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ABSTRACT 

Builders of expert rule-based systems attribute the impressive performance of their programs to the 
corpus of knowledge they embody: a large network of facts to provide breadth of scope, and a large 
array of informal judgmental rules (heuristics) which guide the system toward plausible paths to 
follow and away from implausible ones. Yet what is the nature of heuristics? What is the source of 
their power? How do they originate and evolve? By examining two case studies, the AM and EURISKO 
programs, we are led to some tentative hypotheses: Heuristics are compiled hindsight, and draw their 
power from the various kinds of regularity and continuity in the world; they arise through specializa- 
tion, generalization, and--surprisingly often--analogy. Forty years ago, Polya introduced Heuretics 
as a separable field worthy of study. Today, we are finally able to carry out the kind of computation- 
intensive experiments which make such study possible. 

1. Overview 

The impressive performance of expert knowledge-based systems [1, 5, 8] leads 
us to consider anew the field of Heuretics: the study of the informal, judg- 
mental 'rules of thumb' which underlie such programs. To understand the 
successes of the expert systems, and perhaps ultimately to improve such results. 
Heuretics asks What is the source of power of heuristics? Similarly, with an eye 
toward understanding, facilitating, and perhaps ultimately automating the 
construction of expert systems, Heuretics asks How do new heuristics originate? 
Experiments with the AM and EURISKO programs provide some initial answers, 
and some concrete methodological suggestions about how to go about getting 
better answers. 

*The author is an assistant professor of Computer Science at Stanford University, a member of 
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1.1. What  is the source of power of heuristics? 

By examining the situations in which heuristics fail (in Section 2.3 and 3.1), we 
are led (in Section 3.2) to hypothesize that the underlying source of heuristics' 
power is a kind of two-dimensional continuity. If a heuristic H was (or would 
have been) useful in situation S, then it is likely that heuristics similar to H will 
be useful in situations similar to S. In other words, if we could somehow 
actually compute  APPROPaIATENESS(ACtion,Situation), that function would be 
continuous in both variables, and would vary very slowly. 

One useful exercise (Section 3.3) is to consider the graph of APPaOPRIATENESS 
values for a fixed action, varying over  the situations in which it might be 
applied. The language of graphs of functions is then at our disposal, an 
attractive metaphor  within which to discuss such processes as specializing a 
heuristic, using multiple heuristics, and measuring attributes of a heuristic's 
performance.  

Of course the world isn't so accomodating. There  are many possible 
measures of APPROPRIATENESS (efficiency, low down-side risk, comprehen-  
sibility), and many dimensions along which Situations can vary (difficulty, time, 
importance, subject matter).  Compounding this is the nonlinearity of the 
Situation space along most of these dimensions. Thus the 'zero-th order theory '  
espoused in the last two paragraphs is merely a metaphor .  

Yet it is too attractive, too close to what human experts actually do, to reject 
out of hand. It can be extended into a "first order theory":  It is frequently 
useful to behave as though the zero-th order theory were true, i.e., to behave 
as though APPROPRIATENESS(Action,Situation) exists and is continuous. To give 
an example: the current situation may appear  similar to ones in which it was 
cost-effective to skip to the Conclusions Section of the paper;  even though you 
can't  be sure that 's  an appropriate  action to take now, it may be useful for you 
to behave as though the world is that continuous, to take that action anyway. If 
you do so, you ' re  following a heuristic. That heuristic guidance is only as good 
as the generalization process you used in deciding the situation was similar 
(e.g., would you apply it to all articles?; to all articles written by X?) .  

As the world changes, a heuristic which was valid and useful may become 
invalid. Perhaps X ' s  writing style has improved. In the extreme case of a 
rapidly changing environment,  the mean useful lifetime of a heuristic may be 
too small to make it worth relying on. Consider, for example,  the prices of 
stocks on the New York exchange, or the locations of individual molecules in a 
gas in a flask. There, continuity is not at issue, but volatility is. 

There is a difference between these last two examples though; we can record 
the stock prices, but it is impossible to record the positions of all the molecules 
in the flask of vapor. 

We thus have three considerations--continuity,  stability, and observabi l i ty--  
determining which domains may adequately be modelled as heuristic searches. 
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Observability: If data cannot be gathered, heuristics cannot be formed and 
evaluated. 

Continuity: If the environment  changes abruptly, the heuristics may never be 
valid. 

Stability: If the changes are continuous but rapid, the heuristics may have 
too short a lifetime before becoming use less- -or  worse than useless. 

At  the present time, the most constraining of these requirements is obser- 
vability. Very few fields admit automatic data acquisition. One  might build a 
program which proposed promising new experiments  to perform in molecular 
biology, but it is beyond the capabilities of present  technology to automate  the 
carrying out of those experiments  to see the results. The most observable fields 
are those which .can be completely formalized within the machine: mathema-  
tics, programming,  and games. But the behavior  of a running program can also 
be recorded and inspected by the program, in particular a program which 
employs heuristics might monitor  its own performance;  therefore, we may add 
Heuretics to that list of observable fields. EURISKO (Section 4) is such a 
program, and from it we have begun to learn more about Heuretics. 

1.2. How do new heurist ics  originate? 

Empirical  results from AM (Section 2) suggest that new heuristics arise f rom 
three sources: 

Specialization of existing, more general heuristics. This often has the form of 
adapting, binding, matching a template  to observed data, producing a more  
specialized, more  efficient offspring. Compiling and structured programming are 
two computer  science analogues of this process. A second way in which 
specialization occurs is when an exception to a general heuristic is noted, and a 
more  specialized, higher-precedence heuristic is formulated. Debugging and 
type-checking are the computer  science analogues of such accommodation.  

Generalization of existing, more  specialized heuristics. An ex t r eme- -bu t  
c o m m o n - - f o r m  of this is abstraction from observed data. In such a case, the 
heuristic is a prediction about APPaOPRIATENESS(Action,Situation) for a whole 
domain of situations and actions, based on having actually seen one or more 
elements  of that domain. Other  types of generalization are also useful: Often, a 
powerful new theorem or technique wifl be proven for some domain D ;  it may 
then be a useful heuristic to apply it outside D as well. For instance, the values 
of some infinite series were successfully guessed at by pretending they were 
differentiable; once the series' value is conjectured, proving it is made much 
simpler. 

Analogy to existing heuristics and to past, successful acts of creating new 
heuristics. It is a remarkable  thing that analogy works, a sign of an even deeper  
kind of continuity than was sought in 1.1. Even though two domains may 
appear  disparate, analogous heuristics may be equally powerful in coping with 
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them (e.g., Look for examples of concept C before you try to prove any theorems 
about C). Even if the heuristics for the two domains seem disparate, the paths 
which were followed in getting the powerful heuristics of the field may be 
similar (e.g., Examine successful and unsuccessful attempts at finding proofs, 
and embody (in new heuristics) any features that discriminate between them). 

Which of these three is most efficacious? Under  what circumstances are each 
of these three methods indicated or contraindicated? These are Heuretics 
questions, and best answered by performing experiments. Results from such 
experiments on AM and EURISKO are presented in Section 4, and surprisingly (to 
us) lead us to favor analogy over the other two methods. 

1.3. Other Heuretics  issues 

One Heuretics question which will not be addressed herein is What is the 
impact of an individual heuristic upon a search? That  issue has been well 
covered elsewhere, both qualitatively and quantitatively, by Michie, Nilsson, 
and others. See, for example,  [6] and the references he cites. 

Another  issue given only brief consideration is How should advice from 
several heuristics be combined? Results from building expert systems lead to the 
conclusion that the details of the control structure are not crucial. As Feigen- 
baum is wont to say, "In the knowledge lies the power ."  One can view the 
heuristics as production rules, and then this issue becomes: What  interpreter 
should run the rules? This problem can itself be recursively 'solved'  by making 
the interpreter a production system, and so on ad infinitum, although when one 
tries to find such strategic rules there are few to be had, and even fewer of 
noticeable impact. See, for example,  [4]. 

1.4. Heuretics  as a field of knowledge  

We spoke earlier of Heuretics as a field of knowledge. Polya championed the 
study of heuristics as a separate scientific discipline forty years ago, and traced 
its origins back to Liebnitz, Descartes, and even Pappus. A decade ago, 
Pospelov and Pushkin tried to define the field as " the science which studies the 
laws governing the design of new actions in new situations." To merit the 
designation of 'field of knowledge' ,  Heuretics must comprise some more or less 
well agreed-upon objects of study, some motivation for studying such objects, 
some central questions about the nature of such objects, and some accepted 
methods for investigating those questions. 

The object of study are of course heuristics. Our  initial definition of a 
heuristic is: a piece of knowledge capable of suggesting plausible actions to follow 
or implausible ones to avoid. In Section 2.2 it becomes apparent  that this is 
insufficient; for a body of heuristics to be effective (useful for guiding rather 
than merely for rationalizing in hindsight) each heuristic must specify a 
situation or context in which its actions are especially appropriate  or inap- 
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propriate.  In other words, heuristics must have both an if- and a then-part.  The 
theory developed in Section 4 extends this definition: a heuristic is seen as a 
bundle of attributes (and corresponding values) which includes many kinds of 
conditions (if- parts), many kinds of actions (than-parts), and also several 
nonexecutable attributes such as its worth, origin, and average running time. 
Section 4.2 presents a principled method for automatically generating all the 
possible ' legal '  attributes that a heuristic might possess. As of this writing, 
over  one hundred distinct attributes of a heuristic have proven themselves 
useful (to the running of EURISKO). The objects of study (heuristics) are 
plentiful, complex, and interrelated; in short, there is a richness of structure to 
this field. 

What  is the motivation for studying heuristics? Two are detailed in Section 
2.1: (1) The  recent successes with heuristic rule based expert systems drive us 
to investigate their apparent  source of power, heuristics. (2) One of the major  
bott lenecks in constructing such systems is extracting domain-dependent  
heuristics from human experts, and that could be partially automated by a 
program whose field of expertise is itself the formulation, discovery, extraction, 
modification, etc. of heuristics. In order to build such a program, a bet ter  
understanding of heuristics is necessary. 

We have already presented some of the major heuretics questions: what is the 
source of a heuristic's power? the origin of new heuristics? the quantitative 
impact of a heuristic on a search? the interactions between heuristics working 
toward the same ends? the useful attributes of a heuristic? 

Finally, there must be a methodology for answering such questions, an 
accepted experimental  procedure.  This paper  proposes to use the standard 
empirical inquiry paradigm which dominates A I  research: test hypotheses 
about  heuristics by const ruct ing--and s tudying- -computer  programs such as 
AM and EURISKO, programs which use heuristics and which try to find new ones. 
For twenty years after Polya's  plea to investigate Heuretics,  we lacked the 
ability to automatically manipulate  symbols with enough facility to construct 
large heuristic search programs. For the next twenty years, we lacked the 
representational know-how and, frankly, the necessary number  of machine 
cycles, to carry out the second-order  investigations: what happens as heuristics 
are added, changed, removed.  As these impediments  crumble,  we can design 
concrete experiments,  we can build a methodology for tacking the various 
Heuret ics questions. 

1.5. Heuristics about Heuristics 

As with any field of human endeavor,  Heuret ics is accumulating a corpus of 
informal judgmental  knowledge--heuris t ics  about  heuristics. These guide the 
heuretician in extracting heuristics from experts, in deciding when the existing 
corpus of heuristics needs to be augmented,  in representing heuristics within 
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knowledge bases, in evaluating the worth of a heuristic, in troubleshooting a 
program built around a large collection of heuristic rules, etc. Some examples 
are listed below. 

(1) The expert, if asked initially to state his informal judgmental  rules, 
usually either denies their existence or provides a very small fraction of them. 
How does the knowledge engineer typically overcome this block? Each domain 
object and operation mentioned by the expert probably has some heuristics 
peculiar to it. Each pair of domain entities may have one or two heuristics 
about such combinations. Therefore,  one extraction technique is to present 
each domain object or operation, or pair of same, to the expert,  and ask 
him/her to introspect on rules of thumb for dealing with that entity or 
combination of entities. 1 This technique is itself a heuristic about heuristics. 
Here  is another  one: It is rarely cost-effective to carry out that extraction 
procedure for the co-occurrence of all triples (or larger sets) of domain objects 
and operations. 

(2) Creating new examples of a domain concept can be a straightforward 
process, but creating new instances of the use of a heuristic is often much more 
timeconsuming---each usage of a heuristic often demands the creation and 
investigation of many new domain concepts. The impact of having and using a 
domain concept for a while that later turns out to be a 'blind alley' is much less 
serious than having and using a bad heuristic for a while. 

(3) If the representation (vocabulary) is well suited to the content of the 
heuristic, then it is possible for the heuristic to be concisely represented and 
efficiently used. In the extreme case, a heuristic might simply say " cjRc2", as 
in "Children CanBeTrainedLike Chickens" and "Children LikeToEat  
Chickens".  Such compaction obviously depends upon the proper  relation R 
being defined. If the vocabulary of relations is large and well chosen, many 
heuristics can be represented tersely. In cases where one heuristic is used very 
frequently, or where several heuristics could all be compacted,  it is worth 
defining one or more new relations R to shorten the heuristics. 

Just as the study of computat ional  linguistics had to be grounded in parti- 
cular languages during its maturation, so Heuretics has had to remain grounded 
in particular task domains. Eventually the theory of formal grammars  lifted 
itself above the details of any individual language, though specific grammars  
are still used to illustrate the various theorems and relationships. Analogously, 

~To provide an argument for heuristic (1) above, it is worth mentioning that the author initially 
drew a blank when composing this subsection of the paper, specifically when trying to think of 
examples of heuristics for heuristics. The problem vanished after listing several precise roles that 
such heuristics could fulfill (at the end of the first paragraph of this subsection), and then 
considering each role in turn: introspecing on heuristics for extracting heuristics, heuristics for 
deciding whether to try to get new heuristics, heuristics for representing a heuristic in a program, 
etc. Since the development of EURISKO, 25 additional 'heuristics about heuristics' have been 
produced by hand, and EURISKO itself has synthesized over 3t)0. 
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we aim toward eventually studying Heuretics in a domain-independent fashion, 
but of necessity must ground our examples--and our test programs-- in parti- 
cular domains. 

2. AM: The Origin of New Concepts and Conjectures 

This section of the paper is a brief detour, a demonstration that new domain 
facts and conjectures can be discovered by employing a body of heuristics for 
guidance. Sections 3 and 4 return to the 'main line' by respectively considering 
the two primary Heuretics questions: the source of a heuristic's power and the 
origin of new heuristics. 

2.1. Motivation 

Heuretics is important for both theoretical and practical reasons. As 
Zavalashina said in [15] "one  of the basic conditions for further evolution of 
heuristic programming, for an increase in the range of problems with which it 
can deal, is investigation of the qualitative structure of heuristic activity, its 
'informal' components".  The subsequent successes of programs (e.g., see [1, 5]) 
built upon a large core of domain knowledge--both  facts and heuristics-- 
reinforce this argument for the importance of heuristic reasoning as a 
phenomenon worthy of study. Artificial Intelligence is constantly seeking and 
developing new 'power sources' to guide and constrain search; heuristics are 
one of the most ubiquitous and potent sources of power, and merit further 
study for that reason alone. 

More pragmatically, one current bottleneck in constructing large expert 
systems is the problem of knowledge acquisition: extracting knowledge from a 
human expert and representing it for the program. The expert must com- 
municate not merely the 'facts' of his field, but also the heuristics: the 
informal judgmental rules which guide him in rapid decision-making. These are 
rarely thought about concretely by the expert, and almost never appear in his 
field's journal articles, textbooks, or university courses. Techniques for 
automatically discovering domain knowledge could alleviate this extraction 
problem. 

Can this be done? Since knowledge comprises both facts and heuristics, the 
question divides into two parts: can new domain concepts and relationships be 
discovered (addressed in Sections 2.2 and 2.3), and can new domain heuristics 
be discovered (addressed in Sections 3 and 4)? 

Is automated knowledge acquisition cost effective? Consider the making of a 
human expert. Having him or her rediscover the knowledge of their field 
seems at first glance hardly the typical pedagogical practice. That 's  certainly 
true for the facts of the field, which are readily presented in texts. Yet 
practitioners of many fields become experts only after a period of apprentice- 
ship to a master, a trying period during which they must induce the heuristics of 
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their craft from examples. Witness the crucial role of the internship of medical 
doctors, counselors, artists, graduate students, and many others. 

2.2. The process of discovery 

" H o w  was X discovered?" When confronted with such a question, the 
philosopher or scientist will often retreat  behind the mystique of the all-seeing 
I's: Illumination, Intuition, and Incubation. A different approach would be to 
provide a rationalization, a scenario in which a researcher proceeds reasonably 
from one step to the next, and ultimately synthesizes the discovery X. In order 
for the scenario to be convincing, each step the researcher takes must be 
justified as a plausible one. Such justifications are provided by citing heuristics, 
more or less general rules of thumb, judgmental  guides to what is and is not an 
appropriate  action in some situation. 

For example,  consider heuristic H1 ,  shown in Fig. 1. It says that if a function 
f takes a pair of A ' s  as arguments,  then it 's often worth the time and energy to 
define g(x) = f(x,  x), that is, to see what happens when f ' s  arguments coincide. 
If f is multiplication, this new function turns out to be squaring; if f is addition, 
g is doubling. If f is union or intersection, g is the identity function; if f is 
subtraction or exclusive-or, g is identically zero. Thus we see how two useful 
concepts (squaring, doubling) and four fundamental  conjectures might be 
discovered by a researcher employing this simple heuristic. Application of H1 
is not limited to mathematics  of course; one can think of Compile(x,x) (i.e., 
optimizing compilers written inefficiently in the language they compile, and 
then processed by themselves); Kili(x,x) (i.e., suicide); Ponder(x,x) (i.e., self- 
awareness); and even Apply(x,x) (i.e., the activity we are now engaging in). 

H I :  i f f : A x A - , B ,  
then define g :A - ,  B as g(x)  = f(x,x) 

H2:  if f:A-->B, and there is some extremal subset b of/3, 
then define and study f-l(b) 

FIG. 1. Two heuristic rules which lead to useful concepts and conjectures. 

