
of two promising concepts, when such an overlap is known to exist. 

1::114: If some (but not most) examples of X are also examples of Y, and some (but not most) 
examples of Y are also examples of X, 

then define and study the intersection of X and Y; this new concept is a specialization 
of both X and Y, and defined by conjoining their definitions. 

In number  theory, Ar, I used RI4  heavily, intersecting classes of interesting 
numbers.  E.g., which primes are also palindromes? 

RI4  was used in set theory in an analogous manner ,  especially a variant 
which could be applied to operations as well as objects. For example,  it 
sometimes happens that two set-theoretic functions yield the same answer; e.g., 
the PowerSet of set s l  sometimes equals the UICIosure of another  set s2 (i.e., 
the closure of s2 under all possible intersections and unions). One example is 
s l  = {a, b, c}, s 2 =  {{a, b}, {a, c}, {b, c}}. A heuristic related to RI4  (and to R7 
as well) caused the definition of a new binary predicate (a relation), which takes 
two sets and returns True ill" the second's UICIosure equals the first's power 
set. Analogues of this 'basis '  concept are quite useful in topology. 

The converse of R14 is also useful. 

RI5:  If a concept already has a conjunction in its definition, 
then define and study the concepts one gets by separating the conjuncts. 

In the fleet design problem, for example,  each ship was presumed to have 
some military capabilities. Looking at the definition of such capabilities, they 
fall into two groups, which we might call offensive and defensive. Separating 
those two notions is quite useful. Often, RI5  generates what turn out to be 
e x t r e m e  concepts. 

The major  bug in using RI5  is that ' ( A N D  x y) '  can mean two quite different 
things in LiSt': 

(i) X and y are simultaneous conditions to be checked; 
(ii) if x is verified to be true, then it makes  sense to chcck y. 
In (ii), if x is false, then trying to check y might or might not lead to a LiSP 

error. By splitting the conjunction, the new concept whose definition checks 
only y may well cause an error  when it is evaluated. These bugs can sometimes 
lead to serendipitous discoveries. One fortuitous accident occurred in the VLSI 
design task, where A N D  was serving in role (ii). The final test involved 
checking neighbors of a region on a rectangular grid, and the preceding 
conjuncts tested the array subscripts. When all but the final conjunct were 
eliminated, the array automatically 'wrapped around' ,  in the sense that a cell 
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on the rightmost boundary thought its right neighbor was a cell on tile leftmost 
boundary of the array (and vice versa). This led to a remarkably  small design 
for a tlip-tlop, and when it was scrutinized the 'bug '  was revealed. Nevertheless 
that memory  cell design can be realized in three dimensions, on the surface of a 
M6bius strip. See Fig. 2. 
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1=1(3. 2. Conventional  circuit diagram for a flip-flop, and a side-view of the tiny design r-URISKO 
produced due to a programming bug which it itself introduced. If that configuration of regions is 
produced in three dimensions, given a half-twist, and the ends joined, then that M6bius st rip device will 
indeed duplicate the functionality of the full flip-flop. 
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4.7. Making conjectures 

One important activity in theory formation is the synthesis of hypotheses and 
conjectures. How are these done? Earlier, when stating our accretion model of 
theory formation, we claimed that heuristics could guide those proccsses. Here  
is one such het, ristic: 

R16: If the first few examples of a concept C have just been found, 
then examine a typical one, and see what properties if satisfies; then see if any of those 

properties is satisfied by all examples of C. 

For example,  heuristic R9 above caused aM to consider the set of numbers 
with exactly three divisors. It found a few examples of that set, and looked at a 
typical one, 9 (the divisors of 9 are 1, 3, and 9). What propcrties does 9 
satisfy? It is odd, it is a perfect square, it is one larger than a power of 2, etc. 
Now look at the othcr few examples we found: 4, 25, 49. The only property 
that holds for all of them is the one about being a perfect square, so that is 
formed into a conjecture.  

In point set topology, RI6  helps us find most of the theorems of the form 
"The  (product,  intersection . . . .  ) of two (Closcd, Finitc . . . .  ) (Hausdorff,  
Regular, Compact  . . . .  ) s p a c c s  is (Closed, Finite, Normal,  T I  . . . .  ) ." In set 
theory, R I 6  leads to de Morgan 's  laws and many other common rcsuhs. 

