
ARTIFICIAL INTELLIGENCE 189

The Nature of Heurist ics

Douglas B. Lenat*
Computer Science Department, Stanford University, Stanford,
CA 94305, U.S.A.

Recommended by Pat Hayes

ABSTRACT

Builders of expert rule-based systems attribute the impressive performance of their programs to the
corpus of knowledge they embody: a large network of facts to provide breadth of scope, and a large
array of informal judgmental rules (heuristics) which guide the system toward plausible paths to
follow and away from implausible ones. Yet what is the nature of heuristics? What is the source of
their power? How do they originate and evolve? By examining two case studies, the AM and EURISKO
programs, we are led to some tentative hypotheses: Heuristics are compiled hindsight, and draw their
power from the various kinds of regularity and continuity in the world; they arise through specializa-
tion, generalization, and--surprisingly often--analogy. Forty years ago, Polya introduced Heuretics
as a separable field worthy of study. Today, we are finally able to carry out the kind of computation-
intensive experiments which make such study possible.

1. Overview

The impressive performance of expert knowledge-based systems [1, 5, 8] leads
us to consider anew the field of Heuretics: the study of the informal, judg-
mental 'rules of thumb' which underlie such programs. To understand the
successes of the expert systems, and perhaps ultimately to improve such results.
Heuretics asks What is the source of power of heuristics? Similarly, with an eye
toward understanding, facilitating, and perhaps ultimately automating the
construction of expert systems, Heuretics asks How do new heuristics originate?
Experiments with the AM and EURISKO programs provide some initial answers,
and some concrete methodological suggestions about how to go about getting
better answers.

*The author is an assistant professor of Computer Science at Stanford University, a member of
that university's Heuristic Programming Project, and a consultant for CIS at XEROX PARC.

Artificial Intelligence 19 (1982) 189-249

0004-3702/82/0000-0000/$02.75 © 1982 North-Holland

190 D.B. LENAT

1.1. What is the source of power of heuristics?

By examining the situations in which heuristics fail (in Section 2.3 and 3.1), we
are led (in Section 3.2) to hypothesize that the underlying source of heuristics'
power is a kind of two-dimensional continuity. If a heuristic H was (or would
have been) useful in situation S, then it is likely that heuristics similar to H will
be useful in situations similar to S. In other words, if we could somehow
actually compute APPROPaIATENESS(ACtion,Situation), that function would be
continuous in both variables, and would vary very slowly.

One useful exercise (Section 3.3) is to consider the graph of APPaOPRIATENESS
values for a fixed action, varying over the situations in which it might be
applied. The language of graphs of functions is then at our disposal, an
attractive metaphor within which to discuss such processes as specializing a
heuristic, using multiple heuristics, and measuring attributes of a heuristic's
performance.

Of course the world isn't so accomodating. There are many possible
measures of APPROPRIATENESS (efficiency, low down-side risk, comprehen-
sibility), and many dimensions along which Situations can vary (difficulty, time,
importance, subject matter). Compounding this is the nonlinearity of the
Situation space along most of these dimensions. Thus the 'zero-th order theory '
espoused in the last two paragraphs is merely a metaphor .

Yet it is too attractive, too close to what human experts actually do, to reject
out of hand. It can be extended into a "first order theory": It is frequently
useful to behave as though the zero-th order theory were true, i.e., to behave
as though APPROPRIATENESS(Action,Situation) exists and is continuous. To give
an example: the current situation may appear similar to ones in which it was
cost-effective to skip to the Conclusions Section of the paper; even though you
can't be sure that 's an appropriate action to take now, it may be useful for you
to behave as though the world is that continuous, to take that action anyway. If
you do so, you ' re following a heuristic. That heuristic guidance is only as good
as the generalization process you used in deciding the situation was similar
(e.g., would you apply it to all articles?; to all articles written by X?) .

As the world changes, a heuristic which was valid and useful may become
invalid. Perhaps X ' s writing style has improved. In the extreme case of a
rapidly changing environment, the mean useful lifetime of a heuristic may be
too small to make it worth relying on. Consider, for example, the prices of
stocks on the New York exchange, or the locations of individual molecules in a
gas in a flask. There, continuity is not at issue, but volatility is.

There is a difference between these last two examples though; we can record
the stock prices, but it is impossible to record the positions of all the molecules
in the flask of vapor.

We thus have three considerations--continuity, stability, and observabi l i ty--
determining which domains may adequately be modelled as heuristic searches.

THE NATURE OF HEURISTICS 191

Observability: If data cannot be gathered, heuristics cannot be formed and
evaluated.

Continuity: If the environment changes abruptly, the heuristics may never be
valid.

Stability: If the changes are continuous but rapid, the heuristics may have
too short a lifetime before becoming use less- -or worse than useless.

At the present time, the most constraining of these requirements is obser-
vability. Very few fields admit automatic data acquisition. One might build a
program which proposed promising new experiments to perform in molecular
biology, but it is beyond the capabilities of present technology to automate the
carrying out of those experiments to see the results. The most observable fields
are those which .can be completely formalized within the machine: mathema-
tics, programming, and games. But the behavior of a running program can also
be recorded and inspected by the program, in particular a program which
employs heuristics might monitor its own performance; therefore, we may add
Heuretics to that list of observable fields. EURISKO (Section 4) is such a
program, and from it we have begun to learn more about Heuretics.

1.2. How do new heurist ics originate?

Empirical results from AM (Section 2) suggest that new heuristics arise f rom
three sources:

Specialization of existing, more general heuristics. This often has the form of
adapting, binding, matching a template to observed data, producing a more
specialized, more efficient offspring. Compiling and structured programming are
two computer science analogues of this process. A second way in which
specialization occurs is when an exception to a general heuristic is noted, and a
more specialized, higher-precedence heuristic is formulated. Debugging and
type-checking are the computer science analogues of such accommodation.

Generalization of existing, more specialized heuristics. An ex t r eme- -bu t
c o m m o n - - f o r m of this is abstraction from observed data. In such a case, the
heuristic is a prediction about APPaOPRIATENESS(Action,Situation) for a whole
domain of situations and actions, based on having actually seen one or more
elements of that domain. Other types of generalization are also useful: Often, a
powerful new theorem or technique wifl be proven for some domain D ; it may
then be a useful heuristic to apply it outside D as well. For instance, the values
of some infinite series were successfully guessed at by pretending they were
differentiable; once the series' value is conjectured, proving it is made much
simpler.

Analogy to existing heuristics and to past, successful acts of creating new
heuristics. It is a remarkable thing that analogy works, a sign of an even deeper
kind of continuity than was sought in 1.1. Even though two domains may
appear disparate, analogous heuristics may be equally powerful in coping with

192 D.B. LENAT

them (e.g., Look for examples of concept C before you try to prove any theorems
about C). Even if the heuristics for the two domains seem disparate, the paths
which were followed in getting the powerful heuristics of the field may be
similar (e.g., Examine successful and unsuccessful attempts at finding proofs,
and embody (in new heuristics) any features that discriminate between them).

Which of these three is most efficacious? Under what circumstances are each
of these three methods indicated or contraindicated? These are Heuretics
questions, and best answered by performing experiments. Results from such
experiments on AM and EURISKO are presented in Section 4, and surprisingly (to
us) lead us to favor analogy over the other two methods.

1.3. Other Heuretics issues

One Heuretics question which will not be addressed herein is What is the
impact of an individual heuristic upon a search? That issue has been well
covered elsewhere, both qualitatively and quantitatively, by Michie, Nilsson,
and others. See, for example, [6] and the references he cites.

Another issue given only brief consideration is How should advice from
several heuristics be combined? Results from building expert systems lead to the
conclusion that the details of the control structure are not crucial. As Feigen-
baum is wont to say, "In the knowledge lies the power ." One can view the
heuristics as production rules, and then this issue becomes: What interpreter
should run the rules? This problem can itself be recursively 'solved' by making
the interpreter a production system, and so on ad infinitum, although when one
tries to find such strategic rules there are few to be had, and even fewer of
noticeable impact. See, for example, [4].

1.4. Heuretics as a field of knowledge

We spoke earlier of Heuretics as a field of knowledge. Polya championed the
study of heuristics as a separate scientific discipline forty years ago, and traced
its origins back to Liebnitz, Descartes, and even Pappus. A decade ago,
Pospelov and Pushkin tried to define the field as " the science which studies the
laws governing the design of new actions in new situations." To merit the
designation of 'field of knowledge' , Heuretics must comprise some more or less
well agreed-upon objects of study, some motivation for studying such objects,
some central questions about the nature of such objects, and some accepted
methods for investigating those questions.

The object of study are of course heuristics. Our initial definition of a
heuristic is: a piece of knowledge capable of suggesting plausible actions to follow
or implausible ones to avoid. In Section 2.2 it becomes apparent that this is
insufficient; for a body of heuristics to be effective (useful for guiding rather
than merely for rationalizing in hindsight) each heuristic must specify a
situation or context in which its actions are especially appropriate or inap-

THE NATURE OF HEURISTICS 193

propriate. In other words, heuristics must have both an if- and a then-part. The
theory developed in Section 4 extends this definition: a heuristic is seen as a
bundle of attributes (and corresponding values) which includes many kinds of
conditions (if- parts), many kinds of actions (than-parts), and also several
nonexecutable attributes such as its worth, origin, and average running time.
Section 4.2 presents a principled method for automatically generating all the
possible ' legal ' attributes that a heuristic might possess. As of this writing,
over one hundred distinct attributes of a heuristic have proven themselves
useful (to the running of EURISKO). The objects of study (heuristics) are
plentiful, complex, and interrelated; in short, there is a richness of structure to
this field.

What is the motivation for studying heuristics? Two are detailed in Section
2.1: (1) The recent successes with heuristic rule based expert systems drive us
to investigate their apparent source of power, heuristics. (2) One of the major
bott lenecks in constructing such systems is extracting domain-dependent
heuristics from human experts, and that could be partially automated by a
program whose field of expertise is itself the formulation, discovery, extraction,
modification, etc. of heuristics. In order to build such a program, a bet ter
understanding of heuristics is necessary.

We have already presented some of the major heuretics questions: what is the
source of a heuristic's power? the origin of new heuristics? the quantitative
impact of a heuristic on a search? the interactions between heuristics working
toward the same ends? the useful attributes of a heuristic?

Finally, there must be a methodology for answering such questions, an
accepted experimental procedure. This paper proposes to use the standard
empirical inquiry paradigm which dominates A I research: test hypotheses
about heuristics by const ruct ing--and s tudying- -computer programs such as
AM and EURISKO, programs which use heuristics and which try to find new ones.
For twenty years after Polya's plea to investigate Heuretics, we lacked the
ability to automatically manipulate symbols with enough facility to construct
large heuristic search programs. For the next twenty years, we lacked the
representational know-how and, frankly, the necessary number of machine
cycles, to carry out the second-order investigations: what happens as heuristics
are added, changed, removed. As these impediments crumble, we can design
concrete experiments, we can build a methodology for tacking the various
Heuret ics questions.

1.5. Heuristics about Heuristics

As with any field of human endeavor, Heuret ics is accumulating a corpus of
informal judgmental knowledge--heuris t ics about heuristics. These guide the
heuretician in extracting heuristics from experts, in deciding when the existing
corpus of heuristics needs to be augmented, in representing heuristics within

194 D.B. LENAT

knowledge bases, in evaluating the worth of a heuristic, in troubleshooting a
program built around a large collection of heuristic rules, etc. Some examples
are listed below.

(1) The expert, if asked initially to state his informal judgmental rules,
usually either denies their existence or provides a very small fraction of them.
How does the knowledge engineer typically overcome this block? Each domain
object and operation mentioned by the expert probably has some heuristics
peculiar to it. Each pair of domain entities may have one or two heuristics
about such combinations. Therefore, one extraction technique is to present
each domain object or operation, or pair of same, to the expert, and ask
him/her to introspect on rules of thumb for dealing with that entity or
combination of entities. 1 This technique is itself a heuristic about heuristics.
Here is another one: It is rarely cost-effective to carry out that extraction
procedure for the co-occurrence of all triples (or larger sets) of domain objects
and operations.

(2) Creating new examples of a domain concept can be a straightforward
process, but creating new instances of the use of a heuristic is often much more
timeconsuming---each usage of a heuristic often demands the creation and
investigation of many new domain concepts. The impact of having and using a
domain concept for a while that later turns out to be a 'blind alley' is much less
serious than having and using a bad heuristic for a while.

(3) If the representation (vocabulary) is well suited to the content of the
heuristic, then it is possible for the heuristic to be concisely represented and
efficiently used. In the extreme case, a heuristic might simply say " cjRc2", as
in "Children CanBeTrainedLike Chickens" and "Children LikeToEat
Chickens". Such compaction obviously depends upon the proper relation R
being defined. If the vocabulary of relations is large and well chosen, many
heuristics can be represented tersely. In cases where one heuristic is used very
frequently, or where several heuristics could all be compacted, it is worth
defining one or more new relations R to shorten the heuristics.

Just as the study of computat ional linguistics had to be grounded in parti-
cular languages during its maturation, so Heuretics has had to remain grounded
in particular task domains. Eventually the theory of formal grammars lifted
itself above the details of any individual language, though specific grammars
are still used to illustrate the various theorems and relationships. Analogously,

~To provide an argument for heuristic (1) above, it is worth mentioning that the author initially
drew a blank when composing this subsection of the paper, specifically when trying to think of
examples of heuristics for heuristics. The problem vanished after listing several precise roles that
such heuristics could fulfill (at the end of the first paragraph of this subsection), and then
considering each role in turn: introspecing on heuristics for extracting heuristics, heuristics for
deciding whether to try to get new heuristics, heuristics for representing a heuristic in a program,
etc. Since the development of EURISKO, 25 additional 'heuristics about heuristics' have been
produced by hand, and EURISKO itself has synthesized over 3t)0.

THE N A T U R E OF HEURISTICS 195

we aim toward eventually studying Heuretics in a domain-independent fashion,
but of necessity must ground our examples--and our test programs-- in parti-
cular domains.

2. AM: The Origin of New Concepts and Conjectures

This section of the paper is a brief detour, a demonstration that new domain
facts and conjectures can be discovered by employing a body of heuristics for
guidance. Sections 3 and 4 return to the 'main line' by respectively considering
the two primary Heuretics questions: the source of a heuristic's power and the
origin of new heuristics.

2.1. Motivation

Heuretics is important for both theoretical and practical reasons. As
Zavalashina said in [15] "one of the basic conditions for further evolution of
heuristic programming, for an increase in the range of problems with which it
can deal, is investigation of the qualitative structure of heuristic activity, its
'informal' components". The subsequent successes of programs (e.g., see [1, 5])
built upon a large core of domain knowledge--both facts and heuristics--
reinforce this argument for the importance of heuristic reasoning as a
phenomenon worthy of study. Artificial Intelligence is constantly seeking and
developing new 'power sources' to guide and constrain search; heuristics are
one of the most ubiquitous and potent sources of power, and merit further
study for that reason alone.

More pragmatically, one current bottleneck in constructing large expert
systems is the problem of knowledge acquisition: extracting knowledge from a
human expert and representing it for the program. The expert must com-
municate not merely the 'facts' of his field, but also the heuristics: the
informal judgmental rules which guide him in rapid decision-making. These are
rarely thought about concretely by the expert, and almost never appear in his
field's journal articles, textbooks, or university courses. Techniques for
automatically discovering domain knowledge could alleviate this extraction
problem.

Can this be done? Since knowledge comprises both facts and heuristics, the
question divides into two parts: can new domain concepts and relationships be
discovered (addressed in Sections 2.2 and 2.3), and can new domain heuristics
be discovered (addressed in Sections 3 and 4)?

Is automated knowledge acquisition cost effective? Consider the making of a
human expert. Having him or her rediscover the knowledge of their field
seems at first glance hardly the typical pedagogical practice. That 's certainly
true for the facts of the field, which are readily presented in texts. Yet
practitioners of many fields become experts only after a period of apprentice-
ship to a master, a trying period during which they must induce the heuristics of

196 D.B. LENAT

their craft from examples. Witness the crucial role of the internship of medical
doctors, counselors, artists, graduate students, and many others.

2.2. The process of discovery

" H o w was X discovered?" When confronted with such a question, the
philosopher or scientist will often retreat behind the mystique of the all-seeing
I's: Illumination, Intuition, and Incubation. A different approach would be to
provide a rationalization, a scenario in which a researcher proceeds reasonably
from one step to the next, and ultimately synthesizes the discovery X. In order
for the scenario to be convincing, each step the researcher takes must be
justified as a plausible one. Such justifications are provided by citing heuristics,
more or less general rules of thumb, judgmental guides to what is and is not an
appropriate action in some situation.

For example, consider heuristic H1 , shown in Fig. 1. It says that if a function
f takes a pair of A ' s as arguments, then it 's often worth the time and energy to
define g(x) = f(x, x), that is, to see what happens when f ' s arguments coincide.
If f is multiplication, this new function turns out to be squaring; if f is addition,
g is doubling. If f is union or intersection, g is the identity function; if f is
subtraction or exclusive-or, g is identically zero. Thus we see how two useful
concepts (squaring, doubling) and four fundamental conjectures might be
discovered by a researcher employing this simple heuristic. Application of H1
is not limited to mathematics of course; one can think of Compile(x,x) (i.e.,
optimizing compilers written inefficiently in the language they compile, and
then processed by themselves); Kili(x,x) (i.e., suicide); Ponder(x,x) (i.e., self-
awareness); and even Apply(x,x) (i.e., the activity we are now engaging in).

H I : i f f : A x A - , B ,
then define g :A - , B as g(x) = f(x,x)

H2: if f:A-->B, and there is some extremal subset b of/3,
then define and study f-l(b)

FIG. 1. Two heuristic rules which lead to useful concepts and conjectures.

Elsewhere [10], we describe the use for heuristic H 2 (see Fig. 1), which says
to investigate the inverse image of known extrema. If f is Intersection, H 2 says
it 's worth considering pairs of sets which map into extremal kinds of sets. Well,
what 's an extremal kind of set? Perhaps we already know about extremely
small sets, such as the empty set. Then the heuristic would cause us to define
the relationship of two sets having empty intersection--i .e. , disjointness. If f is
Employed-as, then the above heuristic says it 's worth defining, naming, and
studying the group of people with no jobs (zero is an extremely small number
of jobs to hold), the group of people who hold down more than one job (two is
an extremely large number of jobs to hold). If f is Divisors-of, then the

T H E N A T U R E O F H E U R I S T I C S 197

heuristic would suggest defining the set of numbers with no divisors, the set of
numbers with one divisor, with two divisors, and with three divisors. The third
of these four sets is the concept of prime numbers. Other heuristics might then
cause us to gather data, to do that by dumping each number f rom 1 to 1000
into the appropr ia te set(s), to reject the first two sets as too small, to notice that
every number in the fourth set is (surprisingly) a perfect square, to take their
square roots, and finally to notice that they then coincide precisely with the
third set of numbers. Now that we have the definition of primes, and we have
found a surprising conjecture involving them, we shall say that we have
discovered them. Note that we are nowhere near a proof of that conjecture.