Elsewhere [10], we describe the use for heuristic H 2  (see Fig. 1), which says 
to investigate the inverse image of known extrema. If f is Intersection, H 2  says 
it 's worth considering pairs of sets which map into extremal kinds of sets. Well, 
what 's  an extremal kind of set? Perhaps we already know about extremely 
small sets, such as the empty set. Then the heuristic would cause us to define 
the relationship of two sets having empty intersection--i .e. ,  disjointness. If f is 
Employed-as, then the above heuristic says it 's worth defining, naming, and 
studying the group of people with no jobs (zero is an extremely small number  
of jobs to hold), the group of people who hold down more than one job (two is 
an extremely large number  of jobs to hold). If f is Divisors-of, then the 
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heuristic would suggest defining the set of numbers  with no divisors, the set of 
numbers  with one divisor, with two divisors, and with three divisors. The  third 
of these four sets is the concept of prime numbers.  Other  heuristics might then 
cause us to gather data, to do that by dumping each number  f rom 1 to 1000 
into the appropr ia te  set(s), to reject the first two sets as too small, to notice that 
every number  in the fourth set is (surprisingly) a perfect square, to take their 
square roots, and finally to notice that they then coincide precisely with the 
third set of numbers.  Now that we have the definition of primes, and we have 
found a surprising conjecture involving them, we shall say that we have 
discovered them. Note that we are nowhere near  a proof of that conjecture. 

Of course the above instances of discoveries are really just reductions. We 
can be said to have reduced the problem " H o w  might Squaring be dis- 
covered?"  to the somewhat  simpler problem " H o w  might Multiplication be 
discovered?" by citing H1 .  Similarly, we reduced the problem of discovering 
Primes to the problem of discovering Divisors-of by citing H2 .  Such reductions 
could be continued, reducing the discovery of Divisors-of to that of Multi- 
plication, thence to Addition or Cartesian-product,  and so forth. Eventually, 
we are down all the way to our conceptual primitives to concepts so basic that 
we feel it makes  no sense to speak of discovering them (see Fig. 2). 

PRIMES 
I 
I 

v 
DIVISORS-OF 

I 
I 

v 
TIMES 

/ \  
/ \ 

/ \ 
/ \ 

PI.US CAR I FSIAN PROI)UCT 
t I 

v v 

FIG. 2. R e d u c i n g  each  concep t ' s  d i scovery  to  tha t  of a s imple r  one .  N o t e  tha t  mul t ip l i ca t ion  can  be  
d i scove red  if the  r e sea rche r  k n o w s  e i t he r  add i t ion  of n u m b e r s  or  Car t e s i an  p roduc t s  of sets. 

Why, then, is the act of creation so cherished? If some significant discoveries 
are merely one or two 'heuristic applications'  away from known concepts, why 
are even one-step discoveries worth communicating and getting excited about? 
The  answer is that the discoverer is moving upwards in the tree, not down- 
wards. H e  is not rationalizing, in hindsight, how a given discovery might have 
been made;  rather,  he is groping outward into the unknown for some new 
concept which seems to be useful or interesting. The downward, analytic search 
is much more constrained than the upward, synthetic one. Discoverers move 
upwards; colonizers (axiomatizers and pedagogues) move downwards. Even in 
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FIG. 3. The  more explosive upward search for new concepts. Most heuristics apply in several 
situations, often in more than one way (such as H 2  applying to Divisors-of). Some concepts (such 
as multiplication and exponentiation) are reached from several paths. 

the limited situation depicted in Fig. 3, the researcher might apply the 
'Repeat' heuristic to multiplication, and go off along the vector containing 
squaring, exponentiation,  hyper-exponentiation,  etc. Or he might apply H 2  to 
Divisors-of in several ways, for example looking at numbers with very many 
divisors. 

Once  a discovery has been made, it is much easier to rationalize it in 
hindsight, to find some path downward from it to known concepts,  than it was 
to make  that discovery initially. That is the explanation of the phenomenon  
we've all experienced after working for a long time on a problem, the feeling 
"Why didn't I solve that sooner?" When the reporter is other than ourselves, 
the feeling is more like ' I  could have done that, that wasn't so difficult!" It is 
the phenomenon  of wondering how a magic trick ever fooled us, after we're 
told how it was performed. It enables us to fol low mathematical  proofs with a 
false sense of confidence, being quite unable to prove similar theorems.  It is the 
reason why we can use Polya's heuristics [14] to parse a discovery, to explain a 
plausible route to it, yet feel very little guidance from them when faced with a 
new problem and a blank piece of paper. 

There still is that profusion of upward arrows to contend with. One of the 
triumphs of AI has been finding the means  to muffle a combinatorial explosion 
of arrows: one  must add some heuristic guidance criteria. That is, add some 

/-/3: if the range of one operation has a large intersection with the domain of a 
second, and they both have high worth, and either there is a conjecture 
connecting them or the range of the second operation has a large inter- 
section with the domain of the first, 

then compose them and study the result. 

H 4 :  Compose two operations and study the result. 

FIG. 4. Contingent heuristic rule and an explosive one. 
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additional knowledge to indicate which directions are expected to be the most 
promising ones to follow, in any situation. So by a heuristic, from now on, we 
shall mean a contingent piece of guiding knowledge, such as H 3  in Fig. 4, 
rather than an unconstrained Polya-esque maxim like H4.  The former is a 
heuristic, the latter is an explosive. 

2.3. AM: A computer program that discovers mathematical concepts and 
conjectures 

There  is a partial theory of intelligence here, which claims that discovery can 
be adequately guided by a large collection of such heuristic rules. In particular, 
mathematical discovery may be so guided. To test this hypothesis, we designed 
and constructed AM, a LisP program whose task was to explore elementary finite 
set theory: gathering empirical data, noticing regularities in them, and defining 
new concepts, AM is described at length elsewhere [9], and a very brief 
recapitulation here should suffice. 

began with 115 set theory concepts, including static structures (sets, bags, 
lists) and active operations (union, composition, canonize). For  each concept, 
we supplied very little information besides its definition. Additionally, 
contained 243 heuristic rules for proposing plausible new concepts, for filling in 
data about concepts, and for evaluating concepts for 'interestingness'. Among 
them were H I , / - / 2 ,  and H3 .  

Each concept was represented as a frame-like data structure, using the 
property list feature of Lisp. Fig. 5 illustrates a typical mathematical function 
(composition), and Fig. 6 illustrates a typical mathematical object (primes). 
These show very extensively fleshed-out concepts; the knowledge initially 
provided to AM about Composition was merely its definition (Statement and 
Coded-Statement),  Is-a, View, and Origin slots. The other  slots of Compose - -  
and all the slots of Pr imes--were  subsequently filled in by AM. 

During the course of its longest run (one PDP KI-10 cpu hour), AM defined 
two hundred new concepts, about half of which were judged to be reasonable 
(e.g., well known to humans already, or some interesting regularity involving 
them found by AM). AM noticed hundreds of simple relationships involving the 
old and new concepts, most of which were trivial. It synthesized concepts from 
set theory (disjointness, de Morgan's laws), stumbled across natural numbers, 
rapidly found arithmetic and redeveloped elementary divisibility theory, and 
then began to bog down in advanced number theory (after finding the fun- 
damental theorem of arithmetic, Goldbach's  conjecture, and a conjecture 
about highly, composite numbers first found earlier in this century by the 
self-taught Indian mathematician Ramanujan).  

The total number  of 'micro-discoveries' AM made is roughly (300 old and new 
concepts)× (10 new slots filled in for each)× (10 entries for each slot)= 
30 000. Each 'discovery' involved relying on (executing) 20-50 heuristics; the 
typical heuristic was used in an integral way in the making of several hundred 
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NAME: Compose 
ABBREVIATION: - o - 
STATEMENT ( =  DEFINITION) 

English: Compose two functions E and G into a new one FoG 
LISP: ~, ( F , G , H )  ... <an executable LISp predicate testing that F(G(x))=H(×) here> 

DOMAIN: F, G are functions 
IF-potentially-relevant: F, G are t\mctions 
IF-truly-relevant: Domain of F and Range of G ha~e some intersection 
IF-resources-available: at least 2 cpu seconds, at least 200 cells 
THEN-add-task-to-agenda: Fill in entries for some slots of FoG 
THEN-conjecture: Properties of F hold for FoG 

Properties of G hold for FoG 
THEN-modil\-slots: Record FoG as an example of Compose 
TH EN-print-io-user: English(Compose) 
THEN-define-ne,x-concepts: Name FoG: 

ORIGIN Compose F,G: 
WORTH : A ~ erage(Wo11_h(F),Worth(G)) 
DEFN: A ppen d( De fn(G),Dc fn(F)) 
Avg-cpu-time: Plus(A ~ g-cpu([- ),A~ g-cpu(G)) 
I F-potentiall~-rele: I F-Dote ntialI3 -relc(G) 
I F-trut.~-relcvant: IF-trul~-relc~ ant(G) 

CODED-STATEMENT ( A L G O R I T H \ I )  
CODED-IF-PARF: X(F,G) ... <an executable LISP predicate carrying out the 3 IF- tests > 

CODED-THEN-PART: X ( F , G )  ... <an executable LISP function doing the 5 THEN actions > 

CODED-IF-THEN-PARTS: ,X(I- ,G) ... <a concatenation of the preceding two slots> 

C O M P I L E D - C O D E D - I F - T H E N - P A R T S :  <a compiled versbon of the preceding slot> 

SPECIALIZAFIONS: Composition-of-bijections, Composition-of-F-with-itself 
GENERAt.IZATIONS: Combine-concepts, Sequential-execute, Combine- 
functions 

Immediate-Generalizations: Combine-functions 
IS-A: Function, Deterministic-op, Math-op, Op, Math-concept, Anything 
EXAMPLES: 

Good-Examples:Compose Count and Divisors 
Bad-Examples: Compose Count and Count 

CONJECTURES: Composing F and F is sometimes ~ery good and usually bad 
ANALOGIES: Sequence, Append 
WORTH: 700 
ORIGIN: Specialization of Append-concepts with slot-Defini t ion 

Defined-using: Specialize Creation-date: 11/4/75 03:18 
HISTORY: 

NGoodExamples: 14 N BadExamples: 19 
NGoodConjectures: 2 NBadConjectures: 1 
NGoodTasks-added: 57 NBadTasksAdded: 34 
AvgCpuTime: 1.4 seconds A~gl_istCells: 160 

FIG. 5. Frame-like representation for a mathematical function from AM. It is composed of nothing 
but attribute:value pairs. After each attribute or slot (often heavily hyphenated) is a colon and 
then a list of the entries or values for that attribute of the Compose concept. 

different discoveries .  Thus  the set of  heurist ics  is not mere ly  'unwound'  to 
produce  the discoveries .  In a lmost  all cases,  the discoveries  m a d e  were  un- 
expected  (by both program and author),  and often were  concepts  and con- 
jectures u n k n o w n  to the author. Since  AM'S heurist ics  did lead to its discoveries ,  
they must  in s o m e  sense  be  an encod ing  for them,  but they were  not  a 
consc ious  or (even in hindsight)  obv ious  encoding .  

AM'S basic control  structure was s imple:  select  s o m e  slot of  s o m e  concept ,  
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NAME: Primes 
STATEMENT 

English: Numbers with two divisors 
LISP: ;~ (n) (Apply* (Lisp-Statement Ooubleton) 

(App]y* (Compiled-Coded-If-Then Div isors-0f)  n)) 
SPECIALIZATIONS: Odd-primes, Small-primes, Pair-primes 
GENERALIZATIONS: Positive numbers 
IS-A: Class-of-numbers 
EXAMPLES: 

Extreme-exs: 2,3 
Extreme-non-exs: 0,1 
Typical-exs: 5,7,11,13,17,19 
Typical-non-exs: 34, 100 

CONJECTURES: 
Good-conjecs: Unique-factorization, Formula-for-d(n) 
Good-conjec-units: Times, Divisors-of, Exponentiate, Nos-with-3-divis, Squaring 

ANALOGIES: Simple Groups 
WORTH: 800 
ORIGIN: Application of H2 to Divisors-of 

Defined-using: Divisors-of Creation-date: 3/19/76 18:45 
HISTORY: 

NGoodExamples: 840 NBadExamples: 5000 
NGoodConjectures: 3 NBadConjectures: 7 

FIG. 6. Frame-like representation for a static mathematical concept from AM. 

and work to fill in entries for it. Since AM began with over  100 concepts, and 
each had about 20 slots to fill in (Examples, Generalizations, Conjectures, 
Analogies, etc.), there were about 2000 small tasks for AM to perform, initially. 
This number  grew with time, because new concepts would usually be defined 
long before 20 slots were filled in on old ones. Each task was placed on an 
agenda, with symbolic reasons justifying why it should be at tended to. Those 
tasks having several good reasons would eventually percolate to the top of the 
agenda and be worked on. To  accomplish the selected task, AM located relevant 
heuristics and obeyed them. They in turn caused entries to be filled in on 
hitherto blank slots, defined entirely new concepts, and proposed new tasks to 
be added to the agenda. 

Let us briefly illustrate the three types of actions initiated by heuristics. One  
task AM worked on was "Fill in Examples  of Set-Equality".  One relevant 
heuristic, H 5  (see Fig. 7) said to look at the domain of Set-Equality (which was 
pairs of sets), look at the Sets concept, look at its Examples  slot, pick 
(randomly) a pair of sets from there, and feed them as the input to the 
definition of Set-Equality, thereby producing an output of either T (true) or 
NIL  (false). By this method a few examples of Set-Equality were found, but 
hundreds of non-examples were rejected in the process - -a f te r  all, very few 
random sets are equal to each other. This illustrates how a few entries for the 
Examples  slot of Set-equality were recorded. 

Another  heuristic, H6, reacted to the rarity of the Set-Equality predicate 
returning T: it added a new task to the agenda, namely "Fill in Generalizations 
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HS: if task is to find Examples(f), f Is-a Pred, and Defn(f) exists, 
then apply Defn(f) to random entries on Examples(Domain(f)) 

H6:  if a few Examples(x) are found, but over 90% are Non-examples, 
then (someday) define and study various Generalizations of x 

H7:  if task is to generalize f, f Is-a Op of any kind, and one Defn(f) has two 
or more conjoined recursive calls on f, 

then define a new Op similar to f but with one conjunct excised 

FIG. 7. Once a task is selected, heuristics find new entries for a given slot of a given concept, 
propose new plausible tasks for the agenda, and synthesize whole new promising concepts. 

of Set-Equality". This is the second kind of activity which we said heuristics 
could initiate. 

When that task eventually ran, it caused heuristics to fire which defined 
whole new concepts--predicates similar to Set-Equality but with a definition 
that was slightly laxer than Set-Equality's. For instance, one heuristic (H7 
above) accessed a recursive definition of Set-Equality, saw that it recurred in 
both the C A R  and C D R  direction, and eliminated one direction of recursion, 
thereby producing two new, weaker predicates (LISP functions which would 
return T whenever Set-Equality did, and perhaps more frequently as well). One 
of these two predicates turned out to be Same-First-Element-As, and the other 
turned out to be quite powerful, namely Same-Length-As. 

There is one more issue about AM that should be discussed in this paper: how 
it was able to efficiently restrict its attention to a small set of potentially 
relevant heuristics at all times. Consider for a moment the AM heuristic that 
says "if a composition fog preserves most of the properties that f had then it's 
more interesting". That 's  useful when evaluating the worth of a composition, 
but of course is of no help when trying to find examples of Sets. We associated 
that heuristic with the Composition concept, the most general concept for 
which it was relevant. Another  AM heuristic says "if the domain and range 
of an operation coincide, then it's more interesting". That one was tacked onto 
the Operation concept. But note that since Compositions are special kinds of 
Operations, the heuristic should apply to them as well. The general principle at 
work here is the following: I f  a heuristic is relevant to C, then it's also relevant to 
all specializations of C. Examining the AM representation for Composition (Fig. 
5), we see a frame-like data structure (schema, property list) one of whose slots 
is Is-a, and one of the entries therein is Operation. This is AM'S way of 
recording the fact that Composition is an instance of Operation. The obvious 
algorithm, then, when dealing with some specific concept C, is to follow Is-a 
and Generalization links upward, gathering heuristics tacked onto any concept 
encountered along the way (see Fig. 8). In general, this means that AM's 
attention is restricted to log(n) heuristics, rather than n. AM can completely 
ignore all the rest, and need only evaluate the if parts of these log(n) 
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Anything 
] [NT IF REI,ATED TO SOMETHING VERY INT. 

I 
I 

Any-Action 
I INT IF REVERSIB[ E 

I 
I 

Any-Math-Operation 
/ \ [NT IFDOMAIN=RANGE n 

/ \ INT IFDOMAIN=AxA {for some A) 
/ ,, 

/ \ 
Any-Composition Any-Op-With- Domain = Range 

INT IF foBttASPROPERTIESOF f \ / INI" TOHNDTrtESETOFFIXED-POIN'IS 
\ / 

\ / 
Complement o Complement 

FIG. 8. O n e  b r a n c h  of  t he  G e n e r a l i z a t i o n  h i e r a r c h y  of  c o n c e p t s ,  w i th  a few of  t he  a t t a c h e d  

i n t e r e s t i n g n e s s  ( INT)  heur i s t i c s .  

potentially relevant ones. In other  words, the Generalization/Specialization 
hierarchy of concepts has induced a similar powerful structuring upon the set 
of heuristics. The power of this technique is d immed somewhat  by the unequal 
distribution of heuristics in the Generalization/Specialization tree: a large 
number  of heuristics clustered near the few topmost  (very general) concepts. 

As AM forayed into number  theory, it had only heuristics from set theory to 
guide it. For instance, when dealing with pr ime pairs (twin primes), there were 
no specific heuristics relevant to them; they were defined in terms of primes, 
which were defined in terms of divisors-of, which was defined in terms of 
multiplication, which was defined in terms of addition, which was defined in 
terms of set-union, which (finally!) had a few attached heuristics. Because it 
lacked number- theory  heuristics, embodying what we would call common-sense 
about  arithmetic, AM'S fraction of useless definitions shot way up: Numbers  
which are both odd and even; Prime triples; The conjecture that there is only 
one prime triple (3,5,7) but without understanding why; etc. It was unexpected 
and gratifying that AM should discover numbers  and arithmetic at all, but it was 
disappointing to see the program begin to thrash. When a few dozen concepts 
from plane geometry  were added to 'AM, the same type of thrashing soon 
occurred; the addition of specific geometry  heuristics delayed this collapse. 