In the VLSI design world, after the first device was designcd using the JMOS 
cross device LOmSKO found [20], it was observed that it was difficult to produce 
masks for and difficult to fabricate, but extremely small and fast. Several other  
propert ies were noted, but the ones just ment ioned seemed to hold across all 
subsequent devices using the cross device. 

In the fleet design world, once a new design was testcd in simulated combat ,  
several charactcristics of the conflict were noted (speed of victory, final state of 
the victor, amount  of tactical decision-making required, etc.). These were 
formed into proto-conjectures,  which were then tested by subsequent mock 
battles, and any which held over  most of the simulations were believed as 
empirically valid. Thus R I 6  was a chief 'workhorse '  in finding conjectures in 
several domains. 

4.8. Multiple paths to the same discovery 

Heuristics often lead to tile same concept or conjecture in several ways, along 
quite distinct paths. In one run of/,,st, the same body of heuristics ended up 
defining multiplication in four different ways: as repeated addition, as the size 
of the Cartesian product of two sets, as repeated unioning, and finally by 
unioning the powersets of two sets. The concept of prime numbers  was also 
derived in more than one way. Consider: 



52 D.B. LENAT 

R17: If an analogy is strong between A and B, but there is a conjecture (For all b in B . . . )  
whose analog is false, 

then define the subset of A for which the analogous conjecture holds. 

R18: If a concept has a complement (negation) which is much smaller (rarer), 
then explicitly define and name that complement. 

One of the earliest and strongest number theory analogies is between 
addition and multiplication. They have identities (0 and I, respectively), they 
are commutative, they each take a pair of numbcrs and produce a new number, 
etc. But one property that each natural number (bigger than 1) has is that it can 
be expressed as the sum of two smaller natural numbers, q'he analogous 
conjecture would say that all natural numbers (bigger than, say, 2) can be 
expressed as the product of two smaller natural numbers. Of course that's false, 
but I?,17 causes us to define the set of numbers for which it's t rue- -namely  the 
composite numbers. R18 has us also define the numbers for which the con- 
jccture fails--namely the prime numbers. This is a second way in which prime 
numbers are defined, quite different from the scenario using R9 wc prcscntcd 
earlier. 

4.9. Anticipating bugs and special cases 

Sometimes a heuristic is an expert at anticipating a bug that may arise. 

R19: If you've just generalized C into a new concept G, 
then beware that G isn't really just the same as C. To doublecheck: are there any other 

specializations of G, and if so, have you looked for examples of them yet? If it turns 
out to be true, at least you have a conjecture about C. 

In the set theory domain, Sets was generalized into UnorderedStructures.  At 
that time, only examples of Sets were known, so RI9 almost forgot about 
UnorderedStructures.  But in doublechecking, it found some examples of Bags, 
thereby preserving the existence of all three concepts. 

In the number theory world, we generalized Numbers-which-equal-their- 
number-of-divisors--which was simply {1, 2 } i i n t o  Numbers-which-are-no-lar- 
ger-than-their-number-of-divisors. Unfortunately, this, too, seemed to include 
only the numbers 1 and 2 as examples; RI9  was the heuristic that had us check 
that. After  extcnsive doublechccking, we gave up and discarded Numbers- 
which-are-no-larger-than-their-number-of-divisors. However,  we were left with 
a new, tiny conjecture. 

In programming, this 'false generalization' trap is even more prevalent. Since 
programs are carefully engineered artifacts, they are often quite optimized. 
l"hus, replacing EQ by EQUAL,  say, in most places (in ap i cce  of code which 
defines a concept) serves only to slow it down slightly, not truly generalize it. 
Some code mutation operations, such as adding unused extra arguments to a 
concept 's use definition, are almost guaranteed to be No-Ops. Indeed, most 
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small changes to a program are either of no effect or  of immense (usually 
catastrophic) effect. The analogy to biological mutation is clear; see [19]. 

4.10. Broadening a concept 

One kind of activity the theory builder engages in sounds quite risky but is 
surprisingly often fruitful: 

R20: If an operation C is useful, and is to be generalized somehow, 
then consider just widening the domain of C; that is, try to apply C to more inputs, and 

s e e  which can be accepted. 