Of course the above instances of discoveries are really just reductions. We
can be said to have reduced the problem " H o w might Squaring be dis-
covered?" to the somewhat simpler problem " H o w might Multiplication be
discovered?" by citing H1 . Similarly, we reduced the problem of discovering
Primes to the problem of discovering Divisors-of by citing H2 . Such reductions
could be continued, reducing the discovery of Divisors-of to that of Multi-
plication, thence to Addition or Cartesian-product, and so forth. Eventually,
we are down all the way to our conceptual primitives to concepts so basic that
we feel it makes no sense to speak of discovering them (see Fig. 2).

PRIMES
I
I

v
DIVISORS-OF

I
I

v
TIMES

/ \
/ \

/ \
/ \

PI.US CAR I FSIAN PROI)UCT
t I

v v

FIG. 2. R e d u c i n g each concep t ' s d i scovery to tha t of a s imple r one . N o t e tha t mul t ip l i ca t ion can be
d i scove red if the r e sea rche r k n o w s e i t he r add i t ion of n u m b e r s or Car t e s i an p roduc t s of sets.

Why, then, is the act of creation so cherished? If some significant discoveries
are merely one or two 'heuristic applications' away from known concepts, why
are even one-step discoveries worth communicating and getting excited about?
The answer is that the discoverer is moving upwards in the tree, not down-
wards. H e is not rationalizing, in hindsight, how a given discovery might have
been made; rather, he is groping outward into the unknown for some new
concept which seems to be useful or interesting. The downward, analytic search
is much more constrained than the upward, synthetic one. Discoverers move
upwards; colonizers (axiomatizers and pedagogues) move downwards. Even in

198 D.B. LENAT

\ t / \ t /

\ / / \ I /
\ I / \ 1 /
PRIMES N U M B E R S - W I T H - M A N Y-DIVISORS

\ t /
\ lii2 In2 \ I /

\ I / \ 1 /
I) IV IS-OF EXPONI- :NHA I I O N

\ t I I
\ l u i / I l l /

\ I / /
P A R T H I O N 1 IM[:,S /

t / t /
\ IN7 /ill [/

\ I / I i
PI ,LS CAR IES IAN PRODUCT

FIG. 3. The more explosive upward search for new concepts. Most heuristics apply in several
situations, often in more than one way (such as H 2 applying to Divisors-of). Some concepts (such
as multiplication and exponentiation) are reached from several paths.

the limited situation depicted in Fig. 3, the researcher might apply the
'Repeat' heuristic to multiplication, and go off along the vector containing
squaring, exponentiation, hyper-exponentiation, etc. Or he might apply H 2 to
Divisors-of in several ways, for example looking at numbers with very many
divisors.

Once a discovery has been made, it is much easier to rationalize it in
hindsight, to find some path downward from it to known concepts, than it was
to make that discovery initially. That is the explanation of the phenomenon
we've all experienced after working for a long time on a problem, the feeling
"Why didn't I solve that sooner?" When the reporter is other than ourselves,
the feeling is more like ' I could have done that, that wasn't so difficult!" It is
the phenomenon of wondering how a magic trick ever fooled us, after we're
told how it was performed. It enables us to fol low mathematical proofs with a
false sense of confidence, being quite unable to prove similar theorems. It is the
reason why we can use Polya's heuristics [14] to parse a discovery, to explain a
plausible route to it, yet feel very little guidance from them when faced with a
new problem and a blank piece of paper.

There still is that profusion of upward arrows to contend with. One of the
triumphs of AI has been finding the means to muffle a combinatorial explosion
of arrows: one must add some heuristic guidance criteria. That is, add some

/-/3: if the range of one operation has a large intersection with the domain of a
second, and they both have high worth, and either there is a conjecture
connecting them or the range of the second operation has a large inter-
section with the domain of the first,

then compose them and study the result.

H 4 : Compose two operations and study the result.

FIG. 4. Contingent heuristic rule and an explosive one.

THE NATURE OF HEURISTICS 199

additional knowledge to indicate which directions are expected to be the most
promising ones to follow, in any situation. So by a heuristic, from now on, we
shall mean a contingent piece of guiding knowledge, such as H 3 in Fig. 4,
rather than an unconstrained Polya-esque maxim like H4. The former is a
heuristic, the latter is an explosive.

2.3. AM: A computer program that discovers mathematical concepts and
conjectures

There is a partial theory of intelligence here, which claims that discovery can
be adequately guided by a large collection of such heuristic rules. In particular,
mathematical discovery may be so guided. To test this hypothesis, we designed
and constructed AM, a LisP program whose task was to explore elementary finite
set theory: gathering empirical data, noticing regularities in them, and defining
new concepts, AM is described at length elsewhere [9], and a very brief
recapitulation here should suffice.

began with 115 set theory concepts, including static structures (sets, bags,
lists) and active operations (union, composition, canonize). For each concept,
we supplied very little information besides its definition. Additionally,
contained 243 heuristic rules for proposing plausible new concepts, for filling in
data about concepts, and for evaluating concepts for 'interestingness'. Among
them were H I , / - / 2 , and H3 .

Each concept was represented as a frame-like data structure, using the
property list feature of Lisp. Fig. 5 illustrates a typical mathematical function
(composition), and Fig. 6 illustrates a typical mathematical object (primes).
These show very extensively fleshed-out concepts; the knowledge initially
provided to AM about Composition was merely its definition (Statement and
Coded-Statement), Is-a, View, and Origin slots. The other slots of Compose - -
and all the slots of Pr imes--were subsequently filled in by AM.

During the course of its longest run (one PDP KI-10 cpu hour), AM defined
two hundred new concepts, about half of which were judged to be reasonable
(e.g., well known to humans already, or some interesting regularity involving
them found by AM). AM noticed hundreds of simple relationships involving the
old and new concepts, most of which were trivial. It synthesized concepts from
set theory (disjointness, de Morgan's laws), stumbled across natural numbers,
rapidly found arithmetic and redeveloped elementary divisibility theory, and
then began to bog down in advanced number theory (after finding the fun-
damental theorem of arithmetic, Goldbach's conjecture, and a conjecture
about highly, composite numbers first found earlier in this century by the
self-taught Indian mathematician Ramanujan).

The total number of 'micro-discoveries' AM made is roughly (300 old and new
concepts)× (10 new slots filled in for each)× (10 entries for each slot)=
30 000. Each 'discovery' involved relying on (executing) 20-50 heuristics; the
typical heuristic was used in an integral way in the making of several hundred

200 D.B. LENAT

NAME: Compose
ABBREVIATION: - o -
STATEMENT (= DEFINITION)

English: Compose two functions E and G into a new one FoG
LISP: ~, (F , G , H) ... <an executable LISp predicate testing that F(G(x))=H(×) here>

DOMAIN: F, G are functions
IF-potentially-relevant: F, G are t\mctions
IF-truly-relevant: Domain of F and Range of G ha~e some intersection
IF-resources-available: at least 2 cpu seconds, at least 200 cells
THEN-add-task-to-agenda: Fill in entries for some slots of FoG
THEN-conjecture: Properties of F hold for FoG

Properties of G hold for FoG
THEN-modil\-slots: Record FoG as an example of Compose
TH EN-print-io-user: English(Compose)
THEN-define-ne,x-concepts: Name FoG:

ORIGIN Compose F,G:
WORTH : A ~ erage(Wo11_h(F),Worth(G))
DEFN: A ppen d(De fn(G),Dc fn(F))
Avg-cpu-time: Plus(A ~ g-cpu([-),A~ g-cpu(G))
I F-potentiall~-rele: I F-Dote ntialI3 -relc(G)
I F-trut.~-relcvant: IF-trul~-relc~ ant(G)

CODED-STATEMENT (A L G O R I T H \ I)
CODED-IF-PARF: X(F,G) ... <an executable LISP predicate carrying out the 3 IF- tests >

CODED-THEN-PART: X (F , G) ... <an executable LISP function doing the 5 THEN actions >

CODED-IF-THEN-PARTS: ,X(I- ,G) ... <a concatenation of the preceding two slots>

C O M P I L E D - C O D E D - I F - T H E N - P A R T S : <a compiled versbon of the preceding slot>

SPECIALIZAFIONS: Composition-of-bijections, Composition-of-F-with-itself
GENERAt.IZATIONS: Combine-concepts, Sequential-execute, Combine-
functions

Immediate-Generalizations: Combine-functions
IS-A: Function, Deterministic-op, Math-op, Op, Math-concept, Anything
EXAMPLES:

Good-Examples:Compose Count and Divisors
Bad-Examples: Compose Count and Count

CONJECTURES: Composing F and F is sometimes ~ery good and usually bad
ANALOGIES: Sequence, Append
WORTH: 700
ORIGIN: Specialization of Append-concepts with slot-Defini t ion

Defined-using: Specialize Creation-date: 11/4/75 03:18
HISTORY:

NGoodExamples: 14 N BadExamples: 19
NGoodConjectures: 2 NBadConjectures: 1
NGoodTasks-added: 57 NBadTasksAdded: 34
AvgCpuTime: 1.4 seconds A~gl_istCells: 160

FIG. 5. Frame-like representation for a mathematical function from AM. It is composed of nothing
but attribute:value pairs. After each attribute or slot (often heavily hyphenated) is a colon and
then a list of the entries or values for that attribute of the Compose concept.

different discoveries . Thus the set of heurist ics is not mere ly 'unwound' to
produce the discoveries . In a lmost all cases, the discoveries m a d e were un-
expected (by both program and author), and often were concepts and con-
jectures u n k n o w n to the author. Since AM'S heurist ics did lead to its discoveries ,
they must in s o m e sense be an encod ing for them, but they were not a
consc ious or (even in hindsight) obv ious encoding .

AM'S basic control structure was s imple: select s o m e slot of s o m e concept ,

THE N A T U R E OF HEURISTICS 201

NAME: Primes
STATEMENT

English: Numbers with two divisors
LISP: ;~ (n) (Apply* (Lisp-Statement Ooubleton)

(App]y* (Compiled-Coded-If-Then Div isors-0f) n))
SPECIALIZATIONS: Odd-primes, Small-primes, Pair-primes
GENERALIZATIONS: Positive numbers
IS-A: Class-of-numbers
EXAMPLES:

Extreme-exs: 2,3
Extreme-non-exs: 0,1
Typical-exs: 5,7,11,13,17,19
Typical-non-exs: 34, 100

CONJECTURES:
Good-conjecs: Unique-factorization, Formula-for-d(n)
Good-conjec-units: Times, Divisors-of, Exponentiate, Nos-with-3-divis, Squaring

ANALOGIES: Simple Groups
WORTH: 800
ORIGIN: Application of H2 to Divisors-of

Defined-using: Divisors-of Creation-date: 3/19/76 18:45
HISTORY:

NGoodExamples: 840 NBadExamples: 5000
NGoodConjectures: 3 NBadConjectures: 7

FIG. 6. Frame-like representation for a static mathematical concept from AM.

and work to fill in entries for it. Since AM began with over 100 concepts, and
each had about 20 slots to fill in (Examples, Generalizations, Conjectures,
Analogies, etc.), there were about 2000 small tasks for AM to perform, initially.
This number grew with time, because new concepts would usually be defined
long before 20 slots were filled in on old ones. Each task was placed on an
agenda, with symbolic reasons justifying why it should be at tended to. Those
tasks having several good reasons would eventually percolate to the top of the
agenda and be worked on. To accomplish the selected task, AM located relevant
heuristics and obeyed them. They in turn caused entries to be filled in on
hitherto blank slots, defined entirely new concepts, and proposed new tasks to
be added to the agenda.

Let us briefly illustrate the three types of actions initiated by heuristics. One
task AM worked on was "Fill in Examples of Set-Equality". One relevant
heuristic, H 5 (see Fig. 7) said to look at the domain of Set-Equality (which was
pairs of sets), look at the Sets concept, look at its Examples slot, pick
(randomly) a pair of sets from there, and feed them as the input to the
definition of Set-Equality, thereby producing an output of either T (true) or
NIL (false). By this method a few examples of Set-Equality were found, but
hundreds of non-examples were rejected in the process - -a f te r all, very few
random sets are equal to each other. This illustrates how a few entries for the
Examples slot of Set-equality were recorded.

Another heuristic, H6, reacted to the rarity of the Set-Equality predicate
returning T: it added a new task to the agenda, namely "Fill in Generalizations

202 D.B. LENAT

HS: if task is to find Examples(f), f Is-a Pred, and Defn(f) exists,
then apply Defn(f) to random entries on Examples(Domain(f))

H6: if a few Examples(x) are found, but over 90% are Non-examples,
then (someday) define and study various Generalizations of x

H7: if task is to generalize f, f Is-a Op of any kind, and one Defn(f) has two
or more conjoined recursive calls on f,

then define a new Op similar to f but with one conjunct excised

FIG. 7. Once a task is selected, heuristics find new entries for a given slot of a given concept,
propose new plausible tasks for the agenda, and synthesize whole new promising concepts.

of Set-Equality". This is the second kind of activity which we said heuristics
could initiate.

When that task eventually ran, it caused heuristics to fire which defined
whole new concepts--predicates similar to Set-Equality but with a definition
that was slightly laxer than Set-Equality's. For instance, one heuristic (H7
above) accessed a recursive definition of Set-Equality, saw that it recurred in
both the C A R and C D R direction, and eliminated one direction of recursion,
thereby producing two new, weaker predicates (LISP functions which would
return T whenever Set-Equality did, and perhaps more frequently as well). One
of these two predicates turned out to be Same-First-Element-As, and the other
turned out to be quite powerful, namely Same-Length-As.

There is one more issue about AM that should be discussed in this paper: how
it was able to efficiently restrict its attention to a small set of potentially
relevant heuristics at all times. Consider for a moment the AM heuristic that
says "if a composition fog preserves most of the properties that f had then it's
more interesting". That 's useful when evaluating the worth of a composition,
but of course is of no help when trying to find examples of Sets. We associated
that heuristic with the Composition concept, the most general concept for
which it was relevant. Another AM heuristic says "if the domain and range
of an operation coincide, then it's more interesting". That one was tacked onto
the Operation concept. But note that since Compositions are special kinds of
Operations, the heuristic should apply to them as well. The general principle at
work here is the following: I f a heuristic is relevant to C, then it's also relevant to
all specializations of C. Examining the AM representation for Composition (Fig.
5), we see a frame-like data structure (schema, property list) one of whose slots
is Is-a, and one of the entries therein is Operation. This is AM'S way of
recording the fact that Composition is an instance of Operation. The obvious
algorithm, then, when dealing with some specific concept C, is to follow Is-a
and Generalization links upward, gathering heuristics tacked onto any concept
encountered along the way (see Fig. 8). In general, this means that AM's
attention is restricted to log(n) heuristics, rather than n. AM can completely
ignore all the rest, and need only evaluate the if parts of these log(n)

T H E N A T U R E O F H E U R I S T I C S 203

Anything
] [NT IF REI,ATED TO SOMETHING VERY INT.

I
I

Any-Action
I INT IF REVERSIB[E

I
I

Any-Math-Operation
/ \ [NT IFDOMAIN=RANGE n

/ \ INT IFDOMAIN=AxA {for some A)
/ ,,

/ \
Any-Composition Any-Op-With- Domain = Range

INT IF foBttASPROPERTIESOF f \ / INI" TOHNDTrtESETOFFIXED-POIN'IS
\ /

\ /
Complement o Complement

FIG. 8. O n e b r a n c h of t he G e n e r a l i z a t i o n h i e r a r c h y of c o n c e p t s , w i th a few of t he a t t a c h e d

i n t e r e s t i n g n e s s (INT) heur i s t i c s .

potentially relevant ones. In other words, the Generalization/Specialization
hierarchy of concepts has induced a similar powerful structuring upon the set
of heuristics. The power of this technique is d immed somewhat by the unequal
distribution of heuristics in the Generalization/Specialization tree: a large
number of heuristics clustered near the few topmost (very general) concepts.

As AM forayed into number theory, it had only heuristics from set theory to
guide it. For instance, when dealing with pr ime pairs (twin primes), there were
no specific heuristics relevant to them; they were defined in terms of primes,
which were defined in terms of divisors-of, which was defined in terms of
multiplication, which was defined in terms of addition, which was defined in
terms of set-union, which (finally!) had a few attached heuristics. Because it
lacked number- theory heuristics, embodying what we would call common-sense
about arithmetic, AM'S fraction of useless definitions shot way up: Numbers
which are both odd and even; Prime triples; The conjecture that there is only
one prime triple (3,5,7) but without understanding why; etc. It was unexpected
and gratifying that AM should discover numbers and arithmetic at all, but it was
disappointing to see the program begin to thrash. When a few dozen concepts
from plane geometry were added to 'AM, the same type of thrashing soon
occurred; the addition of specific geometry heuristics delayed this collapse.

There are two relevant conclusions from the AM research: (i) It is possible for
a body of heuristics to effectively guide a program in searching for new
concepts and conjectures involving them. (ii) As new domains of knowledge
emerge, the old corpus of heuristics may not be adequate to serve as a guide in
those new domains; rather, new specific heuristics are necessary.

One feature of Heuret ics ' being a 'field of knowledge' is that there can
be - -nay , must be - -hypo theses about heuristics, experiments to test them out,

204 D.B. LENAT

and eventually a developing theory of heuristics. Toward that end, we can
begin collecting elements of such a theory based on our experiences with AM.
See Fig. 9. One remark, besides the two mentioned in the last paragraph, is
that heuristics can be used both to suggest promising actions and to discourage
poor ones. AM'S search space is never explicitly described; there is no clear
notion of a set of legal operators which defines some immense space of
syntactic mathematical concepts and conjectures, etc. Any such attempt would
probably produce a search space of such size as to be useless (10020 in AM'S
domain of elementary finite set theory, where definitions were about twenty
nontriviai words long, and there were about 100 concepts to choose from to fill
each of those blanks). Rather, AM'S set of heuristics implicitly defines its search
space. If you remove a heuristic from AM, it has less to do; this is exactly the
opposite of the case with most heuristic search programs, where heuristics are
used exclusively to prune away implausible paths. The fraction of the legal
concepts that would rank as interesting, recognizable, or important is negligi-
ble; contrast that with the almost 50% hit rate of concepts proposed by AM'S
heuristics.

(I) A SET OF HEURISTICS CAN GUIDE CONCEPT DISCOVERY

(11) A NEW FIELD WILL DEVELOP SLOWLY IF NO SPECIFIC NEW
HEURISTICS FOR IT ARE CONCOMITTANTLY DEVELOPED

(111) HEURISTICS CAN BE USED AS PLAUSIBLE MOVE GENERATORS
OR AS IMPLAUSIBLE MOVE ELIMINATORS

(IV) THE GENERALIZATION/SPECIALIZATION HIERARCHY OF
CONCEPTS INDUCES A SIMILAR STRUCTURE UPON THE SET OF
HEURISTICS

FIG. 9. Elements of a theory of heuristics, learned from work on AM.