There  are two relevant conclusions from the AM research: (i) It is possible for 
a body of heuristics to effectively guide a program in searching for new 
concepts and conjectures involving them. (ii) As new domains of knowledge 
emerge,  the old corpus of heuristics may not be adequate  to serve as a guide in 
those new domains; rather,  new specific heuristics are necessary. 

One feature of Heuret ics '  being a 'field of knowledge'  is that there can 
be - -nay ,  must be - -hypo theses  about  heuristics, experiments  to test them out, 
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and eventually a developing theory of heuristics. Toward that end, we can 
begin collecting elements of such a theory based on our experiences with AM. 
See Fig. 9. One remark, besides the two mentioned in the last paragraph, is 
that heuristics can be used both to suggest promising actions and to discourage 
poor ones. AM'S search space is never explicitly described; there is no clear 
notion of a set of legal operators which defines some immense space of 
syntactic mathematical concepts and conjectures, etc. Any such attempt would 
probably produce a search space of such size as to be useless (10020 in AM'S 
domain of elementary finite set theory, where definitions were about twenty 
nontriviai words long, and there were about 100 concepts to choose from to fill 
each of those blanks). Rather, AM'S set of heuristics implicitly defines its search 
space. If you remove a heuristic from AM, it has less to do; this is exactly the 
opposite of the case with most heuristic search programs, where heuristics are 
used exclusively to prune away implausible paths. The fraction of the legal 
concepts that would rank as interesting, recognizable, or important is negligi- 
ble; contrast that with the almost 50% hit rate of concepts proposed by AM'S 
heuristics. 

(I) A SET OF HEURISTICS CAN GUIDE CONCEPT DISCOVERY 

(11) A NEW FIELD WILL DEVELOP SLOWLY IF NO SPECIFIC NEW 
HEURISTICS FOR IT ARE CONCOMITTANTLY DEVELOPED 

(111) HEURISTICS CAN BE USED AS PLAUSIBLE MOVE GENERATORS 
OR AS IMPLAUSIBLE MOVE ELIMINATORS 

(IV) THE GENERALIZATION/SPECIALIZATION HIERARCHY OF 
CONCEPTS INDUCES A SIMILAR STRUCTURE UPON THE SET OF 
HEURISTICS 

FIG. 9. Elements of a theory of heuristics, learned from work on AM. 

The final remark noted in Fig. 9 is that the heuristics can be organized into a 
hierarchy, induced by the Generalization/Specialization hierarchy between 
domain concepts (like Fig. 8). In other words, each heuristic has a domain of 
relevance: the most general concept to which it's relevant and all the speci- 
alizations of that concept. This organization enables the interpreter, through 
simple inheritance, to focus on the log of the number of all heuristics in the 
system, rather than that entire set of heuristics, at each moment. This may not 
matter much for systems with a dozen or two rules, but is currently becoming 
crucial as we build systems with on the order of a thousand rules. 

2.4. Controlling the use of heuristic knowledge 

There is an implied 'control structure' for the processes of using and acquiring 
knowledge (solving and proposing problems, using and discovering heuristics, 
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choosing and changing representations,  etc.) In fact, it 's a nontrivial assumption 
that a single control loop is powerful enough to manage both types of 
processes. Our  experiences with expert systems in the past [5] have taught us 
repeatedly that the power lies in the knowledge, not in the inference engine. 

What  is that topmost  control loop? It assumes that there is a large corpus of 
heuristics for choosing (and shifting between) representations. From time to 
time, some of these heuristics evaluate how well the current representat ions are 
performing (e.g., is there now some operat ion which is per formed very 
frequently, but which is notoriously slow in the current representation?).  At 
any moment ,  if the representat ions used seem to be performing sub-optimally, 
some attention will be focused on the problem of shifting to other ones, 
maintaining the same knowledge simultaneously in multiple representations,  
devising whole new systems of representation,  etc. Similarly, we assume there 
are several heuristics which moni tor  the adequacy of the existing stock of 
heuristics, and as need arises formulate  (and eventually work on and solve) 
tasks of the form "Diagonalization is used heavily, but has no heuristics 
associated with it; so try to find some new specific heuristics for dealing with 
Diagonalization".  A typical heuristic rule for working on such a task might say 
"To  find heuristics specific to C, try to analogize heuristics specific to concepts 
which were discovered the same way that C was discovered".  

It is assumed that these representat ion heuristics and heuristic heuristics 
have run for a while, and the system is in a kind of equilibrium. The 
representat ions employed are well suited to the tasks being performed,  and the 
heuristics being followed serve as quite effective guides for 'plausible move 
generat ion '  and ' implausible move elimination. '  The system now proceeds for a 
while along its object-level pursuits, whatever  they may be (proving theorems 
in plane geometry,  discovering new concepts in programming,  etc.). Gradually, 
the object level evolves: new concepts are uncovered and focused upon, new 
laboratory techniques are discovered, long-standing open questions are ans- 
wered, etc. As this occurs, the old representat ions for knowledge, and the old 
set of guiding heuristics, become less ideal, less effective. This in turn is 
detected by some of the heuristic heuristics discussed in the last paragraph. 
They cause the system to at tempt  to recover its equilibrium, to spend some 
time searching for new representat ions and new heuristics to deal effectively 
once again with the objects and operat ions at the object level see Fig. 10). 

So new concepts, conjectures, theorems,  etc. emerge all the time; as they are 
investigated, some turn out to be useful and some turn out to be dead-ends; 
using a fixed set of guiding heuristics, the rate at which useful new discoveries 
are made will decline gradually over  time; eventually it 's worth pausing in the 
search for domain-specific knowledge, and turning instead to the problem of 
finding new heuristics (perhaps by abstracting recent experiences in the task 
domain). The  discoverer later returns to his original task, a rmed with new and 
hopefully more  powerful heuristics. He  keeps his eye on the new ones, trying 
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efine new representations] 

Augment the representation I 

Define and study heuristics I 

l Define and study domain concepts 1 

FIG. 10. Implied control structure of discovery systems. As activities at one level decline in efficacy, 
the system is forced to spend a little time at the next higher level before proceeding. 

to gain enough experience with them to evaluate just how useful they really 
a re .  

This cycle of looking for domain concepts, occasionally punctuated by an 
effort to find new heuristics, continues until, gradually, it becomes harder and 
harder to find new heuristics. At that point it becomes worthwhile to look for 
new and different representations for knowledge. 

The top-level control structure is thus homeostatic: detecting and correcting 
for any inappropriateness of representations employed or heuristics employed. 
For these purposes, we hypothesize that it suffices to have (and use) a corpus of 
heuristics for guidance. Of course that top level loop could itself be implicitly 
defined by a set of heuristic rules, and we would expect such rules to change 
from time to time, albeit very slowly. If, for example, no new concepts or 
operations were defined at the object level for a long period of time, then the 
need for close monitoring of the adequacy of the representations being 
employed would evaporate. 

In EURISKO, meta-heuristics are in no way distinguished from object-heuris- 
tics. For example, the very general recursive rule "To  specialize a complex 
construct, find the component  using the most resources, and replace it by 
several alternate specializations" applies to specializing laboratory procedures, 
mathematical functions, heuristics (including itself!), and representational 
schemes. 

3. The Source  of Heuristics'  Power  

3.1. AM'S need to acquire new heurist ics  

AM was armed with a powerful set of heuristics and concepts for its initial 
domain (finite set theory), and it progressed as best it could without ever 
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abstracting its experiences into new heuristics. Earlier we claimed that the 
thrashing which ultimately ensued was due to the absence of such compiled bits 
of hindsight. By examining that claim more carefully, we hope to justify the 
necessity of periodic learning of new heuristics, at least for open-ended 
domains such as empirical scientific theory formation. 

During the period in which AM defines its first 200 concepts (beyond the 115 
it began with), 125 are judged to be 'acceptable' (i.e., well-known mathematical 
concepts which humans have given names to, and about which AM finds some 
nontrivial conjectures). This 'hit rate' of 62.5% falls off rapidly, however, if the 
program continues to run. Of the next 300 concepts AM defines, only twenty- 
nine (less than 10%) satisfy the above criterion for meaningfulness. 

By adding heuristics manually, this degradation can be delayed. For exam- 
ple, after the 200th new concept is defined, the human observer notes that all 
of the conjectures involving Primes and Addition have turned out to be 
useless; indeed, most of them have turned out to be false. Forming this into a 
heuristic, and supplying it to AM, causes many poor  paths to be avoided. When 
AM is restarted, the same 29 useful concepts emerge at the expense of 260 poor  
ones, rather than 271. 

An experiment was performed in which, instead of the specific heuristic 
mentioned in the last paragraph, the new heuristic added by the user is the 
following more general one: "conjectures involving C and f are more likely to 
be useful if f has some relationship to the terms out of which C was defined". 
In particular, conjectures involving Primes and Multiplication (or Divisioia) are 
more likely to be valuable than conjectures involving Primes with Addition, 
Subtraction, Composition, or Printing. Adding this heuristic to AM prevents 
many blind alleys from being explored, at the expense of a few genuine 
conjectures being missed. 27 of the useful concepts are found, and only 220 of 
the poor  ones. 

Just by adding this one heuristic, AM'S hit rate rises from 9% to 11%. We 
conclude that augmenting AM by a few tens of new heuristics (based on its 
experiences in working with concepts 1-300) would be necessary if it were to 
maintain its initial high 62.5% hit rate while developing the next few hundred 
concepts. More generally, we conclude that periodic learriing of new heuristics 
is necessary to sustain high performance at the task of developing a scientific 
theory. Heuristics formed during the initial theory formation experiences are 
potent guides to subsequent attempts to extend that theory. 

3.2. The zero-th order theory of heuristics 

Heuristics are compiled hindsight; they are judgmental rules which, if only 
we'd had them earlier, would have enabled us to reach our present state of 
achievement more rapidly. Why, then, is there any reason to rely on such rules 
to guide future behavior? It must be because of continuity in the world: Rules 
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which were useful will continue to be useful. Rules useful in situation S will be 
useful in situations similar to S. Of course the actions taken in the future will be 
slightly different than the ones taken in the past, and there must be a 
presumption that small differences a long  that dimension also are tolerable. 

The basic 0th order theory, the central assumption underlying heuristics, 
appears to be the following: "APPROPRiATENESS(Action,Situation) is continuous 
and time-invariant." That  is, APPROPRIATENESS, viewed as a function of actions 
and of situations, is a continuous function of both variables. Moreover,  of all 
the features of the situation which might be relevant, t ime is (we assume) far 
from the most critical variable (Fig. 11). 

0th: APPROPRIATENESS(Action,Situation) is a continuous time-invariant func- 
tion 

Corollary 1 : Analogize: 
If action A is appropriate in situation S, 
Then A is appropriate in most situations which are very similar to S. 

Corollary 2: Satisfice: 
If action A is appropriate in situation S, 
Then so are most actions which are very similar to A. 

Corollary 3: Remember: 
ff action A would have been appropriate in the past situation S, 
Then the rule " I f  similar to S, then try A" may be useful in the future. 

FIG. 1 l. The Central Assumption underlying heuristics, and three special cases. 

Of course we can' t  compute  the APPROPRIATENESS function precisely; we can't  
even sample more than a few variables from Actions and Situations. Nevertheless, 
this abstraction implies several interesting corollaries, and serves as a theoretical 
base which can be examined, criticized, and (in Section 3.3) improved. Indeed, 
simply by considering Appropriateness  as a function, we open up the possibilities 
of visualizing graphs of it, a technique which proves to be a useful metaphor  
below. 

Corollary 1. For a given action, its appropriateness is a continuous function of 
the situation. 

Heuristics specify which actions are appropriate  (or inappropriate)  in a given 
situation. One corollary of the central assumption is that if the situation changes 
only slightly, then the judgment  of which actions are appropriate  also changes 
only slightly. Thus compiled hindsight is useful, because even though the world 
changes, what was useful in situation X will be useful again sometime in situations 
similar to X. 

Corollary l says, in effect, that if the current task appears  to be similar to 
one you 've  seen elsewhere, then many of the features of the task environment 
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will probably be very similar as well: i.e., the kinds of conjectures which might 
be found, the solvability and difficulty anticipated with a task, the nature of 
blind alleys in which one might be trapped,  etc. may all be the same as they 
were in that earlier case. For instance, suppose that a certain theorem, UP-T, 
was useful in proving a result in number  theory. Now another  task appears,  
again proving some number  theory result. Because the tasks are similar, 
Corollary 1 suggests that U F T  be used to try to prove this new result. Corollary 
1 is the basic justification for using analogy as a reasoning mechanism. A 
sentiment similar to this was voiced by Poincar6 during the last century: The 
whole idea of analogy is that 'Effects', viewed as a function of situation, is a 
continuous function. Corollary 1 is the basis for employing 'generalization of 
stimuli' as a mechanism for coping with the world. 

Corollary 2. For a given situation, appropriateness is a continuous function of 
actions. 

This means that if a particular action was very useful (or harmful) in some 
situation, it 's likely that any very similar action would have had similar 
consequences. Corollary 2 justifies the use of inexact reasoning, of allocating 
resources toward finding an approximate  answer, of satisficing. 

Corollary 3. It is cost-effective to form and use situation~action rules which 
would have helped in the past. 

The ' t ime-invariant '  condition in the statement of the Central Assumption 
(the zero-th order theory) means that the world doesn ' t  change much over 
time, and is the foundation for the utility of memory. In a world changing 
radically enough, rapidly enough, memory  would be a useless frill; consider the 
plight of an individual a tom in a gas. Corollary 3 therefore states that the world 
is assumed to be a stable, nonvolatile place, that any rule which we know (via 
hindsight) would have been useful to obey in the past, will probably be of use 
in the future. We are presumed to be inhabiting a world in which McCarthy 's  
Frame Problem really is a problem, where most valid assertions remain valid as 
situations evolve. 

If the Central Assumption holds, then' the ideal interpreter  for heuristics is 
the one shown in Fig. 12. Note  that this is very similar to a pure production 
system interpreter.  In any given situation, some rules will be expected to be 
relevant (because they were truly relevant in situations very similar to the 
present one). One or more  of them are chosen and applied (obeyed, evaluated, 
executed, fired, etc.). This action will change the situation, and the cycle begins 
anew. Of course one can replace the ' locate relevant heuristics' subtask by a 
copy of this whole diagram: that is, it can be performed under the guidance of 
a body of heuristics specially suited to the task of finding heuristics. Similarly, 
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New Situation 
/ + \ 

/ \ 
/ \ 

Changes to the situation \ 
(hopefully for the better) t 
(hopefully quickly) / 

\ / 
\ / 

\ ~- / 

Locate relevant heuristics 

Apply chosen heuristic(s) 

FIG. 12. The 0th order interpreter for a body of heuristic rules. 

the task of selecting which rule(s) to fire, and in what order, and with how 
much of each resource available, can also be implemented as an entire heuristic 
rule system procedure. EURISKO has this self-representing architecture, and 
overcomes the apparent inefficiencies by employing software caching (compil- 
ing the rule sets). 

By examining the loop in Fig. 12 we can quickly 'read off' the possible bugs in 
heuristics, the list of ways in which a heuristic can be 'bad' :  
- I t  might not be interpretable at all. 
- It might be interpretable but it might never even be potentially relevant. 
- It might be potentially relevant but its if- part might never be satisfied. 
- It might trigger, but never be the rule actually selected for execution (firing). 
- It might fire, but its then- part might not produce any effect on the situation. 
- It might produce a bad effect on the situation. 
- It might produce a good effect, but take so long that it's not cost-effective. 

This is reminiscent of John Seely Brown's and Kurt VanLehn's  [2] work on a 
generative theory of bugs, and is meant to be. Perhaps by viewing heuristics as 
performers, this approach can lead to an effective method for diagnosing buggy 
heuristics, hence improving or eliminating them. 

3 . 3 .  T h e  p o w e r  o f  e a c h  i n d i v i d u a l  h e u r i s t i c  

What is the nature of a single heuristic, the source of its power? One way 
of interpreting Corollary 1, above, is that each heuristic has its own particular 
domain of relevance, outside of which it is useless or perhaps worse than 
useless. Consider the following very special situation: you are asked to guess 
whether a conjecture is true or false. What heuristics are useful in guiding you 
to a decision rapidly? If the conjecture is in the field of plane geometry, one 
very powerful technique is to draw a diagram; see heuristic rule H 8  in Fig. 13. 

But if the conjecture is in the field of point-set topology, or real analysis, H 8  
is a terrible heuristic which will often lead you into error. For instance, if the 
conjecture mentions a function, then any diagram you draw will probably 
portray a function which is everywhere infinitely differentiable, even if such is 



THE NATURE OF HEURISTICS 211 

H8: i f  you are guessing the truth of a conjecture. 
then draw a diagram and see if it holds in that analogic model 

H9:  i f  one quantity is spoken of as a function of another, 
then graph it, and visually inspect the graph 

FIG. 13. TWO general heuristics for using analogic models. 

never  stated in the conjecture 's  premises. As a result, many propert ies will hold 
in your diagram that can never be proven f rom the conjecture 's  premises. The 
appropr ia te  technique in topology or analysis is to pull out your book of 101 
favorite counterexamples,  and see whether  any of them violate the conjecture. 
If it passes all of them, then you may guess it 's probably true. 

This example dramatizes the idea that the power or utility of a heuristic 
changes from domain to domain. Thus, as we move from one domain to 
another,  the set of heuristics which we should use for guidance changes. Many 
of them have higher or lower utility, some entirely new heuristics may exist, 
and some of the old ones may be actually detrimental if followed in the new 
domain. For instance, the 'if object is falling then catch it' rule is useful for 
most situations, but each year  many people are burned needlessly when they 
try to catch falling clothes irons and soldering irons. 

According to the fundamental  assumption of heuristics (the 0th-order theory 
of Fig. 11), the power of a heuristic is a continuous function of the task it is 
being applied to. But consider H9 ,  above, one of the most powerful heuristics 
for theory formation.  Let ' s  follow its advice in our present situation, that of 
grappling with the development  of the theory of heuristics. H 9  says to take a 
heuristic H0, and plot the graph of its power  as a function of task domain, i.e., 
imagine graphing the utility of applying H0 as a function of situation. 

HIO:  if you are stumped for a solution, 
then ask a human expert for the answer 

H l l :  if you are stumped for a solution, 
then do a realtime simulation to obtain an approximate answer 

/-/11: i f  you are stumped for a solution, 
then axiomatize the problem and apply the Resolution method 

FIG. 14. Three techniques with very different domains of applicability. 