In finding the values for infinite series, for instance, mathematicians per- 
formed operat ions on them that they knew were unjustifiable and might lead to 
errors (such as systematically rearranging the terms, or  pretending tile series 
were differentiable). These methods often came up with the right answer, from 
which it was easier to go back and prove that that was the right answer. 
Differentiation and rearrangement  can sometimes be fruitfully applied outside 
thcir ' legal '  domains. 

Many times we write programs that can be run on slightly illegal arguments;  
for instance, a numerically-oriented I.isr predicate that is based around 
E Q U A L  and S O R T  may very well be runnable (meaningfully) on lists. 

In VLSI dcsign, many of the ' iambda rules' in [23] are constraints which can 
be violated with impunity. The constraints are set up to guarantee the circuit 
will work, and are stricter than they have to be to permit a configuration that 
will probably work. Almost  all of EURtSKO'S VLSI designs, not surprisingly its 
best ones, simultaneously violate many of these constraints. In these cases, 
components  are not placed at random; rather, we follow useful (though not 
guaranteeable)  placement strategies. 

4.11. Evaluating new concepts 

Many criteria for judging interestingness are domain-specific, but some of the 
most important ones are quite general. R10 was such a heuristic; here is 
another:  

R21: If exactly 1 element of a class satisfies an interesting property, 
thetl  that class becomes more intersting. This is especially true of a function that always 

produces an output satisfying this property. 

In set theory, when computing power sets, it was noticed that exactly one 
element of the power set is empty,  and that the largest element is equal to the 
original set itself. The power  of R21 is blunted in many set-theory instances, 
however,  as, when the output of a function is a set, it is always certain that no 
two elements  will be identical. Thus 'exactly one '  is often no more rigorous 
than 'at least one ' .  
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In the the number  theory world, when examining the function that maps a 
number  onto all its possible factorizations, it was noticed that precisely one 
such factorization (for each number)  consistcd of a bag of all prime numbers.  
R21 was relevant, and it greatly increased the expected worth and interesting- 
ness of factorization. R21 also noticed that each number  had exactly one 
factorization into a bag containing 1 (namely, the number  itself and 1). Tha t  
proved Icss significant ultimately, but also served to boost interest in fac- 
torization. 

In VLSI design, one of the first devices produced (due to heuristic R7) was a 
piece of mctal that was gating p-doped regions above it and n-doped regions 
below it. This device has the nice property that exactly one of the two possible 
channels will be on at all times (the upper  channel if the metal is low, and the 
lower if the metal  is high). Here  was a device which takes in three inputs and 
produces two outputs,  and one of those outputs  is always going to be 'on ' ,  R21 
thus caused us to focus more attention on this device. 

4.12. Synthesizing new heuristics 

The  preceding clcven subsections exemplified the use of heuristics to syn- 
thesize, modify, and evaluate concepts in specific application areas, but we 
have omit ted discussion of heuristics operat ing on heuristics. Oftcn, a new 
heuristic arises by applying (executing) an existing one which is capable of 
generating new heuristics. Consider, for example,  

R22: If 2 slots (call them s 1 and s2) of frame F can have the same type, 
then define a new heuristic, attached to F, that says: 

"I f  f is an interesting F, and its s l  and s2 are of the same type, 
then define and study the situation in which r s  s l  and s2  values are equal." 

This is the most general rule that EUmSKO contains about co-identification. It 
has led to many powerful heuristics being synthesized. When F is taken to be 
the frame for Functions, some of the slots that may have the same type are 
Argl ,  Arg2, and Value. Applying R22 to the slots Argl  and Arg2 yields a new 
heuristic that says: " I f  f is an interesting function, and both its arguments  are 
of the same type, then define and study situations in which the two arguments  
are equal ."  This is just heuristic R7, which has already been shown to be most 
useful. Applying R22 to the slots Argl  and Value yields another  new heuristic, 
one which, says it's interesting to find the fixed points of a function. Applying 
R22 to the slots Domain and Range, the new heuristic says it's interesting if a 
function's domain and range coincide. All three of these heuristics were 
produced from the Function frame by R22; R22 can be applicd to many other 
general frames with equally powerful results. 