The final remark noted in Fig. 9 is that the heuristics can be organized into a
hierarchy, induced by the Generalization/Specialization hierarchy between
domain concepts (like Fig. 8). In other words, each heuristic has a domain of
relevance: the most general concept to which it's relevant and all the speci-
alizations of that concept. This organization enables the interpreter, through
simple inheritance, to focus on the log of the number of all heuristics in the
system, rather than that entire set of heuristics, at each moment. This may not
matter much for systems with a dozen or two rules, but is currently becoming
crucial as we build systems with on the order of a thousand rules.

2.4. Controlling the use of heuristic knowledge

There is an implied 'control structure' for the processes of using and acquiring
knowledge (solving and proposing problems, using and discovering heuristics,

THE NATURE OF HEURISTICS 205

choosing and changing representations, etc.) In fact, it 's a nontrivial assumption
that a single control loop is powerful enough to manage both types of
processes. Our experiences with expert systems in the past [5] have taught us
repeatedly that the power lies in the knowledge, not in the inference engine.

What is that topmost control loop? It assumes that there is a large corpus of
heuristics for choosing (and shifting between) representations. From time to
time, some of these heuristics evaluate how well the current representat ions are
performing (e.g., is there now some operat ion which is per formed very
frequently, but which is notoriously slow in the current representation?). At
any moment , if the representat ions used seem to be performing sub-optimally,
some attention will be focused on the problem of shifting to other ones,
maintaining the same knowledge simultaneously in multiple representations,
devising whole new systems of representation, etc. Similarly, we assume there
are several heuristics which moni tor the adequacy of the existing stock of
heuristics, and as need arises formulate (and eventually work on and solve)
tasks of the form "Diagonalization is used heavily, but has no heuristics
associated with it; so try to find some new specific heuristics for dealing with
Diagonalization". A typical heuristic rule for working on such a task might say
"To find heuristics specific to C, try to analogize heuristics specific to concepts
which were discovered the same way that C was discovered".

It is assumed that these representat ion heuristics and heuristic heuristics
have run for a while, and the system is in a kind of equilibrium. The
representat ions employed are well suited to the tasks being performed, and the
heuristics being followed serve as quite effective guides for 'plausible move
generat ion ' and ' implausible move elimination. ' The system now proceeds for a
while along its object-level pursuits, whatever they may be (proving theorems
in plane geometry, discovering new concepts in programming, etc.). Gradually,
the object level evolves: new concepts are uncovered and focused upon, new
laboratory techniques are discovered, long-standing open questions are ans-
wered, etc. As this occurs, the old representat ions for knowledge, and the old
set of guiding heuristics, become less ideal, less effective. This in turn is
detected by some of the heuristic heuristics discussed in the last paragraph.
They cause the system to at tempt to recover its equilibrium, to spend some
time searching for new representat ions and new heuristics to deal effectively
once again with the objects and operat ions at the object level see Fig. 10).

So new concepts, conjectures, theorems, etc. emerge all the time; as they are
investigated, some turn out to be useful and some turn out to be dead-ends;
using a fixed set of guiding heuristics, the rate at which useful new discoveries
are made will decline gradually over time; eventually it 's worth pausing in the
search for domain-specific knowledge, and turning instead to the problem of
finding new heuristics (perhaps by abstracting recent experiences in the task
domain). The discoverer later returns to his original task, a rmed with new and
hopefully more powerful heuristics. He keeps his eye on the new ones, trying

206 D.B. LENAT

efine new representations]

Augment the representation I

Define and study heuristics I

l Define and study domain concepts 1

FIG. 10. Implied control structure of discovery systems. As activities at one level decline in efficacy,
the system is forced to spend a little time at the next higher level before proceeding.

to gain enough experience with them to evaluate just how useful they really
a re .

This cycle of looking for domain concepts, occasionally punctuated by an
effort to find new heuristics, continues until, gradually, it becomes harder and
harder to find new heuristics. At that point it becomes worthwhile to look for
new and different representations for knowledge.

The top-level control structure is thus homeostatic: detecting and correcting
for any inappropriateness of representations employed or heuristics employed.
For these purposes, we hypothesize that it suffices to have (and use) a corpus of
heuristics for guidance. Of course that top level loop could itself be implicitly
defined by a set of heuristic rules, and we would expect such rules to change
from time to time, albeit very slowly. If, for example, no new concepts or
operations were defined at the object level for a long period of time, then the
need for close monitoring of the adequacy of the representations being
employed would evaporate.

In EURISKO, meta-heuristics are in no way distinguished from object-heuris-
tics. For example, the very general recursive rule "To specialize a complex
construct, find the component using the most resources, and replace it by
several alternate specializations" applies to specializing laboratory procedures,
mathematical functions, heuristics (including itself!), and representational
schemes.

3. The Source of Heuristics' Power

3.1. AM'S need to acquire new heurist ics

AM was armed with a powerful set of heuristics and concepts for its initial
domain (finite set theory), and it progressed as best it could without ever

THE NATURE OF HEURISTICS 207

abstracting its experiences into new heuristics. Earlier we claimed that the
thrashing which ultimately ensued was due to the absence of such compiled bits
of hindsight. By examining that claim more carefully, we hope to justify the
necessity of periodic learning of new heuristics, at least for open-ended
domains such as empirical scientific theory formation.

During the period in which AM defines its first 200 concepts (beyond the 115
it began with), 125 are judged to be 'acceptable' (i.e., well-known mathematical
concepts which humans have given names to, and about which AM finds some
nontrivial conjectures). This 'hit rate' of 62.5% falls off rapidly, however, if the
program continues to run. Of the next 300 concepts AM defines, only twenty-
nine (less than 10%) satisfy the above criterion for meaningfulness.

By adding heuristics manually, this degradation can be delayed. For exam-
ple, after the 200th new concept is defined, the human observer notes that all
of the conjectures involving Primes and Addition have turned out to be
useless; indeed, most of them have turned out to be false. Forming this into a
heuristic, and supplying it to AM, causes many poor paths to be avoided. When
AM is restarted, the same 29 useful concepts emerge at the expense of 260 poor
ones, rather than 271.

An experiment was performed in which, instead of the specific heuristic
mentioned in the last paragraph, the new heuristic added by the user is the
following more general one: "conjectures involving C and f are more likely to
be useful if f has some relationship to the terms out of which C was defined".
In particular, conjectures involving Primes and Multiplication (or Divisioia) are
more likely to be valuable than conjectures involving Primes with Addition,
Subtraction, Composition, or Printing. Adding this heuristic to AM prevents
many blind alleys from being explored, at the expense of a few genuine
conjectures being missed. 27 of the useful concepts are found, and only 220 of
the poor ones.

Just by adding this one heuristic, AM'S hit rate rises from 9% to 11%. We
conclude that augmenting AM by a few tens of new heuristics (based on its
experiences in working with concepts 1-300) would be necessary if it were to
maintain its initial high 62.5% hit rate while developing the next few hundred
concepts. More generally, we conclude that periodic learriing of new heuristics
is necessary to sustain high performance at the task of developing a scientific
theory. Heuristics formed during the initial theory formation experiences are
potent guides to subsequent attempts to extend that theory.

3.2. The zero-th order theory of heuristics

Heuristics are compiled hindsight; they are judgmental rules which, if only
we'd had them earlier, would have enabled us to reach our present state of
achievement more rapidly. Why, then, is there any reason to rely on such rules
to guide future behavior? It must be because of continuity in the world: Rules

208 D.B. LENAT

which were useful will continue to be useful. Rules useful in situation S will be
useful in situations similar to S. Of course the actions taken in the future will be
slightly different than the ones taken in the past, and there must be a
presumption that small differences a long that dimension also are tolerable.

The basic 0th order theory, the central assumption underlying heuristics,
appears to be the following: "APPROPRiATENESS(Action,Situation) is continuous
and time-invariant." That is, APPROPRIATENESS, viewed as a function of actions
and of situations, is a continuous function of both variables. Moreover, of all
the features of the situation which might be relevant, t ime is (we assume) far
from the most critical variable (Fig. 11).

0th: APPROPRIATENESS(Action,Situation) is a continuous time-invariant func-
tion

Corollary 1 : Analogize:
If action A is appropriate in situation S,
Then A is appropriate in most situations which are very similar to S.

Corollary 2: Satisfice:
If action A is appropriate in situation S,
Then so are most actions which are very similar to A.

Corollary 3: Remember:
ff action A would have been appropriate in the past situation S,
Then the rule " I f similar to S, then try A" may be useful in the future.

FIG. 1 l. The Central Assumption underlying heuristics, and three special cases.

Of course we can' t compute the APPROPRIATENESS function precisely; we can't
even sample more than a few variables from Actions and Situations. Nevertheless,
this abstraction implies several interesting corollaries, and serves as a theoretical
base which can be examined, criticized, and (in Section 3.3) improved. Indeed,
simply by considering Appropriateness as a function, we open up the possibilities
of visualizing graphs of it, a technique which proves to be a useful metaphor
below.

Corollary 1. For a given action, its appropriateness is a continuous function of
the situation.

Heuristics specify which actions are appropriate (or inappropriate) in a given
situation. One corollary of the central assumption is that if the situation changes
only slightly, then the judgment of which actions are appropriate also changes
only slightly. Thus compiled hindsight is useful, because even though the world
changes, what was useful in situation X will be useful again sometime in situations
similar to X.

Corollary l says, in effect, that if the current task appears to be similar to
one you 've seen elsewhere, then many of the features of the task environment

THE NATURE OF HEURISTICS 209

will probably be very similar as well: i.e., the kinds of conjectures which might
be found, the solvability and difficulty anticipated with a task, the nature of
blind alleys in which one might be trapped, etc. may all be the same as they
were in that earlier case. For instance, suppose that a certain theorem, UP-T,
was useful in proving a result in number theory. Now another task appears,
again proving some number theory result. Because the tasks are similar,
Corollary 1 suggests that U F T be used to try to prove this new result. Corollary
1 is the basic justification for using analogy as a reasoning mechanism. A
sentiment similar to this was voiced by Poincar6 during the last century: The
whole idea of analogy is that 'Effects', viewed as a function of situation, is a
continuous function. Corollary 1 is the basis for employing 'generalization of
stimuli' as a mechanism for coping with the world.

Corollary 2. For a given situation, appropriateness is a continuous function of
actions.

This means that if a particular action was very useful (or harmful) in some
situation, it 's likely that any very similar action would have had similar
consequences. Corollary 2 justifies the use of inexact reasoning, of allocating
resources toward finding an approximate answer, of satisficing.

Corollary 3. It is cost-effective to form and use situation~action rules which
would have helped in the past.

The ' t ime-invariant ' condition in the statement of the Central Assumption
(the zero-th order theory) means that the world doesn ' t change much over
time, and is the foundation for the utility of memory. In a world changing
radically enough, rapidly enough, memory would be a useless frill; consider the
plight of an individual a tom in a gas. Corollary 3 therefore states that the world
is assumed to be a stable, nonvolatile place, that any rule which we know (via
hindsight) would have been useful to obey in the past, will probably be of use
in the future. We are presumed to be inhabiting a world in which McCarthy 's
Frame Problem really is a problem, where most valid assertions remain valid as
situations evolve.

If the Central Assumption holds, then' the ideal interpreter for heuristics is
the one shown in Fig. 12. Note that this is very similar to a pure production
system interpreter. In any given situation, some rules will be expected to be
relevant (because they were truly relevant in situations very similar to the
present one). One or more of them are chosen and applied (obeyed, evaluated,
executed, fired, etc.). This action will change the situation, and the cycle begins
anew. Of course one can replace the ' locate relevant heuristics' subtask by a
copy of this whole diagram: that is, it can be performed under the guidance of
a body of heuristics specially suited to the task of finding heuristics. Similarly,

210 D.B. LENAT

New Situation
/ + \

/ \
/ \

Changes to the situation \
(hopefully for the better) t
(hopefully quickly) /

\ /
\ /

\ ~- /

Locate relevant heuristics

Apply chosen heuristic(s)

FIG. 12. The 0th order interpreter for a body of heuristic rules.

the task of selecting which rule(s) to fire, and in what order, and with how
much of each resource available, can also be implemented as an entire heuristic
rule system procedure. EURISKO has this self-representing architecture, and
overcomes the apparent inefficiencies by employing software caching (compil-
ing the rule sets).

By examining the loop in Fig. 12 we can quickly 'read off' the possible bugs in
heuristics, the list of ways in which a heuristic can be 'bad' :
- I t might not be interpretable at all.
- It might be interpretable but it might never even be potentially relevant.
- It might be potentially relevant but its if- part might never be satisfied.
- It might trigger, but never be the rule actually selected for execution (firing).
- It might fire, but its then- part might not produce any effect on the situation.
- It might produce a bad effect on the situation.
- It might produce a good effect, but take so long that it's not cost-effective.

This is reminiscent of John Seely Brown's and Kurt VanLehn's [2] work on a
generative theory of bugs, and is meant to be. Perhaps by viewing heuristics as
performers, this approach can lead to an effective method for diagnosing buggy
heuristics, hence improving or eliminating them.

3 . 3 . T h e p o w e r o f e a c h i n d i v i d u a l h e u r i s t i c

What is the nature of a single heuristic, the source of its power? One way
of interpreting Corollary 1, above, is that each heuristic has its own particular
domain of relevance, outside of which it is useless or perhaps worse than
useless. Consider the following very special situation: you are asked to guess
whether a conjecture is true or false. What heuristics are useful in guiding you
to a decision rapidly? If the conjecture is in the field of plane geometry, one
very powerful technique is to draw a diagram; see heuristic rule H 8 in Fig. 13.

But if the conjecture is in the field of point-set topology, or real analysis, H 8
is a terrible heuristic which will often lead you into error. For instance, if the
conjecture mentions a function, then any diagram you draw will probably
portray a function which is everywhere infinitely differentiable, even if such is

THE NATURE OF HEURISTICS 211

H8: i f you are guessing the truth of a conjecture.
then draw a diagram and see if it holds in that analogic model

H9: i f one quantity is spoken of as a function of another,
then graph it, and visually inspect the graph

FIG. 13. TWO general heuristics for using analogic models.

never stated in the conjecture 's premises. As a result, many propert ies will hold
in your diagram that can never be proven f rom the conjecture 's premises. The
appropr ia te technique in topology or analysis is to pull out your book of 101
favorite counterexamples, and see whether any of them violate the conjecture.
If it passes all of them, then you may guess it 's probably true.

This example dramatizes the idea that the power or utility of a heuristic
changes from domain to domain. Thus, as we move from one domain to
another, the set of heuristics which we should use for guidance changes. Many
of them have higher or lower utility, some entirely new heuristics may exist,
and some of the old ones may be actually detrimental if followed in the new
domain. For instance, the 'if object is falling then catch it' rule is useful for
most situations, but each year many people are burned needlessly when they
try to catch falling clothes irons and soldering irons.

According to the fundamental assumption of heuristics (the 0th-order theory
of Fig. 11), the power of a heuristic is a continuous function of the task it is
being applied to. But consider H9 , above, one of the most powerful heuristics
for theory formation. Let ' s follow its advice in our present situation, that of
grappling with the development of the theory of heuristics. H 9 says to take a
heuristic H0, and plot the graph of its power as a function of task domain, i.e.,
imagine graphing the utility of applying H0 as a function of situation.

HIO: if you are stumped for a solution,
then ask a human expert for the answer

H l l : if you are stumped for a solution,
then do a realtime simulation to obtain an approximate answer

/-/11: i f you are stumped for a solution,
then axiomatize the problem and apply the Resolution method

FIG. 14. Three techniques with very different domains of applicability.

Suppose our problem is to process a knowledge base about aircraft carriers,
answering database queries f rom nonexperts. Some of the (albeit more
extreme) heuristics available are listed in Fig. 14. Consider drawing the graph
of power vs. situation for H10 , the heuristic which advocates querying a human
expert when you ' re stuck. The task or situation axis (x-axis) will be arrange d by
the difficulty of the problem being worked on, and the power or utility axis

212 D.B. LENAT

(y-axis) will c o r r e s p o n d to the d i f ference be tween the t ime r equ i r ed to get an
answer f rom the h u m a n exper t and the t ime r equ i r ed to get an answer using
o the r m e t h o d s (resolut ion t h e o r e m proving, s imula t ion , exhaus t ive search, etc.).
See Fig. 15 for a g l impse of wha t such a graph reveals . In the case of very
trivial p rob lems , it is not wor th bo the r ing the u s e r - - i t wou ld be be t t e r for the
p r o g r a m to work on its own for a f rac t ion of a second and de r ive the answer
itself, via a few d a t a b a s e lookups and some s imple inference . Thus the le f tmos t
po r t ion of the g raph is be low z e r o - - t h e uti l i ty of emp loy ing the 'ask an expe r t '
heur is t ic on a tr ivial p r o b l e m is negat ive . F o r p r o b l e m s s o m e w h a t m o r e
difficult, asking an a p p r o p r i a t e exper t might very well be the most cost-effect ive
m e t h o d of ob ta in ing a solut ion. H 1 0 b e c o m e s a r e a sona b l e rule to fol low. So in
the middle , the g raph of the heur i s t ic ' s ut i l i ty rises to a high value . F o r very
difficult p rob lems , s u p e r h u m a n amoun t s of c o m p u t a t i o n may be requ i red , and
a de t a i l ed s imula t ion may far surpass the abi l i ty of any h u m a n to p rov ide an
answer. Thus the ut i l i ty decl ines and b e c o m e s negat ive . If the p r o b l e m is
ex t r ao rd ina r i ly difficult, then it may be insoluble no ma t t e r wha t me thods are
t i red , and t he r e fo re using this heur is t ic is no worse than using any o t h e r s - - s o
the ut i l i ty even tua l ly rises again to zero.

t I
A I
P I
e I
R I
o I
e I
R I
[I T A S K DIFHCUI ,FY -).

A I . E M H I-'-
T * *
F
N
E
S
S

FIG. 15. The graph of the utility of H10: 'Ask an expert'. For very easy (E) problems, it's a
wasteful strategy. For medium (M) problems it's good. For hard (H) problems, the expert won't
know, but a simulation might have worked. For impossibly (I) difficult problems, no heuristic is
much worse than any other, so the utility of 'Ask an expert' rises asymptotically toward zero.

W h a t h a p p e n s when we graph H 1 2 , the heur is t ic advoca t ing reso lu t ion
t h e o r e m prov ing? Tha t is wasteful for very easy p rob lems , so luble by d a t a b a s e
lookup , not too bad a t echn ique for easy (E) p rob lems , p rogress ive ly worse for
midd l ing (M) and ha rd (H) p rob lems , and no worse than anyth ing else for
imposs ib ly diffficult (I) ones. In short , we get a curve s imi lar to that of Fig. 15,
but skewed fur ther to the left. Similar ly , H l l yields a g raph l ike Fig. 15 but
skewed to the r ight .