Suppose our  problem is to process a knowledge base about aircraft carriers, 
answering database queries f rom nonexperts.  Some of the (albeit more  
extreme) heuristics available are listed in Fig. 14. Consider drawing the graph 
of power vs. situation for H10 ,  the heuristic which advocates querying a human 
expert  when you ' re  stuck. The  task or situation axis (x-axis) will be arrange d by 
the difficulty of the problem being worked on, and the power  or utility axis 
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(y-axis)  will c o r r e s p o n d  to the  d i f ference  be tween  the  t ime r equ i r ed  to get  an 
answer  f rom the  h u m a n  exper t  and  the  t ime r equ i r ed  to get  an answer  using 
o the r  m e t h o d s  ( resolut ion  t h e o r e m  proving,  s imula t ion ,  exhaus t ive  search,  etc.).  
See Fig. 15 for  a g l impse  of  wha t  such a graph reveals .  In the  case of very 
trivial  p rob lems ,  it is not  wor th  bo the r ing  the  u s e r - - i t  wou ld  be  be t t e r  for  the  
p r o g r a m  to work  on its own for  a f rac t ion of a second  and  de r ive  the  answer  
itself, via a few d a t a b a s e  lookups  and  some  s imple  inference .  Thus  the  le f tmos t  
po r t ion  of the  g raph  is be low z e r o - - t h e  uti l i ty of  emp loy ing  the  'ask an expe r t '  
heur is t ic  on a tr ivial  p r o b l e m  is negat ive .  F o r  p r o b l e m s  s o m e w h a t  m o r e  
difficult, asking an a p p r o p r i a t e  exper t  might  very  well  be  the  most  cost-effect ive  
m e t h o d  of  ob ta in ing  a solut ion.  H 1 0  b e c o m e s  a r e a sona b l e  rule  to fol low. So in 
the  middle ,  the  g raph  of the  heur i s t ic ' s  ut i l i ty rises to a high value .  F o r  very  
difficult p rob lems ,  s u p e r h u m a n  amoun t s  of  c o m p u t a t i o n  may  be  requ i red ,  and  
a de t a i l ed  s imula t ion  may  far  surpass  the  abi l i ty  of any h u m a n  to p rov ide  an 
answer.  Thus  the  ut i l i ty decl ines  and b e c o m e s  negat ive .  If the  p r o b l e m  is 
ex t r ao rd ina r i ly  difficult, then  it may  be  insoluble  no  ma t t e r  wha t  me thods  are  
t i red ,  and  t he r e fo re  using this heur is t ic  is no worse  than  using any o t h e r s - - s o  
the  ut i l i ty even tua l ly  rises again to zero.  
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FIG. 15. The graph of the utility of H10: 'Ask an expert'. For very easy (E) problems, it's a 
wasteful strategy. For medium (M) problems it's good. For hard (H) problems, the expert won't 
know, but a simulation might have worked. For impossibly (I) difficult problems, no heuristic is 
much worse than any other, so the utility of 'Ask an expert' rises asymptotically toward zero. 

W h a t  h a p p e n s  when we graph  H 1 2 ,  the  heur is t ic  advoca t ing  reso lu t ion  
t h e o r e m  prov ing?  Tha t  is wasteful  for  very easy p rob lems ,  so luble  by d a t a b a s e  
lookup ,  not  too  bad  a t echn ique  for  easy (E) p rob lems ,  p rogress ive ly  worse  for 
midd l ing  (M) and  ha rd  (H) p rob lems ,  and  no worse  than anyth ing  else for  
imposs ib ly  diffficult (I) ones.  In short ,  we get  a curve  s imi lar  to that  of Fig. 15, 
but  skewed  fur ther  to the  left. Similar ly ,  H l l  yields  a g raph  l ike Fig. 15 but  
skewed  to the  r ight .  

A s  a second  example ,  cons ide r  H 8 ,  the  heur is t ic  that  advised  d rawing  a 
d i ag ram to he lp  guess  the  t ru th  of a con jec tu re .  This  t ime,  the  y-axis  (util i ty,  
app rop r i a t enes s ,  power )  can c o r r e s p o n d  to the  chance  of such a t echn ique  
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yielding the right answer. The task or situation axis can correspond to the 
ordering of domains of mathematics in curricula; thus we use set theory to 
define arithmetic, so set theory is located to the left of arithmetic on this axis 
(see Fig. 16). In the case of logic, very few diagrams of any use can be drawn, 
so the heuristic is a slight waste of time. In set theory, Venn diagrams may be 
useful for easy problems, but otherwise tend to clutter up the situation rather 
than relieving it. In geometry, however, diagrams are in their glory; Gelernter 's 
geometry theorem prover demonstrated vividly the power of drawing even a 
single diagram for a problem. Advancing to topology and real analysis, the 
situation reverses, and diagrams which appear to capture the situation are in 
fact often misleading. Diagrams are gradually rehabilitated in the etherial 
heights of category theory, though even there they play only an auxilliary role. 
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FIG. 16. The graph of the power of drawing a diagram, as a function of the mathematical subfield 
in which it is tried. Neutral for logic (L), misleading for set theory (S), useful for geometry (G), 
misleading for topology and real analysis (TR), and neutral for category theory (C). 

The diagram above resembles the potential well around a particle, and for 
that reason a heuristic such as "Assume that two point masses repel each 
other"  would have a utility graph similar to Fig. 16. Namely, at far distances, 
gravity makes that statement slightly wrong. As the objects get closer, the 
statement is more and more wrong, until they are so close that nuclear 
interaction forces overbalance gravitational ones. At nuclear distances, it's a 
fine heuristic to employ. Analogues of this in various situations abound (e.g., 
"Avoid  getting too close in personal relationships"). 

As a fourth example, consider the task of planning for company coming to 
your house to visit. There are many subtasks to schedule: shopping for food, 
planning menus, cleaning, cooking, talking, etc. There are several heuristics 
(planning techniques) you might apply to deal with the problem: Pert charts, 
Noah-like symbolic evaluations, dynamic replanning, counterplanning, setting 
up of agendas, etc. Each of these methods has some situations in which it 
works, some in which it fails, and some in which it can't even be tried. For 
instance, Pert charts demand a full knowledge of dependencies, and the 
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absence of 'cycles' among such dependencies. If the dependencies are not 
known, the method is not directly applicable; if the dependencies change over  
time, the Pert charts will be worse than useless. Thus the graph of the utility of 
the Pert chart method would peak in a certain region, become negative further 
out, and eventually become zero (as the task got far away from planning). 

In general, then, graphing the utility or power of a heuristic H0 as a function 
of task domain, if it can be done at all, produces a curve or histogram 
resembling that of Fig. 16. Typically, there is some range of tasks for which the 
heuristic has positive value. Outside of this, it is often counterproductive to use 
the heuristic. For tasks sufficiently far away, the utility approaches zero, 
because the heuristic is never even considered potentially relevant, hence never 
fires. E.g., recall /-/6, which said in effect: "if a predicate rarely returns True, 
then (someday) define new generalizations of it". This heuristic is useful in set 
theory, worse than useless in number  theory, and useless in domains where 
'predicate '  is undefined. 

Sometimes, one (or both) sides of the negative region simply keep getting 
more negative (as in Fig. 15) rather  than reapproaching zero. Sometimes one 
side drops precisely to zero and stays there (e.g., if the heuristic has a very crisp 
condition under which it is applicable, then considering using it anywhere else 
has zero utility because the heuristic will never 'fire'). Of  course the shape of 
the curve depends on how the tasks are ordered on the x-axis, and on what the 
utility measure is along the y-axis. Indeed, as we have mentioned, the whole 
notion of graphing this function is primarily a metaphorical  device to aid us in 
further thinking about the theory of heuristics. 

If we specialize the then- part of a heuristic, it will typically have higher 
utility but only be relevant over  a narrower domain (see Fig. 17). Notice the 
area under the curve appears  to remain roughly constant; this is a geometric 
interpretation of the tradeoff between generality and power of heuristic rules. 
Since the graphs are metaphorical,  this notion of conservation of area under a 
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FIG. 17. The change in power when a heuristic (*) has its then-part specialized (+). 
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curve is likewise a '0 th-order '  idealization. It is also worth noticing that the new 
specialized heuristic may have negative utility in regions where the old general 
one was still positive, and it will be meaningless over  a larger region as well. 
Consider for example the case where "General ize  a predicate"  is specialized 
into "General ize  a predicate by eliminating one conjunct from its definition". 
The  latter is more  powerful, but only applies to predicates defined con- 
junctively; EURISKO found a domain where this heuristic has negative worth 
(namely, situations in which the if- parts of heuristics are being modified, see 
H 1 7  in Fig. 23). 

By examining Fig. 17, it is possible to generate  a list of possible bugs that 
may occur when the actions (then- part) of a heuristic are specialized. First, the 
domain of the new one may be so narrow that it is merely a spike, a delta 
function. This is what happens when a general heuristic is replaced by a table 
of specific values. Another  bug is if the domain is not narrowed at all; in such a 
case, one of the heuristics is probably completely dominated by the other. A 
third type of bug appears  when the new heuristic has no greater  power than 
the old one did. For example,  "Smack a vu-graph projector  if it makes noise" 
has much narrower domain, but no higher utility, than the more  general 
heuristic "Smack a device if it 's acting up".  Thus, the area under the curve is 
greatly diminished, but no benefit accrues. 

While the last paragraph warned of some extreme bad cases of specializing 
the then- part  of a heuristic, there are some extreme good cases which 
frequently occur. The utility (power) axis may have some absolute desirable 
point along it (e.g., some guarantee of correctness or efficiency), and by 
specializing the heuristic it may exceed that threshold (albeit over a narrow 
range of tasks). In such a case, the way we qualitatively value that heuristic 
may alter; e.g., we may term it 'algorithmic'  or ' real-t ime' .  One way to 
rephrase this is to say that algorithms are merely heuristics which are so 
powerful that guarantees can be made about  their use. Conversely, one can try 
to apply an algorithm outside its region of applicability, in which case the result 
may be useful and that algorithm is then being used as a heuristic. The latter is 
frequently done in mathematics  (e.g., pretending one can differentiate a 
complicated expression, to aid in guessing its value). Another  pathologically 
extreme specialization of a heuristic is turning it into one which applies only on 
a set of measure zero. This is not necessarily a bad thing: tables of values do 
have their uses. 

Specializing the if- part  of a heuristic rule results in its having a smaller 
region of non-zero utility. That  is, it triggers less frequently. As Fig. 18 shows, 
this is like placing a filter or window along the x-axis, outside of which the 
power  curve will be absolutely zero. In the best of cases, this removes the 
negative-utility regions of the curve, and leaves the positive regions untouched. 
For  example,  we might preface the "Draw a d iagram" heuristic with a new 
premise clause, " I f  you are asked to test a geometry  conjecture".  This will 
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F I G .  18.  T h e  g r a p h  o f  a h e u r i s t i c ' s  p o w e r ,  a f t e r  i t s  i f -  p a r t  h a s  b e e n  o p t i m a l l y  s p e c i a l i z e d .  

cause us to use the rule only in geometry situations, a domain where we know 
it has high utility. 

By examining Fig. 18, we can generate a list of possible bugs arising from 
specializing the conditions (if- part) of a heuristic rule. The new window may be 
narrowed to a spike, thus preventing the rule from almost ever firing. There  
may be no narrowing whatsoever: in that case, it typically would add a little to 
the time required to test the if- part  of the rule, while not raising the power at 
all. Of course the most serious error is if it clips away some-----or all!---of the 
positive region. Thus, we would not want to replace a general diagram-drawing 
recommendat ion with one which advised us to do so only for real analysis 
conjectures. Empirical results from experiments  on specializing and generaliz- 
ing heuristics are presented in Section 4.1. 

What  are the implications of this simple ' theory of heuristics'? One effect is 
to determine in what order heuristics should be chosen for execution; this is 
discussed two paragraphs down. A second effect is to indicate some very useful 
slots that each heuristic can and should have, attributes of a heuristic that can 
be of crucial importance:  the peak power of the rule, its average power, the 
sizes of the positive and negative regions (both projections along the task axis 
(x-axis) and the areas under the curves), the steepness with which the power 
curve approaches the x-axis, etc. Let us take the last attribute to illustrate. 
Why is it useful to know how steeply the power curve approaches Utility = 0 
(the x-axis)? If this is very steep, then it is worth investing a great amount  of 
resources determining whether the rule is truly relevant in any situation (for if 
it is slightly irrelevant, then it may have a huge negative effect if used). 
Conversely, if the slope is very gentle, then very little harm will result from 
slightly-inappropriate applications of the rule, hence not much time need ever 
be spent worrying about whether or not it's truly relevant to the situation at 
hand. 

The whole process of drawing the power curves for heuristics is still con- 
jectural. While a few such graphs have been sketched, there is no algorithm for 
plotting them, no library of thousands of catalogued and plotted heuristics, not 
even any agreement  on what the various power and task axes should be. 
Nevertheless, it has already proven to be a useful metaphor ,  and has suggested 
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some important  propert ies  of heuristics which should be estimated (such as the 
just-mentioned downside risk of applying a heuristic in a slightly inappropriate  
situation). It is a qualitative, empirical theory [12], and predicts the form that a 
quantitative theory might assume. 

How should heuristics be chosen for execution? In any given situation, we 
will be at a point along the x-axis, and can draw a vertical line (in case of 
multi-dimensional task axes, we can imagine a hyperplane).  Any heuristics 
which have positive power (utility) along that line are then useful ones to apply 
(according to our theory of heuristics), and the ones with high power should be 
applied before the ones with low power. Of  course, it is unlikely we would 
know the power  of a heuristic precisely, in each possible situation; while 
diagrams such as Figs. 15-18 may be suggestive, the data almost never is 
available to draw them quantitatively for a given heuristic. It is more  likely that 
we would have some measure of the average power of each heuristic, and 
would use that as a guess of how useful each one would be in the current 
situation. Since there is usually a tradeoff between generality and power, a 
gross simplification of the preceding strategy is simply to apply the most 
specific heuristic first, and so on. This is the scheme AM used, with very few 
serious problems. If all heuristics had precisely the same multiple integral of 
their power curves, this would coincide with the previous scheme. Of  course, 
there are always some heuristics which, while being very general, really are the 
most important  ones to listen to if they ever trigger ("If  a conflagration breaks 
out, then escape it"), and some so important  that natural selection has 'wired 
them in' as reflexes ("If  there is a sudden bright light, then close your eyes 
quickly"). 

Notice that the 'generality vs. power '  tradeoff has turned into a s tatement 
about  the conservation of volumes in n × m-dimensional  space, when one takes 
the multiple integral of all the power curves of a heuristic. In particular, there 
are tradeoffs among all the dimensions: a gain along some utility dimension 
(say Convincingness) can be paid for by a decrease along another  (say 
Efficiency) or by a decrease along a task dimension (a reduction of breadth of 
applicability of the heuristics). One historically common bug has been over- 
reliance upon (and glorification of) heuristics which are pathologically extreme 
along some dimension: tables, algorithms, weak methods,  etc. 

Heuristics are often spoken of as if they were incomplete,  uncertain knowl- 
edge, much like mathematical  conjectures or scientific hypotheses. This is not 
necessarily so. The epistemological status of a heuristic, its justification, can be 
arbitrarily sound. For example,  by analyzing the optimal play of Blackjack, a 
rather  complex table of appropriate  actions (as a function of situation) is built 
up. One can simplify this into a 'Basic Strategy'  of just a few rules, and know 
quite precisely just how well those rules should perform. That  is, heuristics may 
be built up from systematic, exhaustive search, from 'complete '  hindsight. 
Another  example of the formal, complete  analysis of heuristic methods is 
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familiar from physics, where Newtonian mechanics is known to be only an 
approximation to the world we inhabit. Relativistic theories quantify that 
deviation precisely. But rather  than supplanting Newtonian physics, they b o l s t e r  

its use in everyday situations, where its inadequacies can be quantitatively 
shown to be too small to make worthwhile the additional computat ion required 
to do relativistic calculations. 

Many, nay most, heuristics a r e  merely conjectural, empirical, aesthetic, or in 
other ways epistemologically less secure than the Basic Strategy in Blackjack 
and Newtonian physics. The canonical u s e  of heuristics is to guide future 
behavior in cost-effective channels; the canonical use of a conjecture is to guide 
a search for a proof of it. If a conjecture turns out to be false (such as 
Newtonian mechanics, or the assertion that there is always a generality vs. 
power tradeoff) it may yet stand as a useful heuristic. 

3.4. The space of heuristics 

Imagine graphing the utility of an entire s e t  of heuristics, as a function of the 
tasks it's being applied to. Not surprisingly, the curve produced would resemble 
the one produced by a single heuristic (Fig. 16), for it is (to first approximation) 
a huge compound heuristic (call it a Mega-heuristic). Hopefully, the set of 
heuristics is more useful than any member ,  thus its graph is probably much 
broader  and taller (or less negative) than that of any single heuristic inside it. 

One cannot simply ' superpose '  or 'max '  the curves of its members ;  the 
interactions among heuristics are often quite strong, and independence is the 
exception rather than the rule. Often, two heuristics will be different methods 
for getting to the same place, or one will be a generalization or isomorph of the 
other, etc., and as a result the set will really not benefit very much from having 
both of them present. On the other hand, sometimes heuristics interact 
synergistically, and the effects can be much greater  than simple superposition 
would have predicted. The opposite of this sometimes happens: , two experts 
have each provided a set of heuristics which works, yet some heuristics in each 
set directly contradict some in the other set. Using either half-corpus would 
solve your problem, but mixing them causes chaos (e.g., one mathematician 
gives you heuristics for finding empirical examples and generalizing, while a 
second gives you heuristics for formally axiomatizing the situation; either may 
suffice, the unstructured mixing of the two sets can be catastrophic). 

Just as a set of heuristics can be conceptually grouped into a large Mega- 
heuristic, so an individual heuristic may be atomized into a cloud of much 
smaller heuristics. Much of the expertise we tap from human experts, when 
building expert systems, is their feel for the proper  l e v e l  at which to state and 
use heuristic knowledge. If the heuristics are too small, they stop being 
meaningful chunks of wisdom to the human expert, and risk having many stray 
interactions. Often languages which enforce a small grain size for rules have 
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facilities to 'chain'  them together  to prevent such crosstaik. If the heuristic 
rules are too large, we begin to lose the benefits of taking a heuristic 
rule-guided approach:  additivity, synergy, ease of entry and explanation and 
modifiability. Ultimately, we are left with one 'heuristic'  which is an opaque 
lump of LISP code performing the entire task. 