Since R22 blatantly deals with the production of new heuristics, it is clearly 
labelable as a meta-hettristic. The preceding paragraph shows that one need not 
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represent or treat R22 in any sfiecial way, and indeed R19, discussed earlier, 
can be used to detect poor  new heuristics as well as poor  new domain concepts. 
For example,  generalizing a noncriterial slot of a heuristic (e.g., the English 
text describing it) will not affect its behavior,  and R19 would be on the lookout 
for just such a mistaken 'generalization' ;  indeed a surprising fraction of 
a t tempts  to generalize heuristics led zumsKo to new ones which are not 
perceptibly different from the originals, and R I 9  is even more useful when 
working at the meta-levcl than it is at the domain-level.  

New heuristics arise frequently (both in real life and in runs of the EURtSKO 
program) by specializing some existing, very general heuristic. Since many 
specializations are possible, it is worth remember ing  (caching) any that turn out 
to be particularly useful. Consider, for example:  

R23: if l is interesting and can be computed, 
then f(x) often shares many of the attributes of x. 

This is often incorrect, of course, so it doesn ' t  pay to apply it too often. One  
useful specialization of it is R9, in which case the 'a t t r ibute '  being preserved is 
Interestingness. A similar specialization of R23 says it 's interesting computing 
the values of f on any of its interesting arguments.  Yet another  specialization 
says it may use a lot of resources (time and space) to compute  and store the 
value of f any domain elements  which themselves take up a lot of space. 

R24: If A is similar to B in a key way, and uses less resources, 
then A is interesting and worth preserving. 

This heuristic can apply to functions, and indeed one specialization of it is 
R10. It applies just as clearly to other  heuristics, of course. In [18] we gave 
more  examples of heuristics which could apply even to themselves (If f is 
t imeconsuming and not productive, then forget it; If f is sometimes useful but 
always costly, then specialize f and hope for the best). EORlSKO did apply the 
latter of these to itself, producing some more  efficient, more  useful special 
cases of it. Here  is another  heuristic, which applied to heuristics and to domain 
concepts. 

R25: ff I(Exs(A), Exs(B)) is nearly extreme, 
3"hen combine Defn(A) and Defn(B) to yield a new concept's Defn. Prefer combining 

functions which are analogous to L 

One use of R25 was when f = Syn]metric-Difference, extreme = small, and 
combine = conjoin. That yielded heuristic RI4,  discussed earlier. Another  use 
was f =  Set-Difference, extreme = small, and combine = AndNot  (i.e., A(x, y) 
(AND X (nor y))). That  produces a heuristic that says " I f  only a few examples 
of A are not examples of B, theft define and study the concept ' A ' s  which are 
not ' B ' s . "  Another  heuristic which applies to recta- and domain-levels alike is: 
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R26: ff s l  and s2 are slots filled by the same type of values, and s l (A )  is more interesting 
than s2(A), and usually s l ' s  values are less interesting than s2"s, 

then define and study a new concept A', similar to A, by the constraint that s2(A') be 
precisely s 1 (A). 

One specialization of R26 occurred with s l  = NonExamples ,  s2 - Examples;  
the resulting heuristic says " I f  the nonexamples  of A are more  interesting than, 
its examples,  then define and study that concept whose  examples are precisely 
A's nonexamples; i.e., the complement  of A . "  But this is just R18, which we 
saw used earlier, so we 've  already seen (a special case of) R26 used at the 
domain level, in particular defining prime numbers.  R26 can also apply at the 
level of generating new heuristics. Once, e.g., EURXSr:O applied it with s l  = 
I fEnoughTime,  s2 = IfPotential lyRelevant,  A = R26, and decided to produce a 
new heuristic R26' which was similar to R26 but explicitly added a clause to the 
IfPotential lyRelevant slot, saying "and there is plenty of CPU time available 
before going on to the next task".  This turned out to be more  useful than R26 
as it was stated above, because it tends to be such an explosive, time- 
consuming rule to fire. Although worries about  CPU time are usually less 
interesting, less criterial, in this particular rule 's case it was worth noticing the 
exception, and rephrasing the rule accordingly. Eventually, the original R26 
lost more  and more  in Worth, as R26' increased, and R26 was finally archived 
by EURISKO. Although this was a case of a heuristic applying to itself, R26 (and 
R26') can and did apply to other heuristics as well. 