A s a second example , cons ide r H 8 , the heur is t ic that advised d rawing a
d i ag ram to he lp guess the t ru th of a con jec tu re . This t ime, the y-axis (util i ty,
app rop r i a t enes s , power) can c o r r e s p o n d to the chance of such a t echn ique

THE NATURE OF HEURISTICS 213

yielding the right answer. The task or situation axis can correspond to the
ordering of domains of mathematics in curricula; thus we use set theory to
define arithmetic, so set theory is located to the left of arithmetic on this axis
(see Fig. 16). In the case of logic, very few diagrams of any use can be drawn,
so the heuristic is a slight waste of time. In set theory, Venn diagrams may be
useful for easy problems, but otherwise tend to clutter up the situation rather
than relieving it. In geometry, however, diagrams are in their glory; Gelernter 's
geometry theorem prover demonstrated vividly the power of drawing even a
single diagram for a problem. Advancing to topology and real analysis, the
situation reverses, and diagrams which appear to capture the situation are in
fact often misleading. Diagrams are gradually rehabilitated in the etherial
heights of category theory, though even there they play only an auxilliary role.

P
O
W
E
R

S U B F I E L D -> *

....... L S G TR C-

FIG. 16. The graph of the power of drawing a diagram, as a function of the mathematical subfield
in which it is tried. Neutral for logic (L), misleading for set theory (S), useful for geometry (G),
misleading for topology and real analysis (TR), and neutral for category theory (C).

The diagram above resembles the potential well around a particle, and for
that reason a heuristic such as "Assume that two point masses repel each
other" would have a utility graph similar to Fig. 16. Namely, at far distances,
gravity makes that statement slightly wrong. As the objects get closer, the
statement is more and more wrong, until they are so close that nuclear
interaction forces overbalance gravitational ones. At nuclear distances, it's a
fine heuristic to employ. Analogues of this in various situations abound (e.g.,
"Avoid getting too close in personal relationships").

As a fourth example, consider the task of planning for company coming to
your house to visit. There are many subtasks to schedule: shopping for food,
planning menus, cleaning, cooking, talking, etc. There are several heuristics
(planning techniques) you might apply to deal with the problem: Pert charts,
Noah-like symbolic evaluations, dynamic replanning, counterplanning, setting
up of agendas, etc. Each of these methods has some situations in which it
works, some in which it fails, and some in which it can't even be tried. For
instance, Pert charts demand a full knowledge of dependencies, and the

214 D.B. LENAT

absence of 'cycles' among such dependencies. If the dependencies are not
known, the method is not directly applicable; if the dependencies change over
time, the Pert charts will be worse than useless. Thus the graph of the utility of
the Pert chart method would peak in a certain region, become negative further
out, and eventually become zero (as the task got far away from planning).

In general, then, graphing the utility or power of a heuristic H0 as a function
of task domain, if it can be done at all, produces a curve or histogram
resembling that of Fig. 16. Typically, there is some range of tasks for which the
heuristic has positive value. Outside of this, it is often counterproductive to use
the heuristic. For tasks sufficiently far away, the utility approaches zero,
because the heuristic is never even considered potentially relevant, hence never
fires. E.g., recall /-/6, which said in effect: "if a predicate rarely returns True,
then (someday) define new generalizations of it". This heuristic is useful in set
theory, worse than useless in number theory, and useless in domains where
'predicate ' is undefined.

Sometimes, one (or both) sides of the negative region simply keep getting
more negative (as in Fig. 15) rather than reapproaching zero. Sometimes one
side drops precisely to zero and stays there (e.g., if the heuristic has a very crisp
condition under which it is applicable, then considering using it anywhere else
has zero utility because the heuristic will never 'fire'). Of course the shape of
the curve depends on how the tasks are ordered on the x-axis, and on what the
utility measure is along the y-axis. Indeed, as we have mentioned, the whole
notion of graphing this function is primarily a metaphorical device to aid us in
further thinking about the theory of heuristics.

If we specialize the then- part of a heuristic, it will typically have higher
utility but only be relevant over a narrower domain (see Fig. 17). Notice the
area under the curve appears to remain roughly constant; this is a geometric
interpretation of the tradeoff between generality and power of heuristic rules.
Since the graphs are metaphorical, this notion of conservation of area under a

P +

0

W + +

E

R + ÷

* + + *

+ +

+ I A S K -) + + * ÷
._* . , * . •

* + * . + *

* + * + + + *

* + + 4- * + ~

* + + + +

4- +

FIG. 17. The change in power when a heuristic (*) has its then-part specialized (+).

THE NATURE OF HEURISTICS 215

curve is likewise a '0 th-order ' idealization. It is also worth noticing that the new
specialized heuristic may have negative utility in regions where the old general
one was still positive, and it will be meaningless over a larger region as well.
Consider for example the case where "General ize a predicate" is specialized
into "General ize a predicate by eliminating one conjunct from its definition".
The latter is more powerful, but only applies to predicates defined con-
junctively; EURISKO found a domain where this heuristic has negative worth
(namely, situations in which the if- parts of heuristics are being modified, see
H 1 7 in Fig. 23).

By examining Fig. 17, it is possible to generate a list of possible bugs that
may occur when the actions (then- part) of a heuristic are specialized. First, the
domain of the new one may be so narrow that it is merely a spike, a delta
function. This is what happens when a general heuristic is replaced by a table
of specific values. Another bug is if the domain is not narrowed at all; in such a
case, one of the heuristics is probably completely dominated by the other. A
third type of bug appears when the new heuristic has no greater power than
the old one did. For example, "Smack a vu-graph projector if it makes noise"
has much narrower domain, but no higher utility, than the more general
heuristic "Smack a device if it 's acting up". Thus, the area under the curve is
greatly diminished, but no benefit accrues.

While the last paragraph warned of some extreme bad cases of specializing
the then- part of a heuristic, there are some extreme good cases which
frequently occur. The utility (power) axis may have some absolute desirable
point along it (e.g., some guarantee of correctness or efficiency), and by
specializing the heuristic it may exceed that threshold (albeit over a narrow
range of tasks). In such a case, the way we qualitatively value that heuristic
may alter; e.g., we may term it 'algorithmic' or ' real-t ime' . One way to
rephrase this is to say that algorithms are merely heuristics which are so
powerful that guarantees can be made about their use. Conversely, one can try
to apply an algorithm outside its region of applicability, in which case the result
may be useful and that algorithm is then being used as a heuristic. The latter is
frequently done in mathematics (e.g., pretending one can differentiate a
complicated expression, to aid in guessing its value). Another pathologically
extreme specialization of a heuristic is turning it into one which applies only on
a set of measure zero. This is not necessarily a bad thing: tables of values do
have their uses.

Specializing the if- part of a heuristic rule results in its having a smaller
region of non-zero utility. That is, it triggers less frequently. As Fig. 18 shows,
this is like placing a filter or window along the x-axis, outside of which the
power curve will be absolutely zero. In the best of cases, this removes the
negative-utility regions of the curve, and leaves the positive regions untouched.
For example, we might preface the "Draw a d iagram" heuristic with a new
premise clause, " I f you are asked to test a geometry conjecture". This will

2 1 6 D . B . L E N A T

1"

P
O
w *
[~
R *

TASK -)' *
• . • . • . °

F I G . 18. T h e g r a p h o f a h e u r i s t i c ' s p o w e r , a f t e r i t s i f - p a r t h a s b e e n o p t i m a l l y s p e c i a l i z e d .

cause us to use the rule only in geometry situations, a domain where we know
it has high utility.

By examining Fig. 18, we can generate a list of possible bugs arising from
specializing the conditions (if- part) of a heuristic rule. The new window may be
narrowed to a spike, thus preventing the rule from almost ever firing. There
may be no narrowing whatsoever: in that case, it typically would add a little to
the time required to test the if- part of the rule, while not raising the power at
all. Of course the most serious error is if it clips away some-----or all!---of the
positive region. Thus, we would not want to replace a general diagram-drawing
recommendat ion with one which advised us to do so only for real analysis
conjectures. Empirical results from experiments on specializing and generaliz-
ing heuristics are presented in Section 4.1.

What are the implications of this simple ' theory of heuristics'? One effect is
to determine in what order heuristics should be chosen for execution; this is
discussed two paragraphs down. A second effect is to indicate some very useful
slots that each heuristic can and should have, attributes of a heuristic that can
be of crucial importance: the peak power of the rule, its average power, the
sizes of the positive and negative regions (both projections along the task axis
(x-axis) and the areas under the curves), the steepness with which the power
curve approaches the x-axis, etc. Let us take the last attribute to illustrate.
Why is it useful to know how steeply the power curve approaches Utility = 0
(the x-axis)? If this is very steep, then it is worth investing a great amount of
resources determining whether the rule is truly relevant in any situation (for if
it is slightly irrelevant, then it may have a huge negative effect if used).
Conversely, if the slope is very gentle, then very little harm will result from
slightly-inappropriate applications of the rule, hence not much time need ever
be spent worrying about whether or not it's truly relevant to the situation at
hand.

The whole process of drawing the power curves for heuristics is still con-
jectural. While a few such graphs have been sketched, there is no algorithm for
plotting them, no library of thousands of catalogued and plotted heuristics, not
even any agreement on what the various power and task axes should be.
Nevertheless, it has already proven to be a useful metaphor , and has suggested

THE NATURE OF HEURISTICS 217

some important propert ies of heuristics which should be estimated (such as the
just-mentioned downside risk of applying a heuristic in a slightly inappropriate
situation). It is a qualitative, empirical theory [12], and predicts the form that a
quantitative theory might assume.

How should heuristics be chosen for execution? In any given situation, we
will be at a point along the x-axis, and can draw a vertical line (in case of
multi-dimensional task axes, we can imagine a hyperplane). Any heuristics
which have positive power (utility) along that line are then useful ones to apply
(according to our theory of heuristics), and the ones with high power should be
applied before the ones with low power. Of course, it is unlikely we would
know the power of a heuristic precisely, in each possible situation; while
diagrams such as Figs. 15-18 may be suggestive, the data almost never is
available to draw them quantitatively for a given heuristic. It is more likely that
we would have some measure of the average power of each heuristic, and
would use that as a guess of how useful each one would be in the current
situation. Since there is usually a tradeoff between generality and power, a
gross simplification of the preceding strategy is simply to apply the most
specific heuristic first, and so on. This is the scheme AM used, with very few
serious problems. If all heuristics had precisely the same multiple integral of
their power curves, this would coincide with the previous scheme. Of course,
there are always some heuristics which, while being very general, really are the
most important ones to listen to if they ever trigger ("If a conflagration breaks
out, then escape it"), and some so important that natural selection has 'wired
them in' as reflexes ("If there is a sudden bright light, then close your eyes
quickly").

Notice that the 'generality vs. power ' tradeoff has turned into a s tatement
about the conservation of volumes in n × m-dimensional space, when one takes
the multiple integral of all the power curves of a heuristic. In particular, there
are tradeoffs among all the dimensions: a gain along some utility dimension
(say Convincingness) can be paid for by a decrease along another (say
Efficiency) or by a decrease along a task dimension (a reduction of breadth of
applicability of the heuristics). One historically common bug has been over-
reliance upon (and glorification of) heuristics which are pathologically extreme
along some dimension: tables, algorithms, weak methods, etc.

Heuristics are often spoken of as if they were incomplete, uncertain knowl-
edge, much like mathematical conjectures or scientific hypotheses. This is not
necessarily so. The epistemological status of a heuristic, its justification, can be
arbitrarily sound. For example, by analyzing the optimal play of Blackjack, a
rather complex table of appropriate actions (as a function of situation) is built
up. One can simplify this into a 'Basic Strategy' of just a few rules, and know
quite precisely just how well those rules should perform. That is, heuristics may
be built up from systematic, exhaustive search, from 'complete ' hindsight.
Another example of the formal, complete analysis of heuristic methods is

218 D.B. LENAT

familiar from physics, where Newtonian mechanics is known to be only an
approximation to the world we inhabit. Relativistic theories quantify that
deviation precisely. But rather than supplanting Newtonian physics, they b o l s t e r

its use in everyday situations, where its inadequacies can be quantitatively
shown to be too small to make worthwhile the additional computat ion required
to do relativistic calculations.

Many, nay most, heuristics a r e merely conjectural, empirical, aesthetic, or in
other ways epistemologically less secure than the Basic Strategy in Blackjack
and Newtonian physics. The canonical u s e of heuristics is to guide future
behavior in cost-effective channels; the canonical use of a conjecture is to guide
a search for a proof of it. If a conjecture turns out to be false (such as
Newtonian mechanics, or the assertion that there is always a generality vs.
power tradeoff) it may yet stand as a useful heuristic.

3.4. The space of heuristics

Imagine graphing the utility of an entire s e t of heuristics, as a function of the
tasks it's being applied to. Not surprisingly, the curve produced would resemble
the one produced by a single heuristic (Fig. 16), for it is (to first approximation)
a huge compound heuristic (call it a Mega-heuristic). Hopefully, the set of
heuristics is more useful than any member , thus its graph is probably much
broader and taller (or less negative) than that of any single heuristic inside it.

One cannot simply ' superpose ' or 'max ' the curves of its members ; the
interactions among heuristics are often quite strong, and independence is the
exception rather than the rule. Often, two heuristics will be different methods
for getting to the same place, or one will be a generalization or isomorph of the
other, etc., and as a result the set will really not benefit very much from having
both of them present. On the other hand, sometimes heuristics interact
synergistically, and the effects can be much greater than simple superposition
would have predicted. The opposite of this sometimes happens: , two experts
have each provided a set of heuristics which works, yet some heuristics in each
set directly contradict some in the other set. Using either half-corpus would
solve your problem, but mixing them causes chaos (e.g., one mathematician
gives you heuristics for finding empirical examples and generalizing, while a
second gives you heuristics for formally axiomatizing the situation; either may
suffice, the unstructured mixing of the two sets can be catastrophic).

Just as a set of heuristics can be conceptually grouped into a large Mega-
heuristic, so an individual heuristic may be atomized into a cloud of much
smaller heuristics. Much of the expertise we tap from human experts, when
building expert systems, is their feel for the proper l e v e l at which to state and
use heuristic knowledge. If the heuristics are too small, they stop being
meaningful chunks of wisdom to the human expert, and risk having many stray
interactions. Often languages which enforce a small grain size for rules have

THE NATURE OF HEURISTICS 219

facilities to 'chain' them together to prevent such crosstaik. If the heuristic
rules are too large, we begin to lose the benefits of taking a heuristic
rule-guided approach: additivity, synergy, ease of entry and explanation and
modifiability. Ultimately, we are left with one 'heuristic' which is an opaque
lump of LISP code performing the entire task.

Heuret ics is interested in the space of all the world's heuristics. What is its
structure? What regularities in it can be exploited? The sheer size of this
space - -and our as yet minuscule experience in navigating within i t - - m a k e
these tantalizing questions difficult to investigate.

By examin ing- -and generalizing--heuristics from a dozen disparate fields
(including set theory, number theory, biological evolution, evolution of
naval fleets, LISP programming, game-playing, and oil spill cleanups), we have
built up some d a t a - - a n d some conjectures-- involving heuristic-space. Con-
sider arranging all the world's heuristics in a generalization/specialization
hierarchy, with the most general ones at the top. At that top level lie the so-called
weak methods (generate and test, hill-climbing, matching, means-ends analysis,
etc.). At the bot tom are millions of very specific heuristics, involving domain-
specific terms like 'King-side' and "Arsenic'. One may picture a Christmas tree,
with a pure angel at the top, and the worthwhile gifts at the bot tom.

In between are heuristics such as those depicted in Fig. 19: "Look for fixed
points", "Examine extreme cases", "See what happens when a process is
repeated" , "Given f(x,y), examine what happens when x = y" . These are more
specific than the weak methods at the top of the tree, yet are far from
domain-dependent heuristics below them. Progressing downward, more and
more conditions appear on the left-hand sides of the heuristics (if's), and more
specialized advice appears on the right-hand sides (then's).

A purely ' legal-move' estimate of the size of this tree gives a huge final
number: Based on the lengths and vocabularies of heuristic rules in AM, one
may suppose that there are about 20 blanks to be filled in in a typical heuristic,
and about 100 possible entries for each blank (predicate, argument, action, etc.)
related to AM'S math world. So there are 1040 syntactically well-formed heuris-
tics just in the e lementary mathematics corner of the tree. Of course, most of
these are never (thankfully!) going to fire, and almost all the rest will perform
irrelevant actions when they do fire. Fj'om now on, let 's restrict our attention to
the tree of only those heuristics which have positive utility at least in some
domains.

What does that tree actually look like? One can take a specific heuristic and
generalize it gradually, in all possible ways, until all the generalizations collapse
into weak methods. Such a preliminary analysis (using AM'S heuristics) led us to
expect the tree to be of depth about 50, and in the case of an expert system
with a corpus of a thousand rules, we might expect a picture of them arranged
so to form an equilateral triangle. But when we went through this partial tree,
analyzing the power of the rules therein, it quickly became apparent that most

2 2 0 D . B . L E N A T

\ Toward weak methods t I
\ /

IF f is a subset o f ...Ax...xBx..., and R:A-->B, and Ac B,
T H E N define {(....a,...,R(a),...) e f}

/
/A -B

/
/

IF f is a subset o f ...Ax...xA..., and R:A-->A,
] ' H E N define {(...,a,...,R(a),...) e f}

\
\ R ~ [qualit),

\
\

\
\ R ~ F]quality

\
\

IF f c .,.Ax...xBx.... and AcB,
l H E N define{(...,a,...,a,...) e f}

/

/A - B
/

/
IF' f is a subset o f ...Ax...xAx...
T H E N define {(. . . ,a, . . . ,a, . . .) e t'}

/ \
/ Ax xAx ~ AxCxAxB \ Ax x,X~ ~ %x('xA

/ \
/ \

IF f:AxCxA-->B / IF PAxC-->A
T H E N define g(x ,y)= f(x,y,x) T H E N d e f n e {(a,c) [ffa.c)= a}

I I
]C is singleton IC is singleton
I I
I I

IF f:AxA-->B [F f:A-->A
T H E N define g (x)= fix,x) I H E N define {a [f (a)= a}

/ \ / \

/ \ Toward domain-specific heunsucs / \
I
7

FIG. 19. A t iny f r a g m e n t of the graph of all heurist ics , re lated by genera l i za t ion / spec ia l i za t ion .
N o t e the s imilar der ivat ion of coa le sc ing and f ixed-points heurist ics .

generalizations were no less powerful than the rule(s) beneath them! Thus the
specific rule can be eliminated from the tree. The resulting tree has depth of
roughly 3 or 4, and is thus incredibly shallow and bushy. Herbert Simon,
Woody Bledsoe, and the author analyzed the 243 heuristics from AM, and were
able to transform their deep (depth 12) tree into an equivalent one containing
less than fifty rules and having depth of only four.