Heuret ics is interested in the space of all the world's  heuristics. What  is its 
structure? What  regularities in it can be exploited? The sheer size of this 
space - -and  our  as yet minuscule experience in navigating within i t - - m a k e  
these tantalizing questions difficult to investigate. 

By examin ing- -and  generalizing--heuristics from a dozen disparate fields 
(including set theory, number  theory, biological evolution, evolution of 
naval fleets, LISP programming,  game-playing, and oil spill cleanups), we have 
built up some d a t a - - a n d  some conjectures-- involving heuristic-space. Con- 
sider arranging all the world's  heuristics in a generalization/specialization 
hierarchy, with the most general ones at the top. At that top level lie the so-called 
weak methods (generate and test, hill-climbing, matching, means-ends analysis, 
etc.). At the bot tom are millions of very specific heuristics, involving domain- 
specific terms like 'King-side'  and "Arsenic'. One may picture a Christmas tree, 
with a pure angel at the top, and the worthwhile gifts at the bot tom. 

In between are heuristics such as those depicted in Fig. 19: "Look  for fixed 
points",  "Examine  extreme cases", "See what happens when a process is 
repeated" ,  "Given  f(x,y), examine what happens when x = y" .  These are more  
specific than the weak methods at the top of the tree, yet are far from 
domain-dependent  heuristics below them. Progressing downward, more and 
more conditions appear  on the left-hand sides of the heuristics (if's), and more  
specialized advice appears  on the right-hand sides (then's). 

A purely ' legal-move'  estimate of the size of this tree gives a huge final 
number:  Based on the lengths and vocabularies of heuristic rules in AM, one 
may suppose that there are about 20 blanks to be filled in in a typical heuristic, 
and about 100 possible entries for each blank (predicate, argument,  action, etc.) 
related to AM'S math world. So there are 1040 syntactically well-formed heuris- 
tics just in the e lementary mathematics  corner of the tree. Of course, most of 
these are never  (thankfully!) going to fire, and almost all the rest will perform 
irrelevant actions when they do fire. Fj'om now on, let 's restrict our  attention to 
the tree of only those heuristics which have positive utility at least in some 
domains. 

What  does that tree actually look like? One can take a specific heuristic and 
generalize it gradually, in all possible ways, until all the generalizations collapse 
into weak methods.  Such a preliminary analysis (using AM'S heuristics) led us to 
expect the tree to be of depth about 50, and in the case of an expert  system 
with a corpus of a thousand rules, we might expect a picture of them arranged 
so to form an equilateral triangle. But when we went through this partial tree, 
analyzing the power of the rules therein, it quickly became apparent  that most 
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\ Toward weak methods t I 
\ / 

IF f is a subset o f  ...Ax...xBx..., and R:A-->B, and Ac B, 
T H E N  define {(....a,...,R(a),...) e f} 

/ 
/A -B 

/ 
/ 

IF f is a subset  o f  ...Ax...xA..., and  R:A-->A, 
] ' H E N  define {(...,a,...,R(a),...) e f} 

\ 
\ R ~ [ qualit), 

\ 
\ 

\ 
\ R ~ F]quality 

\ 
\ 

IF f c .,.Ax...xBx.... and AcB, 
l H E N  define{(...,a,...,a,...) e f} 

/ 

/A - B 
/ 

/ 
IF' f is a subset o f  ...Ax...xAx... 
T H E N  define {( . . . ,a, . . . ,a, . . . )  e t'} 

/ \ 
/ Ax xAx ~ AxCxAxB \ Ax x,X~ ~ %x('xA 

/ \ 
/ \ 

IF f:AxCxA-->B / IF PAxC-->A 
T H E N  define g(x ,y)=  f(x,y,x) T H E N  d e f n e  {(a,c) [ ffa.c)= a} 

I I 
]C is singleton IC is singleton 
I I 
I I 

IF f:AxA-->B [F f:A-->A 
T H E N  define g (x )=  fix,x) I H E N  define {a [ f (a)=  a} 

/ \ / \ 

/ \ Toward domain-specific heunsucs / \ 
I 
7 

FIG. 19. A t iny f r a g m e n t  of  the  graph of  all heurist ics ,  re lated  by genera l i za t ion / spec ia l i za t ion .  
N o t e  the  s imilar  der ivat ion  of  coa le sc ing  and  f ixed-points  heurist ics .  

generalizations were no less powerful than the rule(s) beneath them! Thus the 
specific rule can be eliminated from the tree. The resulting tree has depth of 
roughly 3 or 4, and is thus incredibly shallow and bushy. Herbert Simon, 
Woody  Bledsoe,  and the author analyzed the 243 heuristics from AM, and were 
able to transform their deep (depth 12) tree into an equivalent one  containing 
less than fifty rules and having depth of only four. 

Looking at heuristics arranged in a tiny tree (e.g., Fig. 19), we observed that 
all but the top and bottom levels can be eliminated. A similar phenomenon  was 
seen earlier in the case of a heuristic which said to smack a vu-graph projector 
in case it acted up; it and several levels of its generalizations can be eliminated, 
since they are no more powerful than the general "Smack a malfunctioning 
device" heuristic. Some very specific rule, such as "Smack a Nanook  807 
vu-graph projector on its right side if it hums", might embody some new, 
powerful, specific knowledge (such as the location of the motor  mount  and this 
brand's tendency to misalign), and thus need to stay around. 

This 'shallow-tree' result should make  advocates of weak methods happy, 
because it means that there really is something special about that top level of 
the hierarchy. Going even one  level down (to more specific rules) means paying 
attention not to an additional ten or twenty heuristics, but to hundreds. It 



THE NATURE OF HEURISTICS 221 

should also please the knowledge engineering advocates, since most of the very 
specific domain-dependent  rules also had to remain. It appears,  however,  to be 
a severe blow to those of us who wish to automatically synthesize new 
heuristics via specialization, since the result says that that process is usually 
going to produce something no more  useful than the rule you start with. 
Henceforth,  we shall term this the shal low-tree problem. 

There  are two ways out of this dilemma, however.  Notice that 'utility of a 
heuristic' really has several distinct dimensions: efficiency, flexibility, power for 
pedagogical purposes,  usefulness in future specializations and generalizations, 
etc. Also, ' task features '  has several dimensions: subject matter ,  resources 
allotted (user's time, cpu time, space, etc.), degree of complexity (e.g., consider 
Knuth ' s  numeric rating of his problems '  difficulty), t ime (i.e., date in history), 
paradigm, etc. If there are n utility dimensions and m task dimensions, then 
there are actually n x m different power curves to be drawn for each heuristic. 
Each of them may resemble the canonical one pictured in Fig. 16. If by 
specializing a heuristic we create one which has the appearance of Fig. 17 in 
any  one o f  these n x m graphs, then it is a useful specialization. So, while a 
specialization is unlikely to be useful in any particular utility/task graph, it is 
quite likely to be useful according to some one of the n x m such graphs. 

Consider the 'Focus of At tent ion '  heuristic; that is, one which recommends  
pursuing a course of action simply because it 's been worked on recently. Using 
this as one reason to support  tasks on its agenda made AM appear  more 
intelligent to human observers,  yet actually take longer to make any given 
discovery. Thus, it is useful in the 'Convincingness '  dimension of utility, but 
may be harmful v i s a  vis 'Efficiency'. 

As another  example,  consider the heuristics "Smack a vu-graph projector  if 
it's acting up",  "Smack a child if it 's acting up",  and "Smack a vu-graph 
projector  or child if it 's acting up".  There  may be some utility dimensions in 
which the third of those is best (e.g., scope, humor). However ,  the rationale or 
justification for the first two heuristics is quite different (random perturbation 
toward stable state vs. reinforcement learning). Therefore  the third heuristic is 
probably going to be deficient along other utility dimensions (clarity, usefulness 
for analogizing, ease of teaching). 

But there is an even more basic way in which the "shal low-tree" problem 
goes away. There  are really a hundred different useful relationships that two 
heuristics can have connecting them (Possibly-triggers, More-restrictive-if-part,  
Faster, My-average-power-higher- than-your-peak-power,  Asks-fewer-ques- 
tions-of-the-user, etc.) For each such relation, an entire graph (note that even 
the Genl/Spec relation generated a graph, not a t r ee - - see  Fig. 15) can be 
drawn of all the world's heuristics; pragmatically, we considered only those in a 
given program. In some of these trees or graphs, we found the broad, shallow 
grouping that was found for the AM heuristics under Genl/Spec. For others, 
such as Possibly-Triggers, we found each rule pointing to a small collection of 
other rules, and hence the depth was quite large (approximately 30 for AM, not 
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including cycles). There are still many difficult questions to study, about this 
phenomenon,  even with the theory in this primitive state: How does the shape 
of the tree (the graph of heuristics related by some attribute R)  relate to the 
ways in which R ultimately proves itself to be useful or not useful? Already, 
one powerful correlation seems to hold: In cases where the tree depth is great, 
that relation is a good one to generalize and specialize along; in cases where 
the resulting tree is very broad and shallow, other methods (notably analogy) 
may be more productive ways of getting new heuristics. 

3.5. The first-order theory of heuristics 

There  are several things wrong with the 0th-order theory: it presumes that 
knowledge is complete and unchanging; that is, it ignores the 'pota to  in the 
tailpipe' problem, and 'solves'  the frame problem by asserting that assertions 
never change their validity (another way to view this that it spawns the frame 
problem). Corollary 1 above (see Fig. 11) presumes that the axis of 'Situations'  
is well defined and continuous, when of course it is neither. As we said earlier, 
the items in Fig. 9 are 2rid-order correction terms to a theory of heuristics, and 
Fig. 11 is a very simplified 0th-order theory. Intermediate  between them lies a 
theory which interfaces to each. That  first-order theory says that the 0th-order 
theory is often a very useful fiction. It is cost-effective to behave as though it 
were true, if you are in a situation where your state of knowledge is very 
incomplete, where there is nevertheless a great quantity of knowledge already 
known, where the task is very complex, etc. At an earlier stage, there may have 
been too little known to express very many heuristics; much later, the 
environment may be well enough understood to be algorithmized; in between, 
heuristic search is a useful paradigm. Predicting eclipses has passed into this 
final stage of algorithmization; medical diagnosis is in the middle stage where 
heuristics are useful; building programs to search for new representations of 
knowledge is still pre-heuristic (Fig. 20). 

Notice that the ls t-order theory is itself a heuristic! This is not too disturbing, 
since it is dubious that we will ever know enough about thinking to supplant it. 
Until your model of me is absolutely perfect, your predictions of my behavior  
will diverge more and more as t ime proceeds, and after a relatively short 
interval you will have to rely upon heuristics again to understand and predict 
my thoughts and actions. And there is probably something akin to Heisen- 
berg 's  uncertainty principle to guarantee that your model of me can never be 
perfectly complete. 

1st: If you are in a complex,  knowledge-r ich,  incomple te ly -unders tood world, 
Then  it is f requent ly  useful  to b e h a v e  as though it were true that 
APPROPRIATENESS(ACtion,Situation) is con t inuous  and t ime- invar iant .  

FIG. 20. The first-order theory of heuristics: the 0th-order theory is a useful fiction. 
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3.6. The second-order theory of heuristics 

The second-order  corrections in Fig. 9 (and, as we shall soon see, Fig. 21 
below) now apply to the first-order theory (e.g., the division of heuristics into 
generators  and pruners). Additionally, some new second-order  ones are ap- 
parent.  For instance, the adjective ' frequently ' ,  used in Fig. 20, can be replaced 
by a body of rules which govern when it is and is not useful to behave so. 
Finally, careful examination of the use of heuristics in AM reveals some 
regularities which seem to be the opposite of the claims of the 0th-order 
theory. 

Heuristics are compiled hindsight: they are nuggets of wisdom which, if only 
we 'd  had them sooner,  would have led us to our present state much faster. This 
means that some of the blind alleys we pursued would have been avoided, and 
some of the powerful discoveries would have been made sooner. 

Even the synthesis of a new discovery can be considered to be the result of 
employing guidance heuristics, rules of good guessing based on analogy, 
aesthetic criteria such as symmetry,  or random combination. A few typical such 
rules would be "Analogies  are useful in formulating biological and sociological 
theories",  "Symmetry  is useful in postulating the existence of fundamental  
particles in physics", "Randomly  look at empirical data for regularities in 
e lementary number  theory and plane geomet ry" ,  "Once  a correlation is 
observed,  consider the extreme cases of that relationship". Those guidance 
heuristics were in turn based on several past episodes, hence are themselves 
compiled hindsight. Nilsson and others have argued for the primacy of search; 
we are simply stating the very special case where we cannot decide which node 
to investigate next, but rather must let Time carry a s t ream of events past us, 
each event serving as a node for our  observation and recording: the primacy of 
compiled experiential knowledge. 

As new empirical evidence accumulates, it may be useful to ' recompile '  the 
new hindsight into heuristics (synthesize new heuristics and modify old ones). 
AM demonstra ted  that, certainly by the time you 've  opened up a whole new 
field, you must recompile.  Working in point-set topology with geometry  
heuristics is not very efficient, nor  was AM'S working in number  theory using 
only heuristics from set theory. The  set of heuristics must evolve: some old 
ones are no longer useful, some must be refined to suit the new domain, and 
some entirely new heuristics may be useful. As the task varies, or as time varies 
and one gains new experiences, one 's  set of guiding heuristics is no longer 
optimal. The utility of a heuristic will vary, then, both across tasks and across 
time, and this variance is not necessarily continuous. 

Exactly what kinds of changes can occur in a domain of knowledge that 
might require you to alter your set of heuristics? In other words, what are the 
sources of granularity in the space of 'fields of knowledge '?  

First, there might be the invention of a new piece of apparatus.  This could be 
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theoretical (such as G6del 's  theorem) or technological (such as the electronic 
digital computer).  The first few painful experiences with a new invention 
quickly lead to a specialized corpus of heuristics: rules which tell you how to 
use such a thing, where not to poke your fingers, when it's relevant, how to fix 
one, what kind to buy, etc. In addition, many of the old heuristics may be less 
or (rarely) more useful than they used to be. The invention of the airplane 
invalidated most of the long distance travel heuristics then extant, reinforced 
the heuristic that said to be skeptical of printed timetables, and led to the 
creation of many new rules of thumb for dealing with air travel. 

Second, there might be a new technique devised, one which doesn' t  actually 
depend upon any new apparatus.  Again, this can be theoretical (such as the 
recent widespread application of divide and conquer in complexity theory) or 
practical (such as Maxam and Gilbert 's  ingenious method for sequencing 
DNA). New heuristics about reliability, applicability, etc. become useful. 

Third, a new phenomenon may be observed. When a new invention (e.g., the 
telescope) occurs, there are often two immediate new phenomena:  the 
sociological one of how the invention is used, and the 'real '  one now observ- 
able using the invention. 

Fourth, and most unusually, there may be a newly-explicated or newly- 
isolated concept or field, one which was always around but never spoken about 
explicitly. Three such concepts, recently out of the closet, are: paradigms in 
scientific research, the whole field of heuristics itself, and the analysis of 
algorithms. 

In brief, the four sources of granularity in the space of 'domains of knowl- 
edge'  are precisely those components  which, if varied, lead to a new domain of 
knowledge. In other words, they define what we mean by a domain of 
knowledge: a set of phenomena  to study, a body of specific problems about 
those phenomena  which are considered worth working on, and a set of 
methods (both theoretical and experimental,  mental and material) for attacking 
such questions. 

The space of domains is granular, quantized, hence the 'power  curves'  we 
drew earlier for individual heuristics are really step-functions (or histograms) 
rather than smooth curves as we 've  drawn them. One implication of this is that 
there is a very precise point along the task axis where the utility drops from 
positive to negative (or zero). Often this is a large, sudden drop across a single 
discontinuity in the axis (e.g., when a product emerges, an expert dies, a 
theorem is proved). 

One frequent problem we face when trying to apply heuristics is not being 
able to evaluate their if- parts, their conditions. We may not know whether the 
acyclic preconditions demanded by Pert techniques are satisfied; we may not 
know for sure whether  the difficulty of the request from the aircraft database is 
neither too trivial nor too complex; etc. In such a situation, we rely on 
heuristics for deciding which heuristics to apply. A few such are: 
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(1) Nonmonotonic reasoning: assume that some of the uncertain conditions 
hold, and tag dependencies so that it is easy to undo consequences of that 
heuristic application if it later turns out that the assumption was wrong. 

(2) Deferral: if all of the alternative heuristics would cause a certain sub- 
action to be taken (as one entry of their then- parts), then take that action now 
and hope that by the time it finishes more knowledge will be available to aid in 
choosing among the competing heuristics. 

(3) Approximation: weaken some of the conditions for applicability of the 
heuristics. E.g., replace 'all ' by 'most ' ,  'equal '  by 'similar' ,  eliminate one entire 
conjunct from a condition comprised of many conjuntive tests, etc. This applies 
to heuristics for choosing heuristics as well; thus one could weaken (2) above, 
into a rule that said "if most of the alternative heuristics would cause a certain 
action to be taken ...", replacing the technique of guaranteed deferral with 
plausible deferral. 

This section has now contributed three new elements to our growing theory 
of heuristics (see Fig. 21). 

(v) HEURISTICS ARE COMPILED HINDSIGHT 
(vi) THE SPACE OF 'DOMAINS OF KNOWLEDGE' IS GRANULAR 

(vii) USE HEURISTICS TO DECIDE WHICH HEURISTIC TO APPLY NEXT 

FIG. 21. Three additional (see Fig. 9) elements of a theory of heuristics. 

4. EURISKO: The Origin of New Heurist ics  

Recently, the AM program has been extended into EURISKO, a program capable 
of discovering new heuristics as well as new mathematical  concepts. The AM 
heuristics were originally coded as opaque lumps of LISP code- - immutab le  and 
uninspectable by the system. In EUR~SKO these have each been recast as 
full-fledged units, with their content spread out into dozens of kinds of slots. 
The corpus of heuristics guides the synthesis, data gathering, and judgmental  
evaluation of new concep t s - -be  they new math concepts (PrimeNumOfDivis) ,  
representat ion concepts (VolatileSlots), or heuristics (General izeRareOp).  This 
section briefly recounts some of the design considerations and runtime 
experiences we have had to date with EURISKO. 