5. Conclusions 

Our  first a t tempts  at programs that reasoned inductively were small systems 
which tried to induce I~iSP programs from collections of input/output  pairs [9, 
15]. These experiences led us to conclude that we might learn more  about 
induction if the program's  task were more  open-ended,  closer to full theory 
formation rather  than problem solving. This led to the design and construction 
of ~a~i [16], which explored e lementary  mathematics  concepts. AM was guided 
by a body of informal heuristic rules, which helped it define useful new objects 
and operations,  gather data, notice patterns,  form conjectures,  and evaluate the 
interestingness of its discoveries. More  recent work, on EURISKO, deals with 
several disparate domains,  including e lementary  mathematics,  VLSI device and 
circuit design, fleet and ship design~and LISe programming.  The examples from 
Section 4 conveyed the flavor of EU~ISKO'S processing. Section 4 was anec- 
dotal, ra ther  than theoretical; we believe the time is not yet to a t tempt  a formal 
analysis. Section 4.12 accounted for the discovery of several of the earlier 
heuristics presented in Sections 4.1--4.11, and, finally, even for some heuristics 
which can apply to other  heuristics. 

It is important  to be skeptical of the generality of learning programs, as with 
any A I  program;  is the knowledge base ' just right' (i.e. finely tuned to elicit i t s  
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one chain of behaviors)? The answer in earlier induction-program cases was a 
clear Yes [9,15], but in the case of At, t, the answer is just as clearly No. The  whole 
point of the project was to show that a relatively small set of general heuristics 
can guide a nontrivial discovery process down paths not preconceived. Each 
activity, each task on AM'S agenda, was proposed by some heuristic rule (like 
those illustrated in Section 4), which was used time and time again, in many 
situations. It was not considered fair to insert heuristic guidance which could 
only 'guide '  in a single situation. In fact, all but a few heuristics were written 
down ahead of time, before a single line had been coded, before we had much 
idea what directions AM would, or even could take; we expected it would 
always be working only on set theoretic concepts. EtJRISKO drives this claim 
forward, by demonstrat ing that heuristics previously entered in one domain can 
successfully guide the exploration of new, quite different domains. 

As AM ran longer and longer, the concepts it defined were further and 
further from the primitives it began with, and its performance slowed down. 
For instance, while it discovered them both, it had no way of telling a priori 
that the UFF  (all numbers  have one unique factorization into primes) would be 
more important than Goldbach 's  conjecture (all even numbers can be 
represented as the sum of two primes). What a human learns, after working in 
a new field for a while, is more  than the terms, objects, operations,  results, etc.; 
he /she  learns the necessary domain-specific heuristics for operating efficiently 
frith those concepts, riM'S key deficiency appeared to be the absence of 
heuristics which cause the creation and modification of new heuristics. 

To  remedy this situation, we conceived the EURISKO project. Its fundamental  
assumption was that the task of 'discovering and modifying useful new heuristics' 
is qualitatively similar to the task that AM already worked on, namely 'dis- 
covering and modifying useful new math concepts ' .  Therefore,  we assumed, the 
heuristic synthesis can be performed by a program just like A~, but in addition 
to having frames for objects like Sets and Truth-Values,  the initial frames 
now include heuristic rules. AM had primitive operators  like Coalesce, Compose ,  
and. Intersect, to which Eur~mKO added new operators  that can work on 
heuristics: generate,  evaluate, and modify them. Just as nx~ only 'worked '  
because it had a large corpus of heuristics to guide it, the EURmKO program 
works only thanks to the body of heuristics that guide it. These heuristics, 
which one is tempted to call meta-heuristics or recta-rules [5], serve to propose 
plausible syntheses and modifications to perform, experiments  to try, etc; they 
also warn when they detect implausible constructs and actions which the 
program is spending time on. 

The careful reader  will perceive that these activities are more or less the 
same as the ones which riM'S heuristics were guiding i t  to do (albeit in 
mathematics  rather  than in the domain of heuristic-finding). That  similarity led 
us to the most important  dccisiofi in designing EURISKO; to n o t  distinguish 
recta-heuristics from heuristics. The same rule m i g h t ~ a n d  did---operate on 
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mathenmtical  objects, on VLSI circuits, on Traveller  fleets, and  on other 
heuristics. 

The revised model of theory formation was presented in Section 3; unlike 
the original one on which AM was based, two important  new steps were added 
(5 and 6), to the effect that heuristics could deal with other heuristics and even 
with representat ion of knowledge. The EURISKO program was built embodying 
this expanded model,  and the reader  is referred to [21] for details of its 
architecture, results, and our conchtsions from ten thousand hours '  experience 
running that program. 
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