Looking at heuristics arranged in a tiny tree (e.g., Fig. 19), we observed that
all but the top and bottom levels can be eliminated. A similar phenomenon was
seen earlier in the case of a heuristic which said to smack a vu-graph projector
in case it acted up; it and several levels of its generalizations can be eliminated,
since they are no more powerful than the general "Smack a malfunctioning
device" heuristic. Some very specific rule, such as "Smack a Nanook 807
vu-graph projector on its right side if it hums", might embody some new,
powerful, specific knowledge (such as the location of the motor mount and this
brand's tendency to misalign), and thus need to stay around.

This 'shallow-tree' result should make advocates of weak methods happy,
because it means that there really is something special about that top level of
the hierarchy. Going even one level down (to more specific rules) means paying
attention not to an additional ten or twenty heuristics, but to hundreds. It

THE NATURE OF HEURISTICS 221

should also please the knowledge engineering advocates, since most of the very
specific domain-dependent rules also had to remain. It appears, however, to be
a severe blow to those of us who wish to automatically synthesize new
heuristics via specialization, since the result says that that process is usually
going to produce something no more useful than the rule you start with.
Henceforth, we shall term this the shal low-tree problem.

There are two ways out of this dilemma, however. Notice that 'utility of a
heuristic' really has several distinct dimensions: efficiency, flexibility, power for
pedagogical purposes, usefulness in future specializations and generalizations,
etc. Also, ' task features ' has several dimensions: subject matter , resources
allotted (user's time, cpu time, space, etc.), degree of complexity (e.g., consider
Knuth ' s numeric rating of his problems ' difficulty), t ime (i.e., date in history),
paradigm, etc. If there are n utility dimensions and m task dimensions, then
there are actually n x m different power curves to be drawn for each heuristic.
Each of them may resemble the canonical one pictured in Fig. 16. If by
specializing a heuristic we create one which has the appearance of Fig. 17 in
any one o f these n x m graphs, then it is a useful specialization. So, while a
specialization is unlikely to be useful in any particular utility/task graph, it is
quite likely to be useful according to some one of the n x m such graphs.

Consider the 'Focus of At tent ion ' heuristic; that is, one which recommends
pursuing a course of action simply because it 's been worked on recently. Using
this as one reason to support tasks on its agenda made AM appear more
intelligent to human observers, yet actually take longer to make any given
discovery. Thus, it is useful in the 'Convincingness ' dimension of utility, but
may be harmful v i s a vis 'Efficiency'.

As another example, consider the heuristics "Smack a vu-graph projector if
it's acting up", "Smack a child if it 's acting up", and "Smack a vu-graph
projector or child if it 's acting up". There may be some utility dimensions in
which the third of those is best (e.g., scope, humor). However , the rationale or
justification for the first two heuristics is quite different (random perturbation
toward stable state vs. reinforcement learning). Therefore the third heuristic is
probably going to be deficient along other utility dimensions (clarity, usefulness
for analogizing, ease of teaching).

But there is an even more basic way in which the "shal low-tree" problem
goes away. There are really a hundred different useful relationships that two
heuristics can have connecting them (Possibly-triggers, More-restrictive-if-part,
Faster, My-average-power-higher- than-your-peak-power, Asks-fewer-ques-
tions-of-the-user, etc.) For each such relation, an entire graph (note that even
the Genl/Spec relation generated a graph, not a t r ee - - see Fig. 15) can be
drawn of all the world's heuristics; pragmatically, we considered only those in a
given program. In some of these trees or graphs, we found the broad, shallow
grouping that was found for the AM heuristics under Genl/Spec. For others,
such as Possibly-Triggers, we found each rule pointing to a small collection of
other rules, and hence the depth was quite large (approximately 30 for AM, not

222 D.B. LENAT

including cycles). There are still many difficult questions to study, about this
phenomenon, even with the theory in this primitive state: How does the shape
of the tree (the graph of heuristics related by some attribute R) relate to the
ways in which R ultimately proves itself to be useful or not useful? Already,
one powerful correlation seems to hold: In cases where the tree depth is great,
that relation is a good one to generalize and specialize along; in cases where
the resulting tree is very broad and shallow, other methods (notably analogy)
may be more productive ways of getting new heuristics.

3.5. The first-order theory of heuristics

There are several things wrong with the 0th-order theory: it presumes that
knowledge is complete and unchanging; that is, it ignores the 'pota to in the
tailpipe' problem, and 'solves' the frame problem by asserting that assertions
never change their validity (another way to view this that it spawns the frame
problem). Corollary 1 above (see Fig. 11) presumes that the axis of 'Situations'
is well defined and continuous, when of course it is neither. As we said earlier,
the items in Fig. 9 are 2rid-order correction terms to a theory of heuristics, and
Fig. 11 is a very simplified 0th-order theory. Intermediate between them lies a
theory which interfaces to each. That first-order theory says that the 0th-order
theory is often a very useful fiction. It is cost-effective to behave as though it
were true, if you are in a situation where your state of knowledge is very
incomplete, where there is nevertheless a great quantity of knowledge already
known, where the task is very complex, etc. At an earlier stage, there may have
been too little known to express very many heuristics; much later, the
environment may be well enough understood to be algorithmized; in between,
heuristic search is a useful paradigm. Predicting eclipses has passed into this
final stage of algorithmization; medical diagnosis is in the middle stage where
heuristics are useful; building programs to search for new representations of
knowledge is still pre-heuristic (Fig. 20).

Notice that the ls t-order theory is itself a heuristic! This is not too disturbing,
since it is dubious that we will ever know enough about thinking to supplant it.
Until your model of me is absolutely perfect, your predictions of my behavior
will diverge more and more as t ime proceeds, and after a relatively short
interval you will have to rely upon heuristics again to understand and predict
my thoughts and actions. And there is probably something akin to Heisen-
berg 's uncertainty principle to guarantee that your model of me can never be
perfectly complete.

1st: If you are in a complex, knowledge-r ich, incomple te ly -unders tood world,
Then it is f requent ly useful to b e h a v e as though it were true that
APPROPRIATENESS(ACtion,Situation) is con t inuous and t ime- invar iant .

FIG. 20. The first-order theory of heuristics: the 0th-order theory is a useful fiction.

T H E N A T U R E OF HEURISTICS 223

3.6. The second-order theory of heuristics

The second-order corrections in Fig. 9 (and, as we shall soon see, Fig. 21
below) now apply to the first-order theory (e.g., the division of heuristics into
generators and pruners). Additionally, some new second-order ones are ap-
parent. For instance, the adjective ' frequently ' , used in Fig. 20, can be replaced
by a body of rules which govern when it is and is not useful to behave so.
Finally, careful examination of the use of heuristics in AM reveals some
regularities which seem to be the opposite of the claims of the 0th-order
theory.

Heuristics are compiled hindsight: they are nuggets of wisdom which, if only
we 'd had them sooner, would have led us to our present state much faster. This
means that some of the blind alleys we pursued would have been avoided, and
some of the powerful discoveries would have been made sooner.

Even the synthesis of a new discovery can be considered to be the result of
employing guidance heuristics, rules of good guessing based on analogy,
aesthetic criteria such as symmetry, or random combination. A few typical such
rules would be "Analogies are useful in formulating biological and sociological
theories", "Symmetry is useful in postulating the existence of fundamental
particles in physics", "Randomly look at empirical data for regularities in
e lementary number theory and plane geomet ry" , "Once a correlation is
observed, consider the extreme cases of that relationship". Those guidance
heuristics were in turn based on several past episodes, hence are themselves
compiled hindsight. Nilsson and others have argued for the primacy of search;
we are simply stating the very special case where we cannot decide which node
to investigate next, but rather must let Time carry a s t ream of events past us,
each event serving as a node for our observation and recording: the primacy of
compiled experiential knowledge.

As new empirical evidence accumulates, it may be useful to ' recompile ' the
new hindsight into heuristics (synthesize new heuristics and modify old ones).
AM demonstra ted that, certainly by the time you 've opened up a whole new
field, you must recompile. Working in point-set topology with geometry
heuristics is not very efficient, nor was AM'S working in number theory using
only heuristics from set theory. The set of heuristics must evolve: some old
ones are no longer useful, some must be refined to suit the new domain, and
some entirely new heuristics may be useful. As the task varies, or as time varies
and one gains new experiences, one 's set of guiding heuristics is no longer
optimal. The utility of a heuristic will vary, then, both across tasks and across
time, and this variance is not necessarily continuous.

Exactly what kinds of changes can occur in a domain of knowledge that
might require you to alter your set of heuristics? In other words, what are the
sources of granularity in the space of 'fields of knowledge '?

First, there might be the invention of a new piece of apparatus. This could be

224 D.B. LENAT

theoretical (such as G6del 's theorem) or technological (such as the electronic
digital computer). The first few painful experiences with a new invention
quickly lead to a specialized corpus of heuristics: rules which tell you how to
use such a thing, where not to poke your fingers, when it's relevant, how to fix
one, what kind to buy, etc. In addition, many of the old heuristics may be less
or (rarely) more useful than they used to be. The invention of the airplane
invalidated most of the long distance travel heuristics then extant, reinforced
the heuristic that said to be skeptical of printed timetables, and led to the
creation of many new rules of thumb for dealing with air travel.

Second, there might be a new technique devised, one which doesn' t actually
depend upon any new apparatus. Again, this can be theoretical (such as the
recent widespread application of divide and conquer in complexity theory) or
practical (such as Maxam and Gilbert 's ingenious method for sequencing
DNA). New heuristics about reliability, applicability, etc. become useful.

Third, a new phenomenon may be observed. When a new invention (e.g., the
telescope) occurs, there are often two immediate new phenomena: the
sociological one of how the invention is used, and the 'real ' one now observ-
able using the invention.

Fourth, and most unusually, there may be a newly-explicated or newly-
isolated concept or field, one which was always around but never spoken about
explicitly. Three such concepts, recently out of the closet, are: paradigms in
scientific research, the whole field of heuristics itself, and the analysis of
algorithms.

In brief, the four sources of granularity in the space of 'domains of knowl-
edge' are precisely those components which, if varied, lead to a new domain of
knowledge. In other words, they define what we mean by a domain of
knowledge: a set of phenomena to study, a body of specific problems about
those phenomena which are considered worth working on, and a set of
methods (both theoretical and experimental, mental and material) for attacking
such questions.

The space of domains is granular, quantized, hence the 'power curves' we
drew earlier for individual heuristics are really step-functions (or histograms)
rather than smooth curves as we 've drawn them. One implication of this is that
there is a very precise point along the task axis where the utility drops from
positive to negative (or zero). Often this is a large, sudden drop across a single
discontinuity in the axis (e.g., when a product emerges, an expert dies, a
theorem is proved).

One frequent problem we face when trying to apply heuristics is not being
able to evaluate their if- parts, their conditions. We may not know whether the
acyclic preconditions demanded by Pert techniques are satisfied; we may not
know for sure whether the difficulty of the request from the aircraft database is
neither too trivial nor too complex; etc. In such a situation, we rely on
heuristics for deciding which heuristics to apply. A few such are:

THE NATURE OF HEURISTICS 225

(1) Nonmonotonic reasoning: assume that some of the uncertain conditions
hold, and tag dependencies so that it is easy to undo consequences of that
heuristic application if it later turns out that the assumption was wrong.

(2) Deferral: if all of the alternative heuristics would cause a certain sub-
action to be taken (as one entry of their then- parts), then take that action now
and hope that by the time it finishes more knowledge will be available to aid in
choosing among the competing heuristics.

(3) Approximation: weaken some of the conditions for applicability of the
heuristics. E.g., replace 'all ' by 'most ' , 'equal ' by 'similar' , eliminate one entire
conjunct from a condition comprised of many conjuntive tests, etc. This applies
to heuristics for choosing heuristics as well; thus one could weaken (2) above,
into a rule that said "if most of the alternative heuristics would cause a certain
action to be taken ...", replacing the technique of guaranteed deferral with
plausible deferral.

This section has now contributed three new elements to our growing theory
of heuristics (see Fig. 21).

(v) HEURISTICS ARE COMPILED HINDSIGHT
(vi) THE SPACE OF 'DOMAINS OF KNOWLEDGE' IS GRANULAR

(vii) USE HEURISTICS TO DECIDE WHICH HEURISTIC TO APPLY NEXT

FIG. 21. Three additional (see Fig. 9) elements of a theory of heuristics.

4. EURISKO: The Origin of New Heurist ics

Recently, the AM program has been extended into EURISKO, a program capable
of discovering new heuristics as well as new mathematical concepts. The AM
heuristics were originally coded as opaque lumps of LISP code- - immutab le and
uninspectable by the system. In EUR~SKO these have each been recast as
full-fledged units, with their content spread out into dozens of kinds of slots.
The corpus of heuristics guides the synthesis, data gathering, and judgmental
evaluation of new concep t s - -be they new math concepts (PrimeNumOfDivis) ,
representat ion concepts (VolatileSlots), or heuristics (General izeRareOp). This
section briefly recounts some of the design considerations and runtime
experiences we have had to date with EURISKO.

4.1. Meta-heurist ics are just heurist ics

Is there something special about the heuristics which inspect, gather data
about, modify, and synthesize other heuristics? That is, should we distinguish
'meta-heuristics ' from 'domain heuristics'? According to our general theory, as
presented in Section 3, domains of knowledge are granular but nearly con-
tinuous along every significant axis (complexity of task, amount of
quantification in the task, degree of formalization, etc.) Thus, our first hypo-

226 D.B. LENAT

thesis is that it is not necessary to differentiate meta-level heuristics from
object-level heuristics--nay, that it may be artificial and counterproductive to
do so.

This is one hypothesis upon which the design of EURISKO rests. Fig. 22
illustrates three heuristics which can deal with both heuristics and mathematical
functions. The first one says that if some concept f has always led to bad
results, then f should be marked as less valuable. If a mathematical operation,
like Compose, has never led to any good new math concepts, then this heuristic
would lower the number stored on the Worth slot of the Compose concept.
Similarly, if a heuristic, like the one for drawing diagrams, has never paid off,
then its Worth slot would be decremented. EURISKO put this rule to frequent
and good use, so there was little chance in practice of it applying to itself
(though in principle it might have).

H12: if
t h e n

H13: if
then

H14: if

t h e n

the results of performing f have always been numerous and worthless,
lower the expected worth of f

the results of performing f are only occasionally useful,
consider creating new specializations of f by specializing some slots of f

a newly-synthesized concept has slots that coincide in value with those
of an already-existing concept,
the new concept should be destroyed because it is redundant

FIG. 22. Three heuristics capable of working on heuristics as well as math concepts.

The second heuristic H13 says that if some concept has been occasionally
useful and frequently worthless, then it's cost-effective to seek new, specialized
versions of that concept, because some of them might be much more frequently
utile (albeit in narrower domains of relevance). Composition of functions is
such a math concept-- i t led AM to some of its biggest successes and failures.
H13 added a task to AM's agenda, which said "Find new specializations of
Compose". When it was eventually worked on, it resulted in the creation of
new functions, such as 'Composition of a function with itself', 'Composition
resulting in a function whose domain and range are equal', 'Composition of
two functions which were derived in the same way', etc. H13 also is present in
EURISKO, but there it also sometimes applies to heuristics, in fact once H13
applied to itself. How did that happen? H13 was sometimes useful and
sometimes not, and so it truly did pay to seek new, specialized variations of
H13. Four of the many specializations were: heuristics which demand that f
has proven itself useful at least 3 times, that f be specialized in an extreme way,
that f have proven itself extraordinarily useful at least once, and that the
specializations still be capable of producing any of the successful past creations
of f. EURISKO'S full results in this case were as follows.

2 heuristics that were more specialized and potentially more useful and more

THE NATURE OF HEURISTICS 227

powerful (including ' . . . then specialize one of its criterial (not merely descrip-
tive) slots').

4 heuristics which looked more specialized but were exactly the same as the
original one (including ' . . . and which has been used several times ').

180 heuristics which were more restricted in applicability, yet per formed
actions identical to the original when they were applicable (e.g., ' . . . and the
concept represents a heuristic r u l e . . . ') .

107 heuristics which were so specialized they would (essentially) never fire
(e.g., ' . . . and the concept is Set-Union' , 'and the concept is a set-theory
function and a geography-function') .

5 heuristics which were simply wrong-- i .e . , would cause much more harm
than good if they were used in guiding the program (including 'if the results of
applying f are never useful', ' then specialize a noncriterial slot').

The conclusion is that heuristics can operate on each other (and themselves)
to synthesize new heuristics, but the process is very explosive, and must be
heavily constrained if it is to be worthwhile pursuing.

Near the end of Section 3.3, we found it feasible to constrain the 'choose the
next heuristic to apply ' problem by using a few heuristics for guidance. A
similar approach was tried in the above case, not by hand but by EURISKO itself:

Rather than hand-crafting some 'meta-rules ' , we simply re-ran EURISKO all
over again, but keeping the four synthesized heuristics to which EURISKO had
given its highest Worth ratings. These are shown in Fig. 23. The first two are
special cases of H13. Each of them also claims to subsume H13, thereby
effectively turning it off for the duration of the second run. Heuristic H 1 5
suggests specializing only those slots of f which are Criterial (defining rather
than commentary) . Thus, a terrible specialization such as used to arise by
altering only the EnglishStatement slot could no longer occur. H 1 6 limits its
recommendat ions to those slots which, viewed as units in their own right, have

H15: if the results of performing f are only occasionally useful,
then consider creating new specializations of f by specializing some criterial

slots of f

H16: if the results of performing f are only occasionally useful,
then consider creating new specializations of f by specializing some

highly-rated slots of f

/-/17: if modifying any 'if- part' of a heuristic H,
then don't replace 'and' by any other predicate.

H18: if a newly-synthesized concept has criterial slots that coincide in value
with those of an already-existing concept,

then the new concept should be destroyed because it is redundant

FIG. 23. Four new heuristics synthesized by EURISKO. Two 'constrained generation' heuristics and
an 'implausible pruning' heuristic replace H13, yielding less explosive results.

228 D.B. LENAT

high Worth values. Occasionally, both rules (H15 and H16) support the same
task, and that task will jump to the top of the Agenda and is worked on almost
immediately.

The next heuristic, H17, is a bit of compiled hindsight which, if only it had
existed all along, would have prevented one of the disastrous explosions of
worthless concepts due to the synthesis of a terrible heuristic. While the other
heuristics in Fig. 23 are small perturbations on existing heuristics, H 1 7 is
completely new (though synthesized using prexisting templates, to be sure).
How did this rule get synthesized?