4.1. Meta-heurist ics  are just heurist ics  

Is there something special about the heuristics which inspect, gather data 
about, modify, and synthesize other heuristics? That  is, should we distinguish 
'meta-heuristics '  from 'domain heuristics'? According to our general theory, as 
presented in Section 3, domains of knowledge are granular but nearly con- 
tinuous along every significant axis (complexity of task, amount  of 
quantification in the task, degree of formalization, etc.) Thus, our first hypo- 
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thesis is that it is not necessary to differentiate meta-level heuristics from 
object-level heuristics--nay, that it may be artificial and counterproductive to 
do so. 

This is one hypothesis upon which the design of EURISKO rests. Fig. 22 
illustrates three heuristics which can deal with both heuristics and mathematical 
functions. The first one says that if some concept f has always led to bad 
results, then f should be marked as less valuable. If a mathematical operation, 
like Compose, has never led to any good new math concepts, then this heuristic 
would lower the number stored on the Worth slot of the Compose concept. 
Similarly, if a heuristic, like the one for drawing diagrams, has never paid off, 
then its Worth slot would be decremented. EURISKO put this rule to frequent 
and good use, so there was little chance in practice of it applying to itself 
(though in principle it might have). 

H12: if 
t h e n  

H13: if 
then  

H14: if 

t h e n  

the results of performing f have always been numerous and worthless, 
lower the expected worth of f 

the results of performing f are only occasionally useful, 
consider creating new specializations of f by specializing some slots of f 

a newly-synthesized concept has slots that coincide in value with those 
of an already-existing concept, 
the new concept should be destroyed because it is redundant 

FIG. 22. Three heuristics capable of working on heuristics as well as math concepts. 

The second heuristic H13 says that if some concept has been occasionally 
useful and frequently worthless, then it's cost-effective to seek new, specialized 
versions of that concept, because some of them might be much more frequently 
utile (albeit in narrower domains of relevance). Composition of functions is 
such a math concept-- i t  led AM to some of its biggest successes and failures. 
H13 added a task to AM's agenda, which said "Find new specializations of 
Compose".  When it was eventually worked on, it resulted in the creation of 
new functions, such as 'Composition of a function with itself', 'Composition 
resulting in a function whose domain and range are equal', 'Composition of 
two functions which were derived in the same way', etc. H13 also is present in 
EURISKO, but there it also sometimes applies to heuristics, in fact once H13 
applied to itself. How did that happen? H13 was sometimes useful and 
sometimes not, and so it truly did pay to seek new, specialized variations of 
H13. Four of the many specializations were: heuristics which demand that f 
has proven itself useful at least 3 times, that f be specialized in an extreme way, 
that f have proven itself extraordinarily useful at least once, and that the 
specializations still be capable of producing any of the successful past creations 
of f. EURISKO'S full results in this case were as follows. 

2 heuristics that were more specialized and potentially more useful and more 
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powerful (including ' . . .  then specialize one of its criterial (not merely descrip- 
tive) slots'). 

4 heuristics which looked more specialized but were exactly the same as the 
original one (including ' . . .  and which has been used several times . . . .  '). 

180 heuristics which were more  restricted in applicability, yet per formed 
actions identical to the original when they were applicable (e.g., ' . . .  and the 
concept represents a heuristic r u l e . . . ' ) .  

107 heuristics which were so specialized they would (essentially) never  fire 
(e.g., ' . . .  and the concept is Set-Union' ,  'and the concept is a set-theory 
function and a geography-function') .  

5 heuristics which were simply wrong-- i .e . ,  would cause much more  harm 
than good if they were used in guiding the program (including 'if the results of 
applying f are never  useful', ' then specialize a noncriterial slot'). 

The  conclusion is that heuristics can operate  on each other (and themselves) 
to synthesize new heuristics, but the process is very explosive, and must be 
heavily constrained if it is to be worthwhile pursuing. 

Near  the end of Section 3.3, we found it feasible to constrain the 'choose the 
next heuristic to apply '  problem by using a few heuristics for guidance. A 
similar approach was tried in the above case, not by hand but by EURISKO itself: 

Rather  than hand-crafting some 'meta-rules ' ,  we simply re-ran EURISKO all 
over  again, but keeping the four synthesized heuristics to which EURISKO had 
given its highest Worth ratings. These are shown in Fig. 23. The first two are 
special cases of H13.  Each of them also claims to subsume H13,  thereby 
effectively turning it off for the duration of the second run. Heuristic H 1 5  
suggests specializing only those slots of f which are Criterial (defining rather 
than commentary) .  Thus, a terrible specialization such as used to arise by 
altering only the EnglishStatement slot could no longer occur. H 1 6  limits its 
recommendat ions  to those slots which, viewed as units in their own right, have 

H15: if the results of performing f are only occasionally useful, 
then consider creating new specializations of f by specializing some criterial 

slots of f 

H16: if the results of performing f are only occasionally useful, 
then consider creating new specializations of f by specializing some 

highly-rated slots of f 

/-/17: if modifying any 'if- part' of a heuristic H, 
then don't replace 'and' by any other predicate. 

H18: if a newly-synthesized concept has criterial slots that coincide in value 
with those of an already-existing concept, 

then the new concept should be destroyed because it is redundant 

FIG. 23. Four new heuristics synthesized by EURISKO. Two 'constrained generation' heuristics and 
an 'implausible pruning' heuristic replace H13, yielding less explosive results. 
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high Worth values. Occasionally, both rules (H15 and H16)  support  the same 
task, and that task will jump to the top of the Agenda and is worked on almost 
immediately. 

The next heuristic, H17,  is a bit of compiled hindsight which, if only it had 
existed all along, would have prevented one of the disastrous explosions of 
worthless concepts due to the synthesis of a terrible heuristic. While the other 
heuristics in Fig. 23 are small perturbations on existing heuristics, H 1 7  is 
completely new (though synthesized using prexisting templates,  to be sure). 
How did this rule get synthesized? 

EURISKO originally used H13,  sometimes to good advantage, and decided to 
generalize it. A task to that effect was placed on the Agenda,  and eventually it 
was selected as the best task to work on for a while. EURISKO chose, at random, 
the IfPotentiallyRelevant slot as piece of H13  to generalize. This had con- 
tained 'if the task is to specialize C, and no slot to specialize has yet been 
chosen';  that is, this test was a predicate with two conjuncts. EURISKO general- 
ized this by replacing 'and '  by 'TheFirs tOf ' - - i .e . ,  by eliminating the second 
conjunct. In this manner  a new, generalized heuristic, H13b,  was created. Why 
was it so terrible? Instead of placing tasks on the Agenda only when a 
particular slot hadn' t  been decided, H13b  fired even when the selected slot was 
known! This resulted in a continuous stream of new tasks, and eventually new 
concepts, being synthesized. Finally, another  heuristic caught this, by noticing 
the sudden influx of uninvestigated, uninstantiated concepts. It destroyed the 
mutant  H13b,  and synthesized a few new heuristics, rules which would have 
been capable of preventing such a mutant  from ever being created. One of 
those eventually got a high Worth rating, and it appears as H 1 7  in Fig. 23. 

The final heuristic in Fig. 23 needs little commentary;  it is a specialization of 
the final heuristic in Fig. 22, but is much more useful, as the empirical results of 
rerunning EURISKO showed. With the four heuristics from Fig. 23 added to the 
initial state of the EURISKO System, the results changed dramatically. For the 
particular case above, of H 1 3  applying to itself, they were: 

2 heuristics that were more specialized and potentially useful; 
4 heuristics which looked more specialized but were not; 
9 heuristic which applied less often and did the same thing; 
20 heuristics which were so specialized they would never fire; 
4 heuristics which were simply wrong and harmful. 
The very g o o d - - a n d  the very dangerous--heuris t ics  were still generated and 

passed on for future consideration; the intermediate ones, the ones which 
would appear  foolish to a human on first reading them, were almost completely 
suppressed. The only way to eliminate any of the four harmful specializations 
from being considered, however, was to add (by hand) new pruning heuristics. 

Overall, the number  of new heuristics synthesized was reduced by an order 
of magnitude. Five hundred tasks were worked on during the first execution, 
but only 75 tasks needed to be run during the second execution (with the four 
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new rules f rom Fig. 23). The  times for these runs were, respectively, 34 and 
9 cpu minutes (on a D E C  20/60, running Interlisp). The 256 k of address space 
was quickly exhausted, and it was necessary to employ a means to swap units 
out onto disk (we used the RLL language) or a machine with a larger virtual 
address space (we now have access to a Xerox Dolphin). 

When run for very long periods of time, EURISKO invents ways of entering 
infinite loops (e.g., a mutant  heuristic which manages to alter the situation so 
that it will soon be triggered again). Much of our current work involves adding 
new capabilities to the program to detect and break out of such infinite loops, 
and to compile its experiences into one or more  heuristics which would have 
prevented such situations from arising. It is not always easy to explain what is 
wrong with a certain 'bad product ' .  For instance, one newly synthesized 
heuristic kept rising in Worth,  and finally I looked at it. It was doing no real 
work at all, but just before the credit /blame assignment phase, it quickly cycled 
through all the new concepts, and when it found one with high Worth it put its 
own name down as one of the creditors. Nothing is 'wrong'  with that policy, 
except that in the long run it fails to lead to bet ter  results. 

One additional factor which appears  to have a dramatic effect upon the 
quality and rapidity of heuristic synthesis is the precise set of slots that are 
known to the system. This is the topic of Sections 4.2, 4.3, and 4.4. 

4.2 .  A t t r i b u t e s  o f  a h e u r i s t i c  

In AM, heuristics examine existing frame-like concepts, and lead to new and 
different concepts. To  have heuristics operate  on and produce heuristics, 
EURISKO represents each heuristic as a full-fledged frame-like concept. E.g., 
/-/12 (see Fig. 22) needs to reset the value of the Worth slot (attribute) of the 
concept f it operates  on, hence even if f is a heuristic it must have a Worth slot 
(else we cannot run H12). Similarly, a heuristic that referred to such slots as 
Average-running-t ime,  Date-created,  Is-a-kind-of, Number-of-instances,  etc. 
could only operate  upon units (be they mathematical  functions or heuristics) 
having such slots. 

Fig. 24 illustrates (some of the slots from) a heuristic from EURISKO. Notice its 
similarity to the representat ion of a mathematical  operat ion (Fig. 5). The 
heuristic resembles the math function (compare Figs. 24 and 5) much more 
than the math function resembles the static math concept (compare Figs. 5 and 
6). 

Earl ier  we defined a heuristic to be a contingent piece of guidance knowl- 
edge: In some situation, here are some actions that may be especially fruitful, 
and here are some that may be extremely inappropriate.  While some heuristics 
have pathological formats  (e.g., algorithms which lack contingency; delta 
function spikes which can be succinctly represented as tables), most heuristics 
seem to be naturally stated as rules having the format  'if-conditions, then- 
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NAME: Generalize-rare-predicate 
ABBREVIATION: GRP 
STATEM ENT 

English: If a predicate is rarely true, Then create generalizations of  it 
lF-just-finished-a-task-dealing-with: a predicate P \ Jt,:s~ s ArtR[Btlt:S tOVPRtSt 
IF-about-to-work-on-task-dealing-with: an agenda A 1--- 1[: POl[{Xr[A[ IY-RFI [V~.NI 
1F-in-the-middle-of-a-task-dealing-with : *nc~er* / 
IF-truly-relevant: P returns Tree less than 5% of  Average Predicate 
IF-resources-available: at least 10 cpu seconds, at least 300 cells 
THEN-add-task-to-agenda: Fill in entries for Generalizations slot of  P 
THEN-conjecture: P is less interesting than expected 

Generalizations of P may be better than P 
Specializations of  P may be ~cry bad 

THEN-modify-slots: Reduce Worth of  P by 10% 
Reduce Worth of  Specializations(P) by' 50% 
Increase Worth of  Generalizations(P) by 20% 

THEN-print-to-user: English(GRP) with "a predicate" replaced b2, P 
TH EN-define-new-concepts: 

CODED-IF-PART: X(P) .,. <liSP ~uncfion cicfiniti . . . . . . .  iucd here> 

CODED-FHEN'PART:  MP) .-. <lsp *v, nc ...... d,:l; .................. d hc~> 
CODED-I F-TH EN-P -~ RTS: MP) " ' '  <1 [ '~P IL . . . . . . . . .  Ckt2'L 1'1I . . . . . . . . . . .  t[~d hcl~-> 

COMPILED-CODED-IF- FHEN-PAR 1 S: #30875 
SPECIALIZA1 IONS: Generalize-rare-set-predicate 

Boundary-Specializations: Enlarge-domain-of-predicate 
GENERALIZATIONS: Modit3-predicate, Generalize-concept 

Immediate-Generalizations: Generalize-rare-contingent-piece-o f knowledge 
Siblings: Generalize-rare-heuristic 

IS-A: Heuristic 
EXAMPLES: 

Good-Examples: Generalize Set-Equality into Same-Length 
Bad-Fxamples: Generalize Set-Equality into Same-First-Element 

CONJECTURES: Special cases of  this are more powerful than Generalizations 
Good-Conjec-Units: Specialize, Generalize 

ANALOGIES: Weaken-overconstrained-problem 
WORTH: 600 
VIEW: Enlarge-structure 
ORIGIN: Specialization of  ModiQ,-predicate ~ia empirical induction 

Defined-using: Specialize 
Creation-date: 6/1/78 11:30 

HISTORY: 
NGoodExamples: 1 N BadExamples: 1 
NGoodConjectures: 3 NBadConjectures: 1 
NGoodTasks-added: 2 NBadTasksAdded: 0 
AvgCpuTime: 9.4 seconds AvgListCells: 200 

F I G .  2 4 .  F r a m e - l i k e  representation for a heuristic rule for AM.  T h e  r u l e  i s  composed of nothing but 
attribute:value pairs. 

actions'. As the body of heuristics grows, the conditions fall into a few common 
categories (testing whether the rule is potentially relevant, testing whether 
there are enough available resources to expect the rule to work successfully to 
completion, etc.). The actions of the rules also begin to fall into a few common 
categories (add new tasks to the agenda, print explanatory messages, define 
new concepts, etc.). Each of these categories is worth making into a separate 
named attribute which heuristic rules can possess; Sections 4.3 and 4.4 will 
show the power which can arise from drawing such distinctions. 
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So instead of a heuristic having simply an if-slot and a then-slot, it has a 
bundle of slots which together  comprise the conditions of applicability of the 
heuristic, and another  bundle of slots which comprise the actions (see Fig. 24). 
In addition, there are several non-executable slots that describe the heuristic, 
that facilitate indexing of it, that relate it to other heuristics, etc. 

By a 'slot '  of a unit, we mean something closely related to the standard 
attr ibute/value pairing provided by proper ty  lists in LISP. However ,  there is no 
requirement  that the value for the slot actually be stored explicitly; rather, we 
require only that it be retrievable upon demand.  Thus our system, EURISKO, has 
a slot called Compiled-Coded-If-Then-Parts ;  no rule ever explicitly writes a 
value on such a slot, but some rules (such as those which define a rule 
interpreter)  access such slots and EVAL them. When one is accessed, and found 
to be nonexistent,  the unit called Compiled-Coded-If-Then-Par ts  is fetched, 
and its Definition is found. That  definition says to access the Coded-If-Then- 
Parts slot, and then run the LISP compiler  on that value. But suppose the 
Coded-If-Then-Par ts  slot doesn ' t  exist, either; then its definition is consulted. 
That  results in the Coded-If-Part  and the Coded-Then-Par t  being accessed, and 
their values being put together  into a Conditional expression. The Coded-If-  
Part  doesn ' t  exist, and the Definition slot of the unit called Coded-If-Part  says 
to access- -and  conjoin--a l l  the slots called If-Potentially-Relevant,  If-Truly- 
Relevant,  If-Resources-Available,  etc. This looking up of slots' definitions 
continues until the only slots called for are ones which are primitive, which are 
actually stored on the proper ty  list of the unit. This is reminiscent of macro 
expansion, but more  semantically guided; ontologically it actually has closer 
kinship to the style of knowledge-based automatic program synthesis done by 
Balzer, Barstow, Green,  and others. See [7] for the origins of this paradigm, 
and [10] for more details of this malleable representat ion scheme. 

One analogue of hardware caching is to store the virtual slot's values as they 
are computed;  thus the property list of General ize-Rare-Predicate  might even- 
tually look like that shown in Fig. 24, even though very few of those slots had 
their values stored there explicitly. Should the If-Truly-Relevant  slot of 
General ize-Rare-Predicate  ever change, the system automatically updates the 
virtual slots defined using If-Truly-Relevant  (in EURISKO, this currently would 
include If-Relevant,  If-Parts, Coded-If-Parts ,  If-Then-Parts,  Coded-If-Then-  
Parts, and Compiled-Coded-If-Then-Parts . )  

These two fea tures- -sof tware  caching of slot's values, plus the ability to have 
virtual slots defined in terms of more  primitive ones - - l ead  to the dynamic 
expansion of the vocabulary of legal slots. Thus the original EURISKO system 
had heuristics with primitive Coded-If-Part  and Coded-Then-Par t  slots; these 
were later given definitions in terms of new, more primitive slots (such as 
Then-Define-New-Concepts) .  Any existing rule, which had only the Coded-If-  
Part and Coded-Then-Par t  lumps of code, still runs for all purposes. All rules 
which ask for either of those slots still run. But new rules have the option of 
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being specified in terms of more refined slots, and their Coded-If-Part  and 
Coded-Then-Part  slots are assembled upon demand out of those smaller pieces. 

All the previous attributes (If- parts, Then- parts, C o d e d - . . .  parts) have 
been effective, executable conditions and actions. These are paramount ,  since 
they serve to define the heuris t ic-- they are the criterial slots. Many non- 
effective non-criterial slots are important  as well, for describing the heuristics. 
Some of these relate the heuristic to other heuristics (Generalizations, Speci- 
alizations), to classes of heuristics (Isa), and to non-heuristic concepts (View). 
Several slots record the heuristic's origins (Defined-using, Creation-date) and 
the cases tudies  of its uses so far (Examples). 