EURISKO originally used H13, sometimes to good advantage, and decided to
generalize it. A task to that effect was placed on the Agenda, and eventually it
was selected as the best task to work on for a while. EURISKO chose, at random,
the IfPotentiallyRelevant slot as piece of H13 to generalize. This had con-
tained 'if the task is to specialize C, and no slot to specialize has yet been
chosen'; that is, this test was a predicate with two conjuncts. EURISKO general-
ized this by replacing 'and ' by 'TheFirs tOf ' - - i .e . , by eliminating the second
conjunct. In this manner a new, generalized heuristic, H13b, was created. Why
was it so terrible? Instead of placing tasks on the Agenda only when a
particular slot hadn' t been decided, H13b fired even when the selected slot was
known! This resulted in a continuous stream of new tasks, and eventually new
concepts, being synthesized. Finally, another heuristic caught this, by noticing
the sudden influx of uninvestigated, uninstantiated concepts. It destroyed the
mutant H13b, and synthesized a few new heuristics, rules which would have
been capable of preventing such a mutant from ever being created. One of
those eventually got a high Worth rating, and it appears as H 1 7 in Fig. 23.

The final heuristic in Fig. 23 needs little commentary; it is a specialization of
the final heuristic in Fig. 22, but is much more useful, as the empirical results of
rerunning EURISKO showed. With the four heuristics from Fig. 23 added to the
initial state of the EURISKO System, the results changed dramatically. For the
particular case above, of H 1 3 applying to itself, they were:

2 heuristics that were more specialized and potentially useful;
4 heuristics which looked more specialized but were not;
9 heuristic which applied less often and did the same thing;
20 heuristics which were so specialized they would never fire;
4 heuristics which were simply wrong and harmful.
The very g o o d - - a n d the very dangerous--heuris t ics were still generated and

passed on for future consideration; the intermediate ones, the ones which
would appear foolish to a human on first reading them, were almost completely
suppressed. The only way to eliminate any of the four harmful specializations
from being considered, however, was to add (by hand) new pruning heuristics.

Overall, the number of new heuristics synthesized was reduced by an order
of magnitude. Five hundred tasks were worked on during the first execution,
but only 75 tasks needed to be run during the second execution (with the four

THE NATURE OF HEURISTICS 229

new rules f rom Fig. 23). The times for these runs were, respectively, 34 and
9 cpu minutes (on a D E C 20/60, running Interlisp). The 256 k of address space
was quickly exhausted, and it was necessary to employ a means to swap units
out onto disk (we used the RLL language) or a machine with a larger virtual
address space (we now have access to a Xerox Dolphin).

When run for very long periods of time, EURISKO invents ways of entering
infinite loops (e.g., a mutant heuristic which manages to alter the situation so
that it will soon be triggered again). Much of our current work involves adding
new capabilities to the program to detect and break out of such infinite loops,
and to compile its experiences into one or more heuristics which would have
prevented such situations from arising. It is not always easy to explain what is
wrong with a certain 'bad product ' . For instance, one newly synthesized
heuristic kept rising in Worth, and finally I looked at it. It was doing no real
work at all, but just before the credit /blame assignment phase, it quickly cycled
through all the new concepts, and when it found one with high Worth it put its
own name down as one of the creditors. Nothing is 'wrong' with that policy,
except that in the long run it fails to lead to bet ter results.

One additional factor which appears to have a dramatic effect upon the
quality and rapidity of heuristic synthesis is the precise set of slots that are
known to the system. This is the topic of Sections 4.2, 4.3, and 4.4.

4.2 . A t t r i b u t e s o f a h e u r i s t i c

In AM, heuristics examine existing frame-like concepts, and lead to new and
different concepts. To have heuristics operate on and produce heuristics,
EURISKO represents each heuristic as a full-fledged frame-like concept. E.g.,
/-/12 (see Fig. 22) needs to reset the value of the Worth slot (attribute) of the
concept f it operates on, hence even if f is a heuristic it must have a Worth slot
(else we cannot run H12). Similarly, a heuristic that referred to such slots as
Average-running-t ime, Date-created, Is-a-kind-of, Number-of-instances, etc.
could only operate upon units (be they mathematical functions or heuristics)
having such slots.

Fig. 24 illustrates (some of the slots from) a heuristic from EURISKO. Notice its
similarity to the representat ion of a mathematical operat ion (Fig. 5). The
heuristic resembles the math function (compare Figs. 24 and 5) much more
than the math function resembles the static math concept (compare Figs. 5 and
6).

Earl ier we defined a heuristic to be a contingent piece of guidance knowl-
edge: In some situation, here are some actions that may be especially fruitful,
and here are some that may be extremely inappropriate. While some heuristics
have pathological formats (e.g., algorithms which lack contingency; delta
function spikes which can be succinctly represented as tables), most heuristics
seem to be naturally stated as rules having the format 'if-conditions, then-

230 D.B. LENAT

NAME: Generalize-rare-predicate
ABBREVIATION: GRP
STATEM ENT

English: If a predicate is rarely true, Then create generalizations of it
lF-just-finished-a-task-dealing-with: a predicate P \ Jt,:s~ s ArtR[Btlt:S tOVPRtSt
IF-about-to-work-on-task-dealing-with: an agenda A 1--- 1[: POl[{Xr[A[IY-RFI [V~.NI
1F-in-the-middle-of-a-task-dealing-with : *nc~er* /
IF-truly-relevant: P returns Tree less than 5% of Average Predicate
IF-resources-available: at least 10 cpu seconds, at least 300 cells
THEN-add-task-to-agenda: Fill in entries for Generalizations slot of P
THEN-conjecture: P is less interesting than expected

Generalizations of P may be better than P
Specializations of P may be ~cry bad

THEN-modify-slots: Reduce Worth of P by 10%
Reduce Worth of Specializations(P) by' 50%
Increase Worth of Generalizations(P) by 20%

THEN-print-to-user: English(GRP) with "a predicate" replaced b2, P
TH EN-define-new-concepts:

CODED-IF-PART: X(P) .,. <liSP ~uncfion cicfiniti iucd here>

CODED-FHEN'PART: MP) .-. <lsp *v, nc d,:l; d hc~>
CODED-I F-TH EN-P -~ RTS: MP) " ' ' <1 ['~P IL Ckt2'L 1'1I t[~d hcl~->

COMPILED-CODED-IF- FHEN-PAR 1 S: #30875
SPECIALIZA1 IONS: Generalize-rare-set-predicate

Boundary-Specializations: Enlarge-domain-of-predicate
GENERALIZATIONS: Modit3-predicate, Generalize-concept

Immediate-Generalizations: Generalize-rare-contingent-piece-o f knowledge
Siblings: Generalize-rare-heuristic

IS-A: Heuristic
EXAMPLES:

Good-Examples: Generalize Set-Equality into Same-Length
Bad-Fxamples: Generalize Set-Equality into Same-First-Element

CONJECTURES: Special cases of this are more powerful than Generalizations
Good-Conjec-Units: Specialize, Generalize

ANALOGIES: Weaken-overconstrained-problem
WORTH: 600
VIEW: Enlarge-structure
ORIGIN: Specialization of ModiQ,-predicate ~ia empirical induction

Defined-using: Specialize
Creation-date: 6/1/78 11:30

HISTORY:
NGoodExamples: 1 N BadExamples: 1
NGoodConjectures: 3 NBadConjectures: 1
NGoodTasks-added: 2 NBadTasksAdded: 0
AvgCpuTime: 9.4 seconds AvgListCells: 200

F I G . 2 4 . F r a m e - l i k e representation for a heuristic rule for AM. T h e r u l e i s composed of nothing but
attribute:value pairs.

actions'. As the body of heuristics grows, the conditions fall into a few common
categories (testing whether the rule is potentially relevant, testing whether
there are enough available resources to expect the rule to work successfully to
completion, etc.). The actions of the rules also begin to fall into a few common
categories (add new tasks to the agenda, print explanatory messages, define
new concepts, etc.). Each of these categories is worth making into a separate
named attribute which heuristic rules can possess; Sections 4.3 and 4.4 will
show the power which can arise from drawing such distinctions.

THE NATURE OF HEURISTICS 231

So instead of a heuristic having simply an if-slot and a then-slot, it has a
bundle of slots which together comprise the conditions of applicability of the
heuristic, and another bundle of slots which comprise the actions (see Fig. 24).
In addition, there are several non-executable slots that describe the heuristic,
that facilitate indexing of it, that relate it to other heuristics, etc.

By a 'slot ' of a unit, we mean something closely related to the standard
attr ibute/value pairing provided by proper ty lists in LISP. However , there is no
requirement that the value for the slot actually be stored explicitly; rather, we
require only that it be retrievable upon demand. Thus our system, EURISKO, has
a slot called Compiled-Coded-If-Then-Parts ; no rule ever explicitly writes a
value on such a slot, but some rules (such as those which define a rule
interpreter) access such slots and EVAL them. When one is accessed, and found
to be nonexistent, the unit called Compiled-Coded-If-Then-Par ts is fetched,
and its Definition is found. That definition says to access the Coded-If-Then-
Parts slot, and then run the LISP compiler on that value. But suppose the
Coded-If-Then-Par ts slot doesn ' t exist, either; then its definition is consulted.
That results in the Coded-If-Part and the Coded-Then-Par t being accessed, and
their values being put together into a Conditional expression. The Coded-If-
Part doesn ' t exist, and the Definition slot of the unit called Coded-If-Part says
to access- -and conjoin--a l l the slots called If-Potentially-Relevant, If-Truly-
Relevant, If-Resources-Available, etc. This looking up of slots' definitions
continues until the only slots called for are ones which are primitive, which are
actually stored on the proper ty list of the unit. This is reminiscent of macro
expansion, but more semantically guided; ontologically it actually has closer
kinship to the style of knowledge-based automatic program synthesis done by
Balzer, Barstow, Green, and others. See [7] for the origins of this paradigm,
and [10] for more details of this malleable representat ion scheme.

One analogue of hardware caching is to store the virtual slot's values as they
are computed; thus the property list of General ize-Rare-Predicate might even-
tually look like that shown in Fig. 24, even though very few of those slots had
their values stored there explicitly. Should the If-Truly-Relevant slot of
General ize-Rare-Predicate ever change, the system automatically updates the
virtual slots defined using If-Truly-Relevant (in EURISKO, this currently would
include If-Relevant, If-Parts, Coded-If-Parts , If-Then-Parts, Coded-If-Then-
Parts, and Compiled-Coded-If-Then-Parts .)

These two fea tures- -sof tware caching of slot's values, plus the ability to have
virtual slots defined in terms of more primitive ones - - l ead to the dynamic
expansion of the vocabulary of legal slots. Thus the original EURISKO system
had heuristics with primitive Coded-If-Part and Coded-Then-Par t slots; these
were later given definitions in terms of new, more primitive slots (such as
Then-Define-New-Concepts) . Any existing rule, which had only the Coded-If-
Part and Coded-Then-Par t lumps of code, still runs for all purposes. All rules
which ask for either of those slots still run. But new rules have the option of

232 D.B. LENAT

being specified in terms of more refined slots, and their Coded-If-Part and
Coded-Then-Part slots are assembled upon demand out of those smaller pieces.

All the previous attributes (If- parts, Then- parts, C o d e d - . . . parts) have
been effective, executable conditions and actions. These are paramount , since
they serve to define the heuris t ic-- they are the criterial slots. Many non-
effective non-criterial slots are important as well, for describing the heuristics.
Some of these relate the heuristic to other heuristics (Generalizations, Speci-
alizations), to classes of heuristics (Isa), and to non-heuristic concepts (View).
Several slots record the heuristic's origins (Defined-using, Creation-date) and
the cases tudies of its uses so far (Examples).

Once a rich stock of slots is present for heuristics, several new ones can be
derived from them by choosing an n-ary relation R, and n slot names, and
defining R(S1, $2 Sn) as a new type of slot.

First, consider choosing just a single kind of slot (e.g., Examples), and asking
some questions about it: how does it evolve over time in length? what
relationships exist among entries that fill it? how useful are those values?, etc.
Each such question spawns a new kind of slot, e.g., AvgNumberOfEx-
t remeExamples , Re lnsAmongMyExtremeExamples , AvgWor thOfExt reme-
Examples. In EURtSKO, these are thought of, and implemented, as full-
fledged slots in their own right, not as subparts of slots. In our program, the
various if- slots have not been relegated to second-class citizenship beneath
Coded-If-and-Then-Parts . Indentation (in Figs. 5, 6, 24) is used merely as a
visual aid, not to reflect extra levels of parentheses in LISP.

We now have an ad hoc way in which to generate new kinds of slots out of
old ones. To accomplish this in a principled way, one would draw a flowchart of
the primitive slots functions (Get, Put, Assert, etc.), and categorize---for each
kind of flow chart pr imit ive--what 'questions' one can ask about it. Thus, for a
flowchart arrow that symbolizes a Write, one could ask about the old value, the
new value, the amount of time the old value was present, the source of the new
value, etc. More complex slots (such as average length of entries written) could
be defined from these more elementary records. The above method focused on
R(S), i.e. on slots defined by asking unary questions about other slots, but the
method generalizes:

One can take a pair of slots (say ThenConjecture and If-Truly-Relevant) and
a relation (such as Implies) and define a new unary function on heurist ics--a
new kind of slot that any heuristic can have - -where ~ would list Hj as an
entry on that slot only if (in the present case) the ThenConjecture slot of
Implies the IfTrulyRelevant slot of Hi. A good name for this new slot might be
'CanTrigger ' , because it lists some heuristics which might trigger when H, is
fired.

If there are n slots, and m binary relations then this technique generates a
space of rnn 2 'cross-term' type slots. Naturally most of them won't be very
useful, but this provides a generator for a large space of potentially worthwhile

THE NATURE OF HEURISTICS 233

new slots. (This space is actually infinite, as n <- - ran 2 after an exhaustive
application of this process, and one must start all over again.) Some heuristics
guide EURISKO in selecting plausible ones to define, monitoring the utility of
each selection, and obliterating any losers (slots which, empirically, fail to
facilitate the s tatement of or discovery of a highly-rated concept of any type).
An excerpt from EURISKO illustrating this process is given in Section 4.3.

Again, there is nothing magical about the number ' two' , and one could pick
an n-ary relation R and n slot names, and use them all to build a new slot, as
ment ioned in the first paragraph of this subsection. 'Two' is slightly special,
though, in that 'a kind of slot whose values are names of uni ts ' - -such as
' I s -a ' - - i s actually a binary relation, i.e., a subset of Units x Units.

4.3. Discover ing a n e w heurist ic

The heuristics present in AM and EURISKO create new concepts via specializing
existing ones, generalizing (either f rom existing ones or from newly-gathered
data), and analogizing. These are the three 'directions' new heuristics will come
from. We have exemplified Specialization already. One point about General-
ization is worth making: Heuristics which serve as plausible move generators
originate by generalizing from past s u c c e s s e s ; heuristics which prune away
implausible moves originate by generalizing from past f a i l u r e s . Since successes
are much less common than failures, it is not surprising that most heuristics in
most heuristic search programs are of the pruning variety. In fact, many
authors define heuristic to mean nothing more than a pruning aid.

One of the typical ' common sense number theory ' heuristics which AM lacked
was the one which decides that the unique factorization theorem is probably
more significant than Goldbach 's conjecture, because the first has to do with
multiplication and division, while the latter deals with addition and subtraction,
and Primes is inherently tied up with the former operations.

How could such a heurstic be discovered automatically? This is the starting
point for the example we now begin, an example which concludes in the
following Section 4.4. What is the tie between these two sections? That is, what
in the world does discovering heuristics have to do with representat ion of
knowledge? The connection is much deeper than we originally suspected.

Consider just the special case where we restrict our representat ions to
frame-like ones. The larger the number of different kinds of slots that are
known about, the fewer keystrokes are required to type a given frame
(concept, unit) in to the system. For instance, if NGoodConjecs were not
known, it might take 40 keystrokes rather than 1 to assert that ' there are 3
good conjectures known involving prime numbers. ' Moreover, no special-
purpose machinery to process such an assertion would be known to the system.
The larger your vocabulary, the shorter your messages can be.

This is akin to the power Interlisp derives from the thickness of its manual,

2 3 4 D.B. L E N A T

from the huge numbers of useful predefined functions. A broad vocabulary
streamlines communication. Not only does a profusion of slot types facilitate
entering (typing in) a concept, it makes it easier to modify it once it 's entered.
This is because (i) fewer keystrokes are needed in toto, and (ii) the possible
kinds of things you might need to type in are explicitly presented to you (in a
menu).

Not only does a profusion of slot types facilitate entering a concept and
modifying a concept, it makes it easier to discover new concepts-- in particular
new heurist ics--because (i) it is a process of combining terms in a more
powerful, higher level language, and (ii) specialized knowledge may exist, rules
which refer to particular slots of heuristics, telling when and how the com-
bination process should be done.

We are thus claiming that the task of discovering heuristics can be pro-
foundly accelerated---or r e t a rded- -by the choice of slots we make for our
representation. In the case of an excellent choice of slots, a new heuristic would
frequently be simply a new entry on one slot of some concept. Let 's see how
that can be.

Recall that primes were originally discovered by the AM system as extrema of
the function 'Divisors-of' . This was recorded by placing the entry 'Divisors-of '
in the slot called 'Defined-using' on the concept called 'Primes ' (see Fig. 6).
Later, conjectures involving Primes were found, empirically-observed patterns
connecting Primes with several other concepts, such as Times, Divisors-of,
Exponentiation, and Numbers-with-3-divisors. This is recorded on the Good-
ConjecUnits slot of the Primes concept. Notice that all the entries on Primes'
DefinedUsing slot are also entries on its GoodConjecUni ts slot. This recurred
several times while running EURISKO, that is for several concepts besides
Primes, and ultimately the heuristic H 1 9 (Fig. 25) became relevant (its if- part
became satisfied). The notation u • r means slot r of unit u.

/-/19 said that it would probably be productive to pretend that DefinedUsing
was always a subslot 2 of GoodConjecUnits . I.e., H 1 9 applied in the current
situation, with r = Defined Using and s = GoodConjecUnits . It created a new
heuristic, whose effect was the following: "As soon as Eurisko defines any new
concept X in terms of Y, it should expect there to be some interesting
conjectures between X and Y." In our usual if / then-format we might express
this rule the way that H 2 0 is worded (Fig. 25).

2Our usage of the t e rm subslot is d rawn f rom subset , subgroup , etc.; namely , r is a subs lo t of s iff
(for all concep t s u) any en t ry on u - r is a lso a val id en t ry one could p lace on u . s . So
E x t r e m e - e x a m p l e s is a subs lo t of E x a m p l e s , s ince any e x t r e m e e x a m p l e of a concep t u is a lso an
e x a m p l e of u. M o t h e r is a subs lo t of Parent . Subs lo t is a subs lo t of Specia l iza t ions . A n o t h e r way to
f o r m u l a t e this is to say that , for eve ry concep t u, the legal en t r ies for its r s lot a re a subse t of the
legal en t r ies for its s slot. The inverse of the subs lo t r e la t ion is ca l led superslot. U n l i k e some uses of
these words , the fact tha t one slot is a supers lo t of a n o t h e r has no bea r ing on how it is s tored ,
re t r i eved , etc., no r on w h e t h e r one is p r imi t ive and the o the r vir tual .