Once a rich stock of slots is present for heuristics, several new ones can be 
derived from them by choosing an n-ary relation R, and n slot names, and 
defining R(S1, $2 . . . . .  Sn) as a new type of slot. 

First, consider choosing just a single kind of slot (e.g., Examples),  and asking 
some questions about it: how does it evolve over  time in length? what 
relationships exist among entries that fill it? how useful are those values?, etc. 
Each such question spawns a new kind of slot, e.g., AvgNumberOfEx-  
t remeExamples ,  Re lnsAmongMyExtremeExamples ,  AvgWor thOfExt reme-  
Examples.  In EURtSKO, these are thought of, and implemented,  as full- 
fledged slots in their own right, not as subparts of slots. In our program, the 
various if- slots have not been relegated to second-class citizenship beneath 
Coded-If-and-Then-Parts .  Indentation (in Figs. 5, 6, 24) is used merely as a 
visual aid, not to reflect extra levels of parentheses in LISP. 

We now have an ad hoc way in which to generate  new kinds of slots out of 
old ones. To  accomplish this in a principled way, one would draw a flowchart of 
the primitive slots functions (Get, Put, Assert, etc.), and categorize---for each 
kind of flow chart pr imit ive--what  'questions'  one can ask about it. Thus, for a 
flowchart arrow that symbolizes a Write, one could ask about the old value, the 
new value, the amount  of time the old value was present, the source of the new 
value, etc. More complex slots (such as average length of entries written) could 
be defined from these more elementary records. The above method focused on 
R(S),  i.e. on slots defined by asking unary questions about other slots, but the 
method generalizes: 

One can take a pair of slots (say ThenConjecture  and If-Truly-Relevant)  and 
a relation (such as Implies) and define a new unary function on heurist ics--a 
new kind of slot that any heuristic can have - -where  ~ would list Hj as an 
entry on that slot only if (in the present case) the ThenConjecture  slot of 
Implies the IfTrulyRelevant  slot of Hi. A good name for this new slot might be 
'CanTrigger ' ,  because it lists some heuristics which might trigger when H, is 
fired. 

If there are n slots, and m binary relations then this technique generates a 
space of rnn 2 'cross-term' type slots. Naturally most of them won't  be very 
useful, but this provides a generator for a large space of potentially worthwhile 
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new slots. (This space is actually infinite, as n <- - ran  2 after an exhaustive 
application of this process, and one must start all over  again.) Some heuristics 
guide EURISKO in selecting plausible ones to define, monitoring the utility of 
each selection, and obliterating any losers (slots which, empirically, fail to 
facilitate the s tatement  of or discovery of a highly-rated concept of any type). 
An excerpt from EURISKO illustrating this process is given in Section 4.3. 

Again, there is nothing magical about the number  ' two' ,  and one could pick 
an n-ary relation R and n slot names, and use them all to build a new slot, as 
ment ioned in the first paragraph of this subsection. 'Two'  is slightly special, 
though, in that 'a kind of slot whose values are names of uni ts ' - -such as 
' I s -a ' - - i s  actually a binary relation, i.e., a subset of Units x Units. 

4.3. Discover ing  a n e w  heurist ic  

The heuristics present in AM and EURISKO create new concepts via specializing 
existing ones, generalizing (either f rom existing ones or from newly-gathered 
data), and analogizing. These are the three 'directions'  new heuristics will come 
from. We have exemplified Specialization already. One point about General-  
ization is worth making: Heuristics which serve as plausible move generators 
originate by generalizing from past s u c c e s s e s ;  heuristics which prune away 
implausible moves originate by generalizing from past f a i l u r e s .  Since successes 
are much less common than failures, it is not surprising that most heuristics in 
most heuristic search programs are of the pruning variety. In fact, many 
authors define heuristic to mean nothing more than a pruning aid. 

One  of the typical ' common sense number  theory '  heuristics which AM lacked 
was the one which decides that the unique factorization theorem is probably 
more  significant than Goldbach 's  conjecture,  because the first has to do with 
multiplication and division, while the latter deals with addition and subtraction, 
and Primes is inherently tied up with the former  operations. 

How could such a heurstic be discovered automatically? This is the starting 
point for the example we now begin, an example which concludes in the 
following Section 4.4. What  is the tie between these two sections? That  is, what 
in the world does discovering heuristics have to do with representat ion of 
knowledge? The  connection is much deeper  than we originally suspected. 

Consider just the special case where we restrict our  representat ions to 
frame-like ones. The  larger the number  of different kinds of slots that are 
known about, the fewer keystrokes are required to type a given frame 
(concept, unit) in to the system. For instance, if NGoodConjecs  were not 
known, it might take 40 keystrokes rather  than 1 to assert that ' there are 3 
good conjectures known involving prime numbers. '  Moreover,  no special- 
purpose machinery to process such an assertion would be known to the system. 
The larger your vocabulary, the shorter  your messages can be. 

This is akin to the power Interlisp derives from the thickness of its manual,  
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from the huge numbers  of useful predefined functions. A broad vocabulary 
streamlines communication. Not only does a profusion of slot types facilitate 
entering (typing in) a concept, it makes it easier to modify it once it 's entered. 
This is because (i) fewer keystrokes are needed in toto, and (ii) the possible 
kinds of things you might need to type in are explicitly presented to you (in a 
menu). 

Not only does a profusion of slot types facilitate entering a concept and 
modifying a concept, it makes it easier to discover new concepts-- in  particular 
new heurist ics--because (i) it is a process of combining terms in a more 
powerful, higher level language, and (ii) specialized knowledge may exist, rules 
which refer to particular slots of heuristics, telling when and how the com- 
bination process should be done. 

We are thus claiming that the task of discovering heuristics can be pro- 
foundly accelerated---or r e t a rded- -by  the choice of slots we make for our 
representation. In the case of an excellent choice of slots, a new heuristic would 
frequently be simply a new entry on one slot of some concept. Let 's  see how 
that can be. 

Recall that primes were originally discovered by the AM system as extrema of 
the function 'Divisors-of' .  This was recorded by placing the entry 'Divisors-of '  
in the slot called 'Defined-using'  on the concept called 'Primes '  (see Fig. 6). 
Later,  conjectures involving Primes were found, empirically-observed patterns 
connecting Primes with several other concepts, such as Times, Divisors-of, 
Exponentiation,  and Numbers-with-3-divisors. This is recorded on the Good-  
ConjecUnits  slot of the Primes concept. Notice that all the entries on Primes'  
DefinedUsing slot are also entries on its GoodConjecUni ts  slot. This recurred 
several times while running EURISKO, that is for several concepts besides 
Primes, and ultimately the heuristic H 1 9  (Fig. 25) became relevant (its if- part  
became satisfied). The notation u • r means slot r of unit u. 

/-/19 said that it would probably be productive to pretend that DefinedUsing 
was always a subslot 2 of GoodConjecUnits .  I.e., H 1 9  applied in the current 
situation, with r = Defined Using and s = GoodConjecUnits .  It created a new 
heuristic, whose effect was the following: "As  soon as Eurisko defines any new 
concept X in terms of Y, it should expect there to be some interesting 
conjectures between X and Y." In our usual if / then-format we might express 
this rule the way that H 2 0  is worded (Fig. 25). 

2Our usage  of the  t e rm subslot is d rawn f rom subset ,  subgroup ,  etc.;  namely ,  r is a subs lo t  of s iff 
(for all  concep t s  u) any  en t ry  on u - r  is a lso a val id  en t ry  one  could  p lace  on u . s .  So 
E x t r e m e - e x a m p l e s  is a subs lo t  of E x a m p l e s ,  s ince any e x t r e m e  e x a m p l e  of a concep t  u is a lso an 
e x a m p l e  of u. M o t h e r  is a subs lo t  of Parent .  Subs lo t  is a subs lo t  of Specia l iza t ions .  A n o t h e r  way  to  
f o r m u l a t e  this  is to  say that ,  for eve ry  concep t  u, the  legal  en t r ies  for its r s lot  a re  a subse t  of the  
legal  en t r ies  for  its s slot. The  inverse  of the  subs lo t  r e la t ion  is ca l led  superslot. U n l i k e  some  uses  of 
these  words ,  the  fact tha t  one  slot  is a supers lo t  of a n o t h e r  has  no  bea r ing  on how it is s tored ,  
re t r i eved ,  etc., no r  on  w h e t h e r  one  is p r imi t ive  and  the  o the r  vir tual .  
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H 1 9 :  if ( for m a n y  uni ts u) most  of  the  ent r ies  on u • r a re  a lso  on u • s, 

then-asser t  that r is a subslot of s (with justification H19)  

H20 :  if a concept u is created with a value in its DefinedUsing slot, 
t h e n  p lace  that  value in u's GoodConjecUnits slot (justif = H 19) 

FIG. 25. A heuristic which notices and conjectures a containment relationship between slots, 
followed by one of the fruits of its labors--a new heuristic. 

There  is a l ready a very general  rule in the system, which says to verify 
suspected member s  of any slot (members  whose justification is questionable).  
W h e n  H 2 0  appears  in the system, and is used to add suspected entries to the 
G o o d C o n j e c U n i t s  slots of units, this general  rule will cause tasks to appear  on 
the Agenda ,  tasks which try to confirm or  deny whether  they deserve to be 
there.  

The  main point  here  is t h a t / - / 2 0  was not  synthesized as a long, compl ica ted  
expression such as shown above  in Fig. 25. Rather ,  all EUmSKO did was to go to 
the concept  called Def inedUsing (the data  s t ructure which holds all the 
informat ion the p rogram knows about  that  kind of slot in general),  and record  
that one  of its Superslots  is GoodCon jecUn i t s .  In o ther  words,  it added  one  
a tom to one  list. EURISKO also gave this an explicit justification, namely  H19 ,  
since it is a heuristic, not  a fact. That  required a second trivial action at the LISP 
level. Fig. 26 shows what  this record  looks like current ly  in EURISKO. The  'new 
heurist ic '  is simply the first word  which is embo ldened  below;  all the non-bold  
text was present  in the p rogram already ( though most  of  it was written by the 
p rogram itself at earlier times, not  filled in by human  hands). The  second 
embo ldened  word  gives the epistatus (epistemological status) of the new 
heur i s t i c - -namely ,  it is a heuristic and owes its existence to the speculat ions of 
heuristic H19 .  

Thanks  to the large n u m b e r  of useful specialized slots, large if/then- rules 

NAME: Archetypical-" Defined- Using"-slot 
SPECIALIZATIONS: 

SubSIots: Really-Defined-Using, Could-Have-Defined-Using 
GENERALIZATIONS: 

SuperSlots: Origin, GoodConjecUnits 
Justification: HI9 

IS-A: Kind of slot 
WORTH: 300 
ORIGIN: Specialization of Origin 

Defined-using: Specialize, Origin 
Creation-date: 9/18/79 15:43 

AVERAG E-SIZE: 1 
FORMAT: Set 
FILLED-WITH: Concepts 
JUSTIFICATION: Formal 
CACHE? Always-Cache 
MAKES-SENSE-FOR: Concepts 

FIG. 26. Part of the concept containing centralizing knowledge about all DefinedUsing slots. 



236 D.B. LENAT 

can be compactly, conveniently, efficiently represented as simple links. Some of 
these useful slots are very general, but many are domain dependent.  Thus, as 
new domains of knowledge emerge and evolve, new kinds of slots must be 
devised if this powerful property is to be preserved. The next natural question 
is, therefore,  " H o w  can useful new slots be found?"  The last two sentences are 
the final two points of our original five-point programme,  and the next 
section answers them by way of continuing the example we 've  begun in this 
section. 

To reiterate: EURISKO has already almost a thousand separate kinds of slots, 
most of which are defined using other slots, all of which were useful at some 
time or times. As a result of this large vocabulary of useful slot types, many 
entire heuristics can be recorded succinctly as a single atom or two placed in 
the right slot. Heuristic H20  was added to the program (by the program itself) 
merely by adding the a tom GoodConjecUni ts  to the slot called SuperSIots of 
the unit called Archetypicai- 'Defined-Using'-slot .  

It is important  to make  clear that the semantics of a value v appearing as an 
entry on slot s of concept c does n o t  necessarily mean that it is formally proven 
that v merits a position there; rather, it is merely plausible. Any entry v can 
have an explicit justification, but in lieu of any information to the contrary, the 
default justification is merely empirical. Thus, when an entry, say Palindromes, 
is on the GoodConjecUni ts  slot of Primes, it may mean that some interesting 
conjectures have been found between Primes and Palindromes, or just that it is 
suspec ted- -and  expec ted- - tha t  such conjectures can be found if one spends 
the trouble looking for them. 

How does the EURISKO program know what the justification of a slot is, if it 
isn't explicitly recorded? It goes to the unit for the archetypical representative 
of that slot, looks up a slot called Justification, and retrieves that value. In the 
case of the Defined-Using slot, there is almost never any question of un- 
certainty about its va lues - - the  definition of one slot in terms of another  has to 
be spelled out in black and white. Therefore,  as Fig. 26 shows, the Justification 
slot for the unit called Archetypical- 'Defined-Using'-slot  is filled with the entry 
'Formal ' .  Things are not so clearcut for entries on most units' Worth slots, and 
therefore in the EURISKO system, on the Justification slot of the Archetypical- 
'Worth '-s lot  unit, there is no entry. Rather,  by inheritance from the very 
high-level unit called Any-Slot, the justification for Worth values is determined 
to be 'Empirical ' .  

Thanks to the large number  of useful specialized slots, thousands of heuris- 
tics which would be bulky if stated as if/then- rules can be compactly, 
conveniently, efficiently represented as simple l inks--as  a single a tom entered 
on the appropriate  slot of the appropriate  unit. Most of these useful slots are 
very general (e.g., Examples,  Worth,  SuperSlots), but some are domain 
dependent  (e.g., Predators,  Toxicity, HullArmor) .  Thus, as new domains of 
knowledge emerge and evolve, new kinds of slots must be devised if this 
powerful property is to be preserved. The next natural question is, therefore. 
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" H o w  can useful new slots be found?"  By way of answering those two 
questions, the next section cont inues- -and  concludes-- the  example we have 
begun in this section. 

4.4. Heuristics used to extend existing representations 

Each kind of representat ion makes  some set of operations efficient, often at the 
expense of other operations. Thus, an exploded-view diagram of a bicycle 
makes  it easy to see which parts touch each other, sequential verbal in- 
structions make  it easy to assemble the bicycle, an axiomatic formulation 
makes  it easy to prove propert ies about it, etc. 

As a field matures,  its goals vary, its paradigm shifts, the questions to 
investigate change, the heuristics and algorithms to bring to bear  on those 
questions evolve. Therefore,  the utility of a given representat ion is bound to 
vary both from domain to domain and within a domain from time to time, 
much as did that of a given corpus of heuristics. The representat ion of today 
must adapt  or give way to a new o n e - - o r  the field itself is likely to stagnate and 
be supplanted. 

Where  do these new representat ions come from? The most painless route is 
to merely select a new one from the stock of existing representational schemes. 
Choosing an appropriate  representat ion means picking one which lets you 
quickly carry out the operations you are now going to carry out most frequently. 

In case there is no adequate  existing representation, you may try to extend 
one, or devise a whole new one (good luck!), or (most frequently) simply 
employ a s e t  of known ones, whose union makes all the common operations 
fast. Thus, when I buy a bicycle, I expect both diagrams and printed in- 
structions to be provided. The carrying along of multiple representations 
simultaneously, and the concommitant  need to shift f rom one to another,  has 
not been much s tud ied- -or  a t t empted- - in  AI  to date, except in very tiny 
worlds (e.g., the Missionaries and Cannibals puzzle; graphics). 

There  are several levels at which 'new representat ions '  can be found. At  the 
lowest level, one may say that AM changed its representat ion every time it 
defined a new domain concept or predicate, thereby changing its vocabulary 
out of which new ones could be built. At the highest level would be true 
open-ended exploration in ' the space of all representat ions of knowledge' .  The 
latter may someday be possible, but we currently lack adequate  experience 
to formulate the necessary generation rules. 

The example below lies intermediate between these two extremes: it shows 
how EURISKO discovers new kinds of slots which can be used to advantage. For 
instance, when AM found the unique factorization conjecture (UP-T), it would 
have been helpful if AM had at that instant defined a new kind of slot, 
Prime-Factors,  that every Number  could have possessed. H21  is a EURISKO rule 
capable of this sort of second-level representat ion augmentat ion (see Fig. 27). 
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H21: if most units in the system have very large s slots (i.e., have many entries 
stored therein), 

then propose a new task: replace s by new specializations of s 

H22: if a slot s is very important, and all its values are units, 
then-¢reate-new-kind-of-slot which contains "all the relations among the 

values of my s slot" 

FIG. 27. Heuristics which occasionally lead to new kinds of slots worth having. 

The vague terms in the rule have specific computat ional  interpretations, of 
course, in ~URISKO; for instance, ' large'  is coded as 'more  than twice the 
average size of all slots, and also larger than the average number  of slots a unit 
has'.  In one experiment,  the various types of examples (extreme, typical, 
boundary,  etc.) were not given separate slots initially, but were unioned into 
huge Examples  slots. The above rule then caused the program to focus on 
defining new specializations of Examples;  recall that we term such specializa- 
tions 'subslots' ,  though this does not mean that they are implemented as pieces 
of their superslots; the old Examples  slot still exists and has many entries, even 
if every one of those entries also exists on some subslot(s) of Examples.  Note  
that the subslots will not in general be disjoint. In a more domain-dependent  
usage, the above rule causes Factors to be split up into PrimeFactors,  Odd- 
Factors, LargeFactors,  etc. 

A slightly more advanced level at which 'new representat ions '  are syn- 
thesized by EURISKO is to actually shift f rom one entire scheme to a n o t h e r - -  
potentially novel - -one .  The first two rules in Fig. 28 indicate when a certain 
type of shift is appropriate.  All the heuristics of this type are specializations of 
the third, general one, H25.  

H23: i f the problem is a geometric one, 
then draw a diagram 

H24: if most units have most of their possible slots filled in, 
then shift from property lists to record structures 

H25: if some operation is performed frequently, 
then shift to a representation in which it is inexpensive to perform 

FIG. 28. Heuristics which occasionally effect a change of representation. 