THE NATURE OF HEURISTICS 235

H 1 9 : if (for m a n y uni ts u) most of the ent r ies on u • r a re a lso on u • s,

then-asser t that r is a subslot of s (with justification H19)

H20 : if a concept u is created with a value in its DefinedUsing slot,
t h e n p lace that value in u's GoodConjecUnits slot (justif = H 19)

FIG. 25. A heuristic which notices and conjectures a containment relationship between slots,
followed by one of the fruits of its labors--a new heuristic.

There is a l ready a very general rule in the system, which says to verify
suspected member s of any slot (members whose justification is questionable).
W h e n H 2 0 appears in the system, and is used to add suspected entries to the
G o o d C o n j e c U n i t s slots of units, this general rule will cause tasks to appear on
the Agenda , tasks which try to confirm or deny whether they deserve to be
there.

The main point here is t h a t / - / 2 0 was not synthesized as a long, compl ica ted
expression such as shown above in Fig. 25. Rather , all EUmSKO did was to go to
the concept called Def inedUsing (the data s t ructure which holds all the
informat ion the p rogram knows about that kind of slot in general), and record
that one of its Superslots is GoodCon jecUn i t s . In o ther words, it added one
a tom to one list. EURISKO also gave this an explicit justification, namely H19 ,
since it is a heuristic, not a fact. That required a second trivial action at the LISP
level. Fig. 26 shows what this record looks like current ly in EURISKO. The 'new
heurist ic ' is simply the first word which is embo ldened below; all the non-bold
text was present in the p rogram already (though most of it was written by the
p rogram itself at earlier times, not filled in by human hands). The second
embo ldened word gives the epistatus (epistemological status) of the new
heur i s t i c - -namely , it is a heuristic and owes its existence to the speculat ions of
heuristic H19 .

Thanks to the large n u m b e r of useful specialized slots, large if/then- rules

NAME: Archetypical-" Defined- Using"-slot
SPECIALIZATIONS:

SubSIots: Really-Defined-Using, Could-Have-Defined-Using
GENERALIZATIONS:

SuperSlots: Origin, GoodConjecUnits
Justification: HI9

IS-A: Kind of slot
WORTH: 300
ORIGIN: Specialization of Origin

Defined-using: Specialize, Origin
Creation-date: 9/18/79 15:43

AVERAG E-SIZE: 1
FORMAT: Set
FILLED-WITH: Concepts
JUSTIFICATION: Formal
CACHE? Always-Cache
MAKES-SENSE-FOR: Concepts

FIG. 26. Part of the concept containing centralizing knowledge about all DefinedUsing slots.

236 D.B. LENAT

can be compactly, conveniently, efficiently represented as simple links. Some of
these useful slots are very general, but many are domain dependent. Thus, as
new domains of knowledge emerge and evolve, new kinds of slots must be
devised if this powerful property is to be preserved. The next natural question
is, therefore, " H o w can useful new slots be found?" The last two sentences are
the final two points of our original five-point programme, and the next
section answers them by way of continuing the example we 've begun in this
section.

To reiterate: EURISKO has already almost a thousand separate kinds of slots,
most of which are defined using other slots, all of which were useful at some
time or times. As a result of this large vocabulary of useful slot types, many
entire heuristics can be recorded succinctly as a single atom or two placed in
the right slot. Heuristic H20 was added to the program (by the program itself)
merely by adding the a tom GoodConjecUni ts to the slot called SuperSIots of
the unit called Archetypicai- 'Defined-Using'-slot .

It is important to make clear that the semantics of a value v appearing as an
entry on slot s of concept c does n o t necessarily mean that it is formally proven
that v merits a position there; rather, it is merely plausible. Any entry v can
have an explicit justification, but in lieu of any information to the contrary, the
default justification is merely empirical. Thus, when an entry, say Palindromes,
is on the GoodConjecUni ts slot of Primes, it may mean that some interesting
conjectures have been found between Primes and Palindromes, or just that it is
suspec ted- -and expec ted- - tha t such conjectures can be found if one spends
the trouble looking for them.

How does the EURISKO program know what the justification of a slot is, if it
isn't explicitly recorded? It goes to the unit for the archetypical representative
of that slot, looks up a slot called Justification, and retrieves that value. In the
case of the Defined-Using slot, there is almost never any question of un-
certainty about its va lues - - the definition of one slot in terms of another has to
be spelled out in black and white. Therefore, as Fig. 26 shows, the Justification
slot for the unit called Archetypical- 'Defined-Using'-slot is filled with the entry
'Formal ' . Things are not so clearcut for entries on most units' Worth slots, and
therefore in the EURISKO system, on the Justification slot of the Archetypical-
'Worth '-s lot unit, there is no entry. Rather, by inheritance from the very
high-level unit called Any-Slot, the justification for Worth values is determined
to be 'Empirical ' .

Thanks to the large number of useful specialized slots, thousands of heuris-
tics which would be bulky if stated as if/then- rules can be compactly,
conveniently, efficiently represented as simple l inks--as a single a tom entered
on the appropriate slot of the appropriate unit. Most of these useful slots are
very general (e.g., Examples, Worth, SuperSlots), but some are domain
dependent (e.g., Predators, Toxicity, HullArmor) . Thus, as new domains of
knowledge emerge and evolve, new kinds of slots must be devised if this
powerful property is to be preserved. The next natural question is, therefore.

THE NATURE OF HEURISTICS 237

" H o w can useful new slots be found?" By way of answering those two
questions, the next section cont inues- -and concludes-- the example we have
begun in this section.

4.4. Heuristics used to extend existing representations

Each kind of representat ion makes some set of operations efficient, often at the
expense of other operations. Thus, an exploded-view diagram of a bicycle
makes it easy to see which parts touch each other, sequential verbal in-
structions make it easy to assemble the bicycle, an axiomatic formulation
makes it easy to prove propert ies about it, etc.

As a field matures, its goals vary, its paradigm shifts, the questions to
investigate change, the heuristics and algorithms to bring to bear on those
questions evolve. Therefore, the utility of a given representat ion is bound to
vary both from domain to domain and within a domain from time to time,
much as did that of a given corpus of heuristics. The representat ion of today
must adapt or give way to a new o n e - - o r the field itself is likely to stagnate and
be supplanted.

Where do these new representat ions come from? The most painless route is
to merely select a new one from the stock of existing representational schemes.
Choosing an appropriate representat ion means picking one which lets you
quickly carry out the operations you are now going to carry out most frequently.

In case there is no adequate existing representation, you may try to extend
one, or devise a whole new one (good luck!), or (most frequently) simply
employ a s e t of known ones, whose union makes all the common operations
fast. Thus, when I buy a bicycle, I expect both diagrams and printed in-
structions to be provided. The carrying along of multiple representations
simultaneously, and the concommitant need to shift f rom one to another, has
not been much s tud ied- -or a t t empted- - in AI to date, except in very tiny
worlds (e.g., the Missionaries and Cannibals puzzle; graphics).

There are several levels at which 'new representat ions ' can be found. At the
lowest level, one may say that AM changed its representat ion every time it
defined a new domain concept or predicate, thereby changing its vocabulary
out of which new ones could be built. At the highest level would be true
open-ended exploration in ' the space of all representat ions of knowledge' . The
latter may someday be possible, but we currently lack adequate experience
to formulate the necessary generation rules.

The example below lies intermediate between these two extremes: it shows
how EURISKO discovers new kinds of slots which can be used to advantage. For
instance, when AM found the unique factorization conjecture (UP-T), it would
have been helpful if AM had at that instant defined a new kind of slot,
Prime-Factors, that every Number could have possessed. H21 is a EURISKO rule
capable of this sort of second-level representat ion augmentat ion (see Fig. 27).

238 D.B. LENAT

H21: if most units in the system have very large s slots (i.e., have many entries
stored therein),

then propose a new task: replace s by new specializations of s

H22: if a slot s is very important, and all its values are units,
then-¢reate-new-kind-of-slot which contains "all the relations among the

values of my s slot"

FIG. 27. Heuristics which occasionally lead to new kinds of slots worth having.

The vague terms in the rule have specific computat ional interpretations, of
course, in ~URISKO; for instance, ' large' is coded as 'more than twice the
average size of all slots, and also larger than the average number of slots a unit
has'. In one experiment, the various types of examples (extreme, typical,
boundary, etc.) were not given separate slots initially, but were unioned into
huge Examples slots. The above rule then caused the program to focus on
defining new specializations of Examples; recall that we term such specializa-
tions 'subslots' , though this does not mean that they are implemented as pieces
of their superslots; the old Examples slot still exists and has many entries, even
if every one of those entries also exists on some subslot(s) of Examples. Note
that the subslots will not in general be disjoint. In a more domain-dependent
usage, the above rule causes Factors to be split up into PrimeFactors, Odd-
Factors, LargeFactors, etc.

A slightly more advanced level at which 'new representat ions ' are syn-
thesized by EURISKO is to actually shift f rom one entire scheme to a n o t h e r - -
potentially novel - -one . The first two rules in Fig. 28 indicate when a certain
type of shift is appropriate. All the heuristics of this type are specializations of
the third, general one, H25.

H23: i f the problem is a geometric one,
then draw a diagram

H24: if most units have most of their possible slots filled in,
then shift from property lists to record structures

H25: if some operation is performed frequently,
then shift to a representation in which it is inexpensive to perform

FIG. 28. Heuristics which occasionally effect a change of representation.

Let us continue our example. H 2 2 (shown above, in Fig. 27) is capable of
reacting to a situation by defining an entirely new slot, built up from old ones, a
new slot which it expects will be useful. When the number stored in the Worth
slot of the GoodConjecUni ts concept is large enough, the system attends to the
task of explicitly studying GoodConjecUnits . Several heuristics are relevant
and fire; among them is H22, the rule shown above. It then synthesizes

THE NATURE OF HEURISTICS 239

a whole new unit, calling it Rela t ionsAmongEntr iesOnMy'GoodCon-
jecUnits'Slot. Every known way in which entries on the GoodConjecUnits slot
of a concept C relate to each other can be recorded on this new slot of C. In
practice, this slot typically had only a few entries, for most units: only relations
which were explicitly defined could be perceived and recorded therein (e.g., all
the various types of slots), and EURISKO is not designed to spend its time in
undirected searching for entries for that slot.

How was the new slot used by the program? Take a look at the Primes
concept (Fig. 6). Its GoodConjecUnits slot contains the following entries:
Times, Divisors-of, Exponentiation, Squaring, and Numbers-with-three-
divisors. The first two of these entries are inverses of each others; that is, if you
look over the Divisors-of unit you will see a slot called Inverse which is filled
with names of concepts, including Times. Similarly, still looking over the Times
unit, one can see a slot called Repeat which is filled with the entry Exponentia-
tion, and one can see a slot called Compose filled with Squaring. So Inverse and
Repeat and Compose are some of the relations connecting entries on the
GoodConjecUnits slot of Primes, hence the program will record Inverse and
Repeat and Compose as three entries on the Relat ionsAmongEntr iesOnMy
'GoodConjecUnits 'Slot slot of the Primes concept.

Now it so happens that several concepts wind up with 'Compose ' and
'Inverse' as entries on their Rela t ionsAmongEntr iesOnMy'GoodConjecUni ts '
Slot slot. The alert reader may suspect that this is no accident, and an alert
program should suspect that, too. Indeed, heuristic H26 (Fig. 29) says that it
might be useful to behave as if 'Compose ' and 'Inverse' were always going to
eventually appear there. There is no formal justification behind this kind of
anticipation, but it is cost-effective to follow such a policy; it is akin to the
psychological phenomenon of expectation-filtering.

H26 causes EURISKO t o add Compose and Inverse to the slot called Expec-
tedEntries of the concept called Rela t ionsAmongEntr iesOnMy'GoodCon-
jecUnits'Slot. This one small act, the creation of a pair of links, is in effect
creating a new heuristic equivalent to H27 (Fig. 29).

H26: if (for many units u) the s slot of u contains the same
values vj,

then-add-va lue vj to the ExpectedEntries slot of the Typical-s-slot unit

H27: if a concept u gets entries X and Y on its GoodConjecUnits

slot,
then-predict : u will also eventually get Inverse(X), Inverse(Y),

and Compose (X, Y) there as well

FIG. 29. Entries which usually crop up on s slots can be expected to appear there. H26 says this,
and one of its applications spawned a heuristic equivalent to H27 (but more compact).

240 D.B. LENAT

H o w is this ac tual ly used? Cons ide r wha t occurs when the p rog ram def ines a
new concept , C, which is De f inedUs ing Divisors-of . A s soon as that concep t is
fo rmed , the heuris t ic link f rom Def inedUs ing to G o o d C o n j e c U n i t s au tomat i c -
ally fills in Div isors -of as an en t ry on the G o o d C o n j e c U n i t s slot of C. Next , the
l inks just i l lus t ra ted above come into act ion, and p lace Inverse and C o m p o s e
on the R e l a t i o n s A m o n g E n t r i e s O n M y ' G o o d C o n j e c U n i t s ' S l o t of C. That in turn
causes the inverse of Divisors-of , namely Times, to be p laced on the G o o d -
C o n j e c U n i t s slot as well as the a l r e a d y - p r e s e n t ent ry , Divisors-of . Final ly , that
causes the p r o g r a m to go off looking for con jec tu res be tween C and e i ther
mul t ip l ica t ion or division. W h e n a con jec tu re comes in connec t ing C' to one of
them, it will get a h igher a pr ior i e s t ima ted wor th than one which does not connec t

to them.
If only we had the new heurist ics back when Pr imes was first def ined , they

would have the re fo re e m b o d i e d enough ' c o m m o n sense ' to p re fe r the Un ique
Fac to r i za t ion Theo rem to G o l d b a c h ' s conjec ture . I f we had them then, these
heuris t ics would have led us to ou r p resen t s ta te much sooner . Because of our
a s sumpt ions abou t the con t inu i ty of the world , such heuris t ics are still wor th
having and u s i n g - - w e expect t hem to be useful f rom t ime to t ime in the future.

Not ice that there is noth ing special about m a t h e m a t i c s - - t h e newly syn-
thes ized heuris t ics have to do with very genera l slots, l ike Def inedUs ing and
G o o d C o n j e c U n i t s . Fo r instance, as soon as a new concept (say Midd le -Class) is
def ined using the old slot Income, the p rog ra m immed ia t e ly fills in the
bo ld p r in ted in format ion in Fig. 30.

NAME: Middle-Class
Defined-using: Income
RelationsAmongEntriesOnMy'GoodConjecUnits'Slot: Inverse, Compose
Good-Conjec-Units: Income, Spending, Earnedlnterest

FIG. 30. A fragment of a non-math concept for which some predictions have been recorded (in
boldface), thanks to the heuristics shown in Fig. 29.

Thus, EURISKO goes off looking for (and will expec t more f rom) con jec tu res
be tween Midd le -Class and any of Income , Spending , and E a r n e d l n t e r e s t . In
one run of the EUR1SKO system, some such con jec tu res were then found
(including 'Midd leC la s s spends all its income ') , but we p r i m e d the sys tem with
very ca r i ca tu red da t a abou t A m e r i c a n s ' incomes and spend ing habi ts . W h e n we
r e m o v e d heur is t ic H22, R e l a t i o n s A m o n g . . . slots never was def ined, so H26
did not fire, so Income and Spend ing were not p laced on the G o o d C o n j e c U n i t s
slot of Midd leCiass , and the p reced ing con jec tu re was never found. So the new
slot is useful, though it has a t e r r ib le name, and the new little heur is t ics (which
looked l ike l i t t le l inks or facts but were actual ly permission to make daring
guesses) were power fu l af ter all.

W e have re l ied heavi ly on ou r r ep re sen t a t i on be ing very s t ruc tured ; in a very

THE NATURE OF HEURISTICS 241

uniform one (say a calculus of linear propositions, with the only operations
being Assert and Match) it would be difficult to obtain enough empirical data
to easily modify that representation. This is akin to the nature of discovering
domain facts and heuristics: if the domain is too simple, it is harder to find new
knowledge and-- in part icular--new heuristics. Heuristics for propositional
calculus are much fewer and weaker than those available for guiding work in
predicate calculus; they in turn pale before the rich variety available for
guiding theorem proving ' the way mathematicians really do it'. This is an
argument for attacking seemingly-difficult problems which turn out to be lush
with structure, rather than working in artificial worlds so constrained that their
simplicity has sterilized them of heuristic structure.

4.5. Recent results of the EURTSKO program

Much of the preceding discussion has been quite abstract. In this section we
present some of the concrete results produced by the EUaISKO program so far,
with some glimpses into how they were obtained. EUaISKO has hundreds of
units for six different domains: Set Theory, Number Theory, Oil Spill Amel-
ioration, Device Physics, Games, Heuristics itself, and Representation itself.

4.5.1. Results in the games domain

As our first example, let us consider EUalSKO'S exploits in a Games task,
exploring the design of naval fleets conforming to a body of (several hundreds
of) rules and constraints as set forward in Traveller: The Trillion Credit
Squadron. EURIS~O designed a fleet of ships suitable for entry in the recent
Origins national wargame tournament, held at Dunfey's Hotel, in San Mateo,
CA, over July 4 weekend, 1981. The traveller tournament, run by Game
Designers Workshop (based in Normal, Illinois), was single elimination, six
rounds. EUaISKO'S fleet won that tournament, thereby becoming the ranking
player in the United States (and also an honorary Admiral in the Traveller
navy). This win is made more significant by the fact that the author had never
played this game before, nor any miniatures battle game of this type, and there
were no practice rounds.

Each participant has a budget of a trillion 'credits' (roughly equal to dollars)
to spend in designing and building a fleet of futuristic ships. There are over
one hundred pages of rules which detail various costs, constraints, and
tradeoffs, but basically there are two levels of variability in the design process:

(1) Design an individual ship: worry about tradeoffs between types of
weapons carried, amount of armor on the hull, agility of the vessel, grouping of
weapons into batteries, amount of fuel carried, which systems will have
backups, extra replacement crew carried, etc.

(2) After designing several distinct kinds of individual ships, group sets of
them together into a fleet. The fleet must meet several design constraints (e.g.,

242 D.B, LENAT

ships having a total fuel tonnage of at least 10% of the total fleet fuel tonnage
must be capable of refueling and processing unrefined fuel), and in addition
must function tactically as a coherent unit.

EURISKO was given the rules of the game, and the constraints on the design
process, and spent a great amount of time (roughly 500cpu hours on a Xerox
Dolphin) managing a heuristically-guided evolution process. Fleets would fight,
and the simulated battle would be analyzed (by some of EURISKO'S heuristics) to
determine which design policies were winning, and--occas ional ly- -what for-
tuitous circumstances could be abstracted into new design heuristics. An
example of the former was when the Agility of ships gradually decreased, in
favor of heavier and heavier Armor plating of the hulls. An example of the
latter was when a purely defensive ship was included in an otherwise-awful
fleet, and that fleet could never be fully defeated because that defensive ship,
being very small, unarmored, and super agile, could not be hit by any of the
weapons of the larger nearly-victorious fleet. The author culled through the
runs of the program every 12 hours or so of machine time (i.e., each morning,
after letting it run all night), weeding out heuristics he deemed invalid or
undesirable, rewarding those he understood and liked, etc. Thus the final
crediting of the win should be about 60/40% Lenat/Euals~o, though the
significant point here is that neither Lenat nor EURISKO could have won alone.
Most of the battles are tactically trivial, the contest being almost decided by the
designs of the two fleets; t ha t - - and the thickness of the tu lebooks- -were the
reason this appeared to be a valid domain for EUR1SKO.

One very general result EURISKO abstracted from this process was a 'nearly
extreme' heuristic: In almost all Traveller fleet design situations, the right
decision is go for a near ly- -but not quite---extreme solution. Thus, the final
ships had Agility 2 (slightly above the absolute minimum), one weapon of each
type of small weapons (rather than 0 or many), the fleet had almost as many
ships as it could legally have but not quite (93 instead of 95), etc. Our
original intuitions were to have a modera te number of large ships, each with
one enormous spinal mounted weapon capable of blasting another ship to
pieces with a single shot; EURISKO gradually changed this into a fleet consisting
of a large number of small ships, collectively bearing an enormous number of
small missile weapons. The fleet had almost all (75) ships of this type, though
there were a couple of ships which were small and agile, and a couple of ships
which had weapons large enough to destroy any enemy ships that were small and
agile.

Almost all the other entrants in the final tournament had fleets that consisted
of about 20 ships, each with a huge spinal mount weapon, low armor, and fairly
high agility, and a large number of secondary energy weapons (laser-type
weapons). This contrasted with Eurisko's fleet, and such an enemy was rapidly
decimated, at a loss of about a third of Eurisko 's line ships, and no risk to its
specialty ships.

THE NATURE OF HEURISTICS 243

Eurisko 's first opponent resigned after one exchange of fire, when the
pattern became clear. Its second opponent did some calculations and resigned
without ever firing a shot. The subsequent opponents resigned during the
second round. The few specialty ships remained unused until the final round of
the tournament , battling for 1st vs. 2nd place. That opponent also had ships
with heavy armor, few large weapons, low agility, etc. He was lacking any fast
ships or fast-ship-killers, though. The author simply pointed out to him that if
Eurisko were losing then we could put only our fast ship out in the front line,
withdraw the others and repair them, and effectively start the battle all over
again. This could go on until such time as Eurisko appeared to be winning,
when we would let it continue to termination. The opponent did a few
calculations and surrendered without fighting. Thus, while most of the tour-
nament battles took 2-4 hours, most of those involving EURISKO took only a few
minutes.

The tournament directors were chagrined that a bizarre fleet-such as this one
captured the day, and a similar fleet (though not so extreme) took second
place. As a result, the rules for future years ' TCS tournaments have been
changed, to dramatically reduce the design singularities which EURISKO (work-
ing with the author) found.

4.5.2. Results in programming and representation

A few hundred of the most common INTERLISP function have been represented
as units within EUmSKO. This enables it to monitor and modify its own
behavior, as well as synthesize and modify new LISP functions. EURISKO gathers
data about LISP, just as it does about e lementary mathematics, or games. For
example, EURISKO was originally given units for E Q and E Q U A L , with no
explicit connection recorded between them. Eventually, it got around to
recording examples (and nonexamples) for each, and conjectured that E Q was
a restriction (a more specialized predicate) of E Q U A L , which is true. A
heuristic suggested disjoining an E Q test onto the front of E Q U A L , as this
might speed E Q U A L up. Surprisingly (to the author, though not to EURISKO), it
did! This turned out to be a small bug (since fixed) in the then-extant LmP. Once
it had the conjecture about E Q being a special kind of E Q U A L , it was able to
look through its code and specialize bits of it by replacing E Q U A L by EQ, or
to generalize them by substituting in the reverse order. EURISKO analyzed the
differences between E Q and E Q U A L , and came up with the concept we refer
to as LISP atoms. In analogue to humankind, once EURISKO discovered atoms it
was able to destroy its environment (by clobbering C D R of atoms).

4.5.3. Results in device physics

After discussion with Bert Sutherland and Jim Gibbons, it was decided that
one domain ripe for attack by an exploration system such as EURISKO is the
design of VLSI circuits. We began by building in a knowledge base of concepts
such as groups in the periodic table, doping, carriers, annihilation, etc. Thanks

2 4 4 D . B . L E N A T

to a very carefully chosen vocabulary of nouns (n-doped-region, p-doped-
region, insulator) and verbs (abut-regions, apply-electric-field), many elemen-
tary physical devices were trivial, short 'sentences' in that language (e.g., the
silicon diode, MOSFET transistor). That was not particularly surprising, and
further discussion caused us to go up a level of abstraction, and discuss the
conduction paths in a circuit, rather than the specific behavior of charged
carriers moving through various types of materials.

Thus, considering only NMOS technology, one can view a transistor simply
as a gate which, when 'on', allows current to flow between its two terminals. In
other words, emitter and collector are symmetric in NMOS, though most
designs try to be less technology-dependent and don' t take advantage of that
symmetry as EURISKO did. Recent advances in polysilicon recrystallization
fabrication techniques make it feasible to design three-dimensional VLSI
devices, a series of alternating layers of (i) metal and insulator material, (ii)
doped semiconductor material and channel material. EURISKO explored various
configurations of these materials, using a few heuristics to constrain its search
through this enormous space. Some heuristics constrain the generation process,
others recognize interesting or useful functionality----or inconsistencies--in the
resultant candidate circuit. Almost immediately it happened upon a surpris-
ingly tiny design for a memory cell; see Fig. 31b for an illustration of that
design, and Fig. 31a for the corresponding two-dimensional circuit diagram of

1 1

N2 N2

N3 N1

N3 N1

N4 N4

0 0

FIG. 31a. A c o n v e n t i o n a l c i rcui t fo r a f o u r - t r a n s i s t o r m e m o r y cell. Pu l s ing a cause s a to s t ay at 1,

a n d /3 to d r o p to 0. S imi lar ly , pu l s ing /3 d r ives it to 1 a n d dr ives a to 0. E a c h s t a t e c h a n g e is
p e r m a n e n t , a t leas t unt i l the next pulse is r e c e i v e d a t a o r / 3 . W h e n g a t e G~ is on , it c o n n e c t s nl to

n2, a n d it a l so c o n n e c t s n3 to n4; w h e n g a t e G2 is on , it c o n n e c t s m to n~, a n d it c o n n e c t s n3 to n2.

T H E N A T U R E OF H E U R I S T I C S 2 4 5

N4 C N 1 C Substrate Layer

~!! g 5= iiiii=,~ii::!iig i i!?:: : ii Metal Layer

~
N2 C N3 C N4 i!ii Substrate Layer

1 0

FIG. 3lb. A side view of EURISKO'S very compact design for building the same memory cell in
3-dimensional NMOS, specifically by using one metal layer sandwiched between two substrate
layers. Shaded regions represent metal; n stands for n-doped semiconductor material; c regions
represent channel material with thin oxide coatings; clear regions in the middle (metal) layer represent
insulator. By co-identifying the left and r ightmost columns, after giving the device a 'half-twist' in
3-space, we have a design which is realizable on the surface of a M/Sbius strip, and implements the
memory cell in a mere dozen 'tiles'.

its functionality. Alas, the cell can be realized most efficiently on the surface of
a Mrbius strip, hence its commercial future may be dim. It does serve to
illustrate the potential richness of this domain, as yet unexplored by human
beings, and the potential richness of the EURISKO approach. One of the most
promising uses for programs which automatically glean heuristics is in fields
which are just opening up, in which people have not yet mined many of the
powerful heuristics. By now, several useful new concep t shave originated from
the device physics line of research with EURISKO, including a higher functional
level of abstraction for describing circuits quite distinct from 'sticks' diagrams
(involving terms like 'potential ly-connected-to ' and n-pole 'abstract gates').

4.5.4. Results in heuristics

EURISKO has synthesized many new heuristics using the techniques presented in
Sections 4.1-4.4. Sometimes this has occurred as a by-product of other activi-
ties, during the course of working in some particular task domain. Additionally,
EURmKO has f rom time to t ime chosen to focus on the domain of Heuretics
explicitly for a while. Among the new heuristics discovered so far by the
program are:

Several specific to gaming (such as, " In Traveller, prefer a rmor to agility", or
"In designing a military force, go nearly but not quite to extremes").

Several specific to mathematics (such as, " I f an inverse function is going to
be used even once, then it 's probably worth it to search for a fast algorithm for
computing it").

246 D.B. LENAT

Several specific to programming (such as, " I f you can use E Q instead of
E Q U A L , do it to save t ime", or "Sometimes 'and ' means 'do in sequence' , and
sometimes it means 'do simultaneously', and those two cases are important
to distinguish before you consider generalizing or specializing a piece of
code").

A few specific to heuristics itself (such as, " I f you ' re generalizing a heuristic,
then avoid changing the main connective of the premises of the heuristic from
'and ' to 'or ' ; it is a generalization but it leads to terrible results such as infinite
loops and LISP errors").

Many additional heuristics have been created synergistically, with credit to
both EURISKO and one or more humans working with that program. For
example:
-In Traveller, having a small agile ship might give you an infinite ' restart '

capability for the battle (this made the difference between 1st and 2nd place
at the tournament).

-When designing three-dimensional VLSI devices, in alternating layers of
metal and semiconductor material, have the 'wires' run Nor th-South in odd
metal layers, and Eas t -West in even metal layers (amusingly, this is an
analogue of an ancient T F L heuristic).

- W h e n folding a 2-dimensional NMOS design into 3 dimensions, look for two
gates whose controls are identical, and implement them as a single '2-pole '
gate controlling regions both above and below it' (compare Figs. 31a and 31b
to see how four transistors were replaced by only two gates).

5. Conclusions

The field of Heuretics was proposed as a promising one for AI to investigate,
one which may aid us in unders tanding--and constructing---expert systems. We
began by defining what it meant for something to be a scientific discipline, and
showing that Heuretics met these criteria.

Heuretics asks "What is the source of power of heuristics?", to which our
first-order reply is: "Behave as though APPROPRIATENEss(Action,Situation) were
time-invariant and continuous in both variables." Heuristic search is adequate
for modeling worlds which are observable (so heuristics can be formed), stable
(so heuristics abstracted from past experiences will be useful in the future), and
continuous (so that if A was (in)appropriate in S, then actions similar to A will
be (in)appropriate in situations similar to S). Corollaries of this provide the
justification for the use of analogy, generalization, and even for the utility of
memory. The central assumption was seen to be just t ha t - - an assumption. I t 's
often false in small ways, but nevertheless the central assumption has proven
itself to be a useful fiction to be guided by.

Using the metaphor of APPROPRIAXENESS being a function, we considered
graphing the power curves of a heuristic (the utility of that heuristic as a

THE NATURE OF HEURISTICS 247

function of task being worked on), and were able to see the ga ins- -and
dangers----of specializing and generalizing heuristics to get new ones. Con-
sideration of such curves led us to an algorithm for deciding in which order to
obey relevant heuristics, and suggested several specific new attributes worth
measuring and recording for each heuristic (e.g., the sharpness with which it
flips from useful to harmful, as one leaves its domain of relevance).

By arranging all the world 's heuristics (well, at least all of AM'S, and later
several more from chess, biological evolution, naval fleet design, device phy-
sics, plumbing, game-playing, and oil spills) into a hierarchy using the relation
'More-Genera l -Than ' , we were surprised to find that hierarchy very shallow,
thereby implying that analogy (a side-to-side operation) would be more useful a
method of generating new heuristic than would specialization or generalization
(up-and-down operations). By noting that both Utility and Task have several
dimensions, most of this 'shallow-tree ' problem went away. By noting that two
heuristics can have many important relations connecting them, of which
More-Genera l -Than is just one example, the shallowness problem turns into a
powerful heuristic: if a new heuristic h is to differ from an old one along some
dimension (relation) r, then use analogy to get h if r 's graph graph is shallow,
and use generalization/specialization if r's graph is deep. We also discussed
some useful slots which heuristics can have, and a principled method for
generating new kinds of slots.

Heuretics asks " H o w do new heuristics originate?", to which we recursively
reply: "By generalizing other heuristics, abstracting from data, specializing
other heuristics, finding analogies to other heuristics and to processes whereby
other heuristics were formed." EURmKO demonstra ted that these processes
themselves can be guided adequately by a corpus of heuristics, that there is no
need to distinguish such 'meta-heuristics ' f rom 'object-level heuristics', a n d - -
surprisingly to us - - tha t analogy has as much potential as generalization or
specialization. In more detail: AM demonstra ted the adequacy of the heuristic
search paradigm to guide a program in formulating useful new concepts,
gathering data about them, and noticing relationships connecting them.
However , as the body of domain-specific facts grew, the old set of heuristics
became less and less relevant, less and less capable of guiding the discovery
process effectively. New heuristics must also be discovered.

EURISKO was developed as the successor system, one whose field of expertise
was not mathematics, or diagnosis, but ra ther Heuretics. That is, EUaISKO had a
corpus of heuristics which, as they ran, gathered data about their own running,
and synthesized new members of that corpus (and modified old ones). As
expected, this process was very slow and explosive. By taking the four best (in
EURISKO'S judgment) synthesized heuristics, and rerunning the program from
scratch, almost an order of magnitude improvement in performance was
obtained (a factor 7 in the number of tasks executed, a factor of 8 in the
number of losing heuristics synthesized, a factor of 4 in the cpu t ime involved,

2 4 8 D.B. L E N A T

and a factor of 9 in the storage cells used). The explosive process of synthesiz-
ing heuristics was made feasible only by having ' the right representat ion' .
EURISKO, like AM, used a schematized representation, so the right representation
meant having a large repertoire of very useful kinds of slots.

We saw how, in EURISKO, heuristics led to the development of useful new
kinds of slots, and to improved representations of knowledge. Note that the
same representation AM used for attributes and values of object-level math
concepts was also used to represent heuristics and even to represent represen-
tation. E.g., Primes (a set of numbers), General izeRarePredicate (a heuristic),
General izeRareHeuris t ic (a meta-heuristic), and DefinedUsing (a represen-
tation concept) are all represented adequately as concepts (units with slots
having values). Since meta-heuristics are not distinguished from heuristics, a
single interpreter of necessity runs both types of rules, and is itself represented
as a collection of units (and dynamically redefinable). While meta-heuristics
could be tagged to distinguish them from heuristics, the utility of doing so rests
on the existence of rules which genuinely treat them differently s o m e h o w - - a n d
few such rules have to date been encountered. Finally, we surveyed some
recent results obtained by running EURISKO in several different domains outside
mathematics, namely: wargames, programming, and circuit design.

To advance the Heuristics research programme, much more must be known
about analogy, and more complete theories of heuristics and of representation
must exist. Toward that goal we must obtain more empirical results from
programs trying to find useful new domain-specific heuristics and represen-
tations.

A C K N O W L E D G M E N T

Productive discussions with John Seely Brown, Bruce Buchanan, Bill Clancey, Ed Feigenbaum, Johan
deKleer, John Doyle, George Polya, Mark Stefik, and Mike Williams have heavily influenced this
work. Danny Bobrow, Bruce Buchanan, Bill Clancey, and Russ Greiner provided valuable critiques of
earlier versions of this paper, which have led to substantial changes in its organization and content.
Section 2 presents lessons learned from AM, from which I thank Bruce Buchanan, Ed Feigenbaum,
Cordell Green, Don Knuth, and Alien Newell. The data for Section 3.4's 'shallowness' conclusion
about the tree of heuristics was gathered while I was at CMU, with the aid of Herb Simon and Woody
Bledsoe. Much of Section 4 relies upon RLL, a self-describing and self-modifying representation
language constructed by Russ Greiner and the author. The three-dimensional VLSI design work
described in Section 4.4.3 is being pursued in collaboration with Bert Sutherland and Jim Gibbons.
Finally, I wish to thank XEROX PARC'S CIS and Stanford University 's HPP for providing superb
environments (intellectual, physical, and computational) in which to work. Financial support is
provided by O N R (N00014-8(l-C-0609) and XEROX.

R E F E R E N C E S

1. Barr, A. and Feigenbaum, E.A. (Eds.), Handbook of Artificial Intelligence, Vol. II (Kaufman,
Los Altos, 1981).

2. Seely Brown, J. and VanLehn, K., Repair theory: A generative theory of bugs in procedural
skills, J. Cognitive Sci. 4 (4) (1981).

THE NATURE OF HEURISTICS 249

3. Clancey, W.J., Dialogue management for rule-based tutorials, Proc. Sixth Internat. Joint
Conference on Artificial Intelligence, Tokyo, 1979.

4. Davis, R. and Lenat, D., Knowledge Based Systems in Artificial Intelligence (McGraw-Hill,
New York, 1982).

5. Feigenbaum, E.A., Knowledge engineering: The practical side of artificial intelligence, HPP
Memo, Stanford University, Stanford, CA, 1980.

6. Gaschnig, J., Exactly how good are heuristics?: Toward a realistic predictive theory of best-first
search, Proc. Fifth Internat. Joint Conference on Artificial Intelligence, Cambridge, MA, 1977.

7. Green, C., Waldinger, R. Barstow, D., Elschlager, R., Lenat, D., McCune, B., Shaw, D. and
Steinberg, L., Progress report on program understanding systems, AIM-240, STAN-CS-74-4A4,
AI Lab, Stanford, CA, 1974.

8. Hayes-Roth, F., Waterman, D. and Lenat, D. (Eds.), Building Expert Systems, Proc. 1980 San
Diego Workshop in Expert Systems (Addison-Wesley, Reading, MA, 1982).

9. Lenat, D.B., On automated scientific theory formation: A case study using the AM program, in:
J. Hayes, D+ Michie and L.I. Mikulich (Eds.), Machine Intelligence 9 (Halstead, New York,
1979) 251-283.

10. Lenat, D.B., and Greiner, R.D., RLL: A representation language language, Proc. First Annual
Meeting of the American Association for Artificial Intelligence (AAAI), Stanford, CA, 1980.

11. Minsky, M., Steps toward Artificial Intelligence, in: Feigenbaum and Feldman (Eds.), Com-
puters and Thought (McGraw-Hill, New York, 1963).

12. Newell, A. and Simon, H., Computer science as empirical inquiry: Symbols and search, Comm.
A C M 19 (3) (1976).

13. Poincarr, H., The Foundations of Science (The Science Press, New York, reprinted, 1929).
14. Polya, G., How to Solve It (Princeton University Press, Princeton, N J, 1945).
15. Pushkin, V.N. (Ed.), Problems of Heuristics (Keter, Jerusalem, 1972).
16. Simon, H.A., The Science of the Artificial (MIT, Cambridge, MA, 1969).
17. Winston, P.H., Learning structural descriptions from examples, Project MAC TR-231, MIT AI

Lab, Cambridge, MA, 1970.

R e c e i v e d N o v e m b e r 1980; revised version received A p r i l 1981