Let us continue our example.  H 2 2  (shown above, in Fig. 27) is capable of 
reacting to a situation by defining an entirely new slot, built up from old ones, a 
new slot which it expects will be useful. When the number  stored in the Worth 
slot of the GoodConjecUni ts  concept is large enough, the system attends to the 
task of explicitly studying GoodConjecUnits .  Several heuristics are relevant 
and fire; among them is H22,  the rule shown above. It then synthesizes 
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a whole new unit, calling it Rela t ionsAmongEntr iesOnMy'GoodCon-  
jecUnits'Slot. Every known way in which entries on the GoodConjecUnits  slot 
of a concept C relate to each other can be recorded on this new slot of C. In 
practice, this slot typically had only a few entries, for most units: only relations 
which were explicitly defined could be perceived and recorded therein (e.g., all 
the various types of slots), and EURISKO is not designed to spend its time in 
undirected searching for entries for that slot. 

How was the new slot used by the program? Take a look at the Primes 
concept (Fig. 6). Its GoodConjecUnits  slot contains the following entries: 
Times, Divisors-of, Exponentiation, Squaring, and Numbers-with-three- 
divisors. The first two of these entries are inverses of each others; that is, if you 
look over the Divisors-of unit you will see a slot called Inverse which is filled 
with names of concepts, including Times. Similarly, still looking over the Times 
unit, one can see a slot called Repeat which is filled with the entry Exponentia- 
tion, and one can see a slot called Compose filled with Squaring. So Inverse and 
Repeat and Compose are some of the relations connecting entries on the 
GoodConjecUnits  slot of Primes, hence the program will record Inverse and 
Repeat and Compose as three entries on the Relat ionsAmongEntr iesOnMy 
'GoodConjecUnits 'Slot  slot of the Primes concept. 

Now it so happens that several concepts wind up with 'Compose '  and 
'Inverse'  as entries on their Rela t ionsAmongEntr iesOnMy'GoodConjecUni ts '  
Slot slot. The alert reader may suspect that this is no accident, and an alert 
program should suspect that, too. Indeed, heuristic H26  (Fig. 29) says that it 
might be useful to behave as if 'Compose '  and 'Inverse'  were always going to 
eventually appear there. There is no formal justification behind this kind of 
anticipation, but it is cost-effective to follow such a policy; it is akin to the 
psychological phenomenon of expectation-filtering. 

H26  causes EURISKO t o  add Compose and Inverse to the slot called Expec- 
tedEntries of the concept called Rela t ionsAmongEntr iesOnMy'GoodCon-  
jecUnits'Slot. This one small act, the creation of a pair of links, is in effect 
creating a new heuristic equivalent to H27 (Fig. 29). 

H26: if (for many units u) the s slot of u contains the same 
values vj, 

then-add-va lue vj to the ExpectedEntries slot of the Typical-s-slot unit 

H27: if a concept u gets entries X and Y on its GoodConjecUnits 

slot, 
then-predict :  u will also eventually get Inverse(X), Inverse(Y), 

and Compose (X, Y) there as well 

FIG. 29. Entries which usually crop up on s slots can be expected to appear there. H26 says this, 
and one of its applications spawned a heuristic equivalent to H27 (but more compact). 
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H o w  is this ac tual ly  used? Cons ide r  wha t  occurs  when the p rog ram def ines  a 
new concept ,  C, which is De f inedUs ing  Divisors-of .  A s  soon as that  concep t  is 
fo rmed ,  the  heuris t ic  link f rom Def inedUs ing  to G o o d C o n j e c U n i t s  au tomat i c -  
ally fills in Div isors -of  as an en t ry  on the  G o o d C o n j e c U n i t s  slot of C. Next ,  the  
l inks just  i l lus t ra ted  above  come  into  act ion,  and  p lace  Inverse  and C o m p o s e  
on the R e l a t i o n s A m o n g E n t r i e s O n M y ' G o o d C o n j e c U n i t s ' S l o t  of C. That  in turn 
causes  the  inverse  of Divisors-of ,  namely  Times,  to be  p laced  on the G o o d -  
C o n j e c U n i t s  slot as well as the  a l r e a d y - p r e s e n t  ent ry ,  Divisors-of .  Final ly ,  that  
causes  the  p r o g r a m  to go off looking  for con jec tu res  be tween  C and e i ther  
mul t ip l ica t ion  or  division.  W h e n  a con jec tu re  comes  in connec t ing  C' to  one  of 
them,  it will get  a h igher  a pr ior i  e s t ima ted  wor th  than one  which does  not  connec t  

to  them.  
If only we had  the new heurist ics  back  when Pr imes  was first def ined ,  they  

would  have  the re fo re  e m b o d i e d  enough  ' c o m m o n  sense '  to p re fe r  the  Un ique  
Fac to r i za t ion  Theo rem to G o l d b a c h ' s  conjec ture .  I f  we had  them then,  these  
heuris t ics  would  have  led us to ou r  p resen t  s ta te  much sooner .  Because  of our  
a s sumpt ions  abou t  the  con t inu i ty  of the  world ,  such heuris t ics  are  still wor th  
having and u s i n g - - w e  expect  t hem to be  useful  f rom t ime to t ime in the  future.  

Not ice  that  there  is noth ing  special  about  m a t h e m a t i c s - - t h e  newly syn- 
thes ized  heuris t ics  have  to do  with very genera l  slots,  l ike Def inedUs ing  and 
G o o d C o n j e c U n i t s .  Fo r  instance,  as soon as a new concept  (say Midd le -Class )  is 
def ined using the old  slot Income,  the p rog ra m immed ia t e ly  fills in the  
bo ld  p r in ted  in format ion  in Fig. 30. 

NAME: Middle-Class 
Defined-using: Income 
RelationsAmongEntriesOnMy'GoodConjecUnits'Slot: Inverse, Compose 
Good-Conjec-Units: Income, Spending, Earnedlnterest 

FIG. 30. A fragment of a non-math concept for which some predictions have been recorded (in 
boldface), thanks to the heuristics shown in Fig. 29. 

Thus,  EURISKO goes  off looking  for (and will expec t  more  f rom) con jec tu res  
be tween  Midd le -Class  and any of Income ,  Spending ,  and  E a r n e d l n t e r e s t .  In 
one  run of the  EUR1SKO system, some such con jec tu res  were  then found  
( including 'Midd leC la s s  spends  all its income ' ) ,  but  we p r i m e d  the  sys tem with 
very ca r i ca tu red  da t a  abou t  A m e r i c a n s '  incomes  and spend ing  habi ts .  W h e n  we 
r e m o v e d  heur is t ic  H22, R e l a t i o n s A m o n g . . .  slots never  was def ined,  so H26 
did not  fire, so Income  and  Spend ing  were  not  p laced  on the G o o d C o n j e c U n i t s  
slot of Midd leCiass ,  and  the p reced ing  con jec tu re  was never  found.  So the new 
slot is useful,  though  it has a t e r r ib le  name,  and  the  new little heur is t ics  (which 
looked  l ike l i t t le l inks or  facts but  were  actual ly  permission to make daring 
guesses) were  power fu l  af ter  all. 

W e  have re l ied  heavi ly  on ou r  r ep re sen t a t i on  be ing  very  s t ruc tured ;  in a very 
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uniform one (say a calculus of linear propositions, with the only operations 
being Assert and Match) it would be difficult to obtain enough empirical data 
to easily modify that representation. This is akin to the nature of discovering 
domain facts and heuristics: if the domain is too simple, it is harder to find new 
knowledge and-- in  part icular--new heuristics. Heuristics for propositional 
calculus are much fewer and weaker than those available for guiding work in 
predicate calculus; they in turn pale before the rich variety available for 
guiding theorem proving ' the way mathematicians really do it'. This is an 
argument for attacking seemingly-difficult problems which turn out to be lush 
with structure, rather than working in artificial worlds so constrained that their 
simplicity has sterilized them of heuristic structure. 

4.5. Recent  results of the EURTSKO program 

Much of the preceding discussion has been quite abstract. In this section we 
present some of the concrete results produced by the EUaISKO program so far, 
with some glimpses into how they were obtained. EUaISKO has hundreds of 
units for six different domains: Set Theory,  Number Theory,  Oil Spill Amel- 
ioration, Device Physics, Games, Heuristics itself, and Representation itself. 

4.5.1. Results in the games domain 

As our first example, let us consider EUalSKO'S exploits in a Games task, 
exploring the design of naval fleets conforming to a body of (several hundreds 
of) rules and constraints as set forward in Traveller: The Trillion Credit 
Squadron. EURIS~O designed a fleet of ships suitable for entry in the recent 
Origins national wargame tournament,  held at Dunfey's  Hotel, in San Mateo, 
CA, over July 4 weekend, 1981. The traveller tournament,  run by Game 
Designers Workshop (based in Normal, Illinois), was single elimination, six 
rounds. EUaISKO'S fleet won that tournament,  thereby becoming the ranking 
player in the United States (and also an honorary Admiral in the Traveller 
navy). This win is made more significant by the fact that the author had never 
played this game before, nor any miniatures battle game of this type, and there 
were no practice rounds. 

Each participant has a budget of a trillion 'credits' (roughly equal to dollars) 
to spend in designing and building a fleet of futuristic ships. There are over 
one hundred pages of rules which detail various costs, constraints, and 
tradeoffs, but basically there are two levels of variability in the design process: 

(1) Design an individual ship: worry about tradeoffs between types of 
weapons carried, amount  of armor on the hull, agility of the vessel, grouping of 
weapons into batteries, amount  of fuel carried, which systems will have 
backups, extra replacement crew carried, etc. 

(2) After designing several distinct kinds of individual ships, group sets of 
them together into a fleet. The  fleet must meet several design constraints (e.g., 
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ships having a total fuel tonnage of at least 10% of the total fleet fuel tonnage 
must be capable of refueling and processing unrefined fuel), and in addition 
must function tactically as a coherent unit. 

EURISKO was given the rules of the game, and the constraints on the design 
process, and spent a great amount  of time (roughly 500cpu hours on a Xerox 
Dolphin) managing a heuristically-guided evolution process. Fleets would fight, 
and the simulated battle would be analyzed (by some of EURISKO'S heuristics) to 
determine which design policies were winning, and--occas ional ly- -what  for- 
tuitous circumstances could be abstracted into new design heuristics. An 
example of the former  was when the Agility of ships gradually decreased, in 
favor of heavier and heavier Armor  plating of the hulls. An example of the 
latter was when a purely defensive ship was included in an otherwise-awful 
fleet, and that fleet could never be fully defeated because that defensive ship, 
being very small, unarmored,  and super agile, could not be hit by any of the 
weapons of the larger nearly-victorious fleet. The author culled through the 
runs of the program every 12 hours or so of machine time (i.e., each morning, 
after letting it run all night), weeding out heuristics he deemed invalid or 
undesirable, rewarding those he understood and liked, etc. Thus the final 
crediting of the win should be about 60/40% Lenat/Euals~o, though the 
significant point here is that neither Lenat  nor EURISKO could have won alone. 
Most of the battles are tactically trivial, the contest being almost decided by the 
designs of the two fleets; t ha t - - and  the thickness of the tu lebooks- -were  the 
reason this appeared to be a valid domain for EUR1SKO. 

One very general result EURISKO abstracted from this process was a 'nearly 
extreme'  heuristic: In almost all Traveller fleet design situations, the right 
decision is go for a near ly- -but  not quite---extreme solution. Thus, the final 
ships had Agility 2 (slightly above the absolute minimum), one weapon of  each 
type of small weapons (rather than 0 or many), the fleet had almost as many 
ships as it could legally have but not quite (93 instead of  95), etc. Our 
original intuitions were to have a modera te  number  of large ships, each with 
one enormous spinal mounted weapon capable of blasting another  ship to 
pieces with a single shot; EURISKO gradually changed this into a fleet consisting 
of a large number  of small ships, collectively bearing an enormous number  of 
small missile weapons. The fleet had almost all (75) ships of this type, though 
there were a couple of ships which were small and agile, and a couple of ships 
which had weapons large enough to destroy any enemy ships that were small and 
agile. 

Almost all the other entrants in the final tournament  had fleets that consisted 
of about 20 ships, each with a huge spinal mount weapon, low armor,  and fairly 
high agility, and a large number  of secondary energy weapons (laser-type 
weapons). This contrasted with Eurisko's  fleet, and such an enemy was rapidly 
decimated, at a loss of about a third of Eurisko 's  line ships, and no risk to its 
specialty ships. 
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Eurisko 's  first opponent  resigned after one exchange of fire, when the 
pattern became clear. Its second opponent  did some calculations and resigned 
without ever firing a shot. The  subsequent opponents  resigned during the 
second round. The  few specialty ships remained unused until the final round of 
the tournament ,  battling for 1st vs. 2nd place. That  opponent  also had ships 
with heavy armor,  few large weapons,  low agility, etc. He  was lacking any fast 
ships or fast-ship-killers, though. The author simply pointed out to him that if 
Eurisko were losing then we could put only our fast ship out in the front line, 
withdraw the others and repair them, and effectively start the battle all over  
again. This could go on until such time as Eurisko appeared to be winning, 
when we would let it continue to termination. The opponent  did a few 
calculations and surrendered without fighting. Thus, while most of the tour- 
nament  battles took 2-4 hours, most of those involving EURISKO took only a few 
minutes. 

The tournament  directors were chagrined that a bizarre fleet-such as this one 
captured the day, and a similar fleet (though not so extreme) took second 
place. As a result, the rules for future years '  TCS tournaments  have been 
changed, to dramatically reduce the design singularities which EURISKO (work- 
ing with the author) found. 

4.5.2. Results in programming and representation 

A few hundred of the most  common INTERLISP function have been represented 
as units within EUmSKO. This enables it to monitor  and modify its own 
behavior,  as well as synthesize and modify new LISP functions. EURISKO gathers 
data about LISP, just as it does about e lementary mathematics,  or games. For 
example,  EURISKO was originally given units for E Q  and E Q U A L ,  with no 
explicit connection recorded between them. Eventually, it got around to 
recording examples (and nonexamples)  for each, and conjectured that E Q  was 
a restriction (a more specialized predicate) of E Q U A L ,  which is true. A 
heuristic suggested disjoining an E Q  test onto the front of E Q U A L ,  as this 
might speed E Q U A L  up. Surprisingly (to the author, though not to EURISKO), it 
did! This turned out to be a small bug (since fixed) in the then-extant LmP. Once 
it had the conjecture about E Q  being a special kind of E Q U A L ,  it was able to 
look through its code and specialize bits of it by replacing E Q U A L  by EQ,  or 
to generalize them by substituting in the reverse order. EURISKO analyzed the 
differences between E Q  and E Q U A L ,  and came up with the concept we refer 
to as LISP atoms. In analogue to humankind,  once EURISKO discovered atoms it 
was able to destroy its environment  (by clobbering C D R  of atoms). 

4.5.3. Results in device physics 

After  discussion with Bert  Sutherland and Jim Gibbons,  it was decided that 
one domain ripe for attack by an exploration system such as EURISKO is the 
design of VLSI  circuits. We began by building in a knowledge base of concepts 
such as groups in the periodic table, doping, carriers, annihilation, etc. Thanks 
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to a very carefully chosen vocabulary of nouns (n-doped-region, p-doped- 
region, insulator) and verbs (abut-regions, apply-electric-field), many elemen- 
tary physical devices were trivial, short 'sentences' in that language (e.g., the 
silicon diode, MOSFET transistor). That was not particularly surprising, and 
further discussion caused us to go up a level of abstraction, and discuss the 
conduction paths in a circuit, rather than the specific behavior of charged 
carriers moving through various types of materials. 

Thus, considering only NMOS technology, one can view a transistor simply 
as a gate which, when 'on', allows current to flow between its two terminals. In 
other words, emitter and collector are symmetric in NMOS, though most 
designs try to be less technology-dependent and don' t  take advantage of that 
symmetry as EURISKO did. Recent advances in polysilicon recrystallization 
fabrication techniques make it feasible to design three-dimensional VLSI 
devices, a series of alternating layers of (i) metal and insulator material, (ii) 
doped semiconductor material and channel material. EURISKO explored various 
configurations of these materials, using a few heuristics to constrain its search 
through this enormous space. Some heuristics constrain the generation process, 
others recognize interesting or useful functionality----or inconsistencies--in the 
resultant candidate circuit. Almost immediately it happened upon a surpris- 
ingly tiny design for a memory cell; see Fig. 31b for an illustration of that 
design, and Fig. 31a for the corresponding two-dimensional circuit diagram of 
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N4 N4 
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FIG. 31a.  A c o n v e n t i o n a l  c i rcui t  fo r  a f o u r - t r a n s i s t o r  m e m o r y  cell.  Pu l s ing  a cause s  a to  s t ay  at  1, 

a n d  /3 to  d r o p  to  0. S imi lar ly ,  pu l s ing  /3 d r ives  it to  1 a n d  dr ives  a to  0. E a c h  s t a t e  c h a n g e  is 
p e r m a n e n t ,  a t  leas t  unt i l  the  next  pulse  is r e c e i v e d  a t  a o r / 3 .  W h e n  g a t e  G~ is on ,  it c o n n e c t s  nl to  

n2, a n d  it a l so  c o n n e c t s  n3 to  n4; w h e n  g a t e  G2 is on ,  it c o n n e c t s  m to  n~, a n d  it c o n n e c t s  n3 to  n2. 
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FIG. 3lb. A side view of EURISKO'S very compact  design for building the  same memory  cell in 
3-dimensional NMOS,  specifically by using one metal layer sandwiched between two substrate 
layers. Shaded regions represent  metal;  n stands for n-doped semiconductor  material;  c regions 
represent  channel  material  with thin oxide coatings; clear regions in the  middle (metal) layer represent  
insulator. By co-identifying the  left and r ightmost  columns,  after giving the device a 'half-twist'  in 
3-space, we have a design which is realizable on the surface of a M/Sbius strip, and implements  the 
memory  cell in a mere dozen 'tiles'. 

its functionality. Alas, the cell can be realized most efficiently on the surface of 
a Mrbius  strip, hence its commercial  future may be dim. It does serve to 
illustrate the potential  richness of this domain, as yet unexplored by human 
beings, and the potential  richness of the EURISKO approach.  One  of the most 
promising uses for programs which automatically glean heuristics is in fields 
which are just opening up, in which people have not yet mined many of the 
powerful heuristics. By now, several useful new concep t shave  originated from 
the device physics line of research with EURISKO, including a higher functional 
level of abstraction for describing circuits quite distinct from 'sticks' diagrams 
(involving terms like 'potential ly-connected-to '  and n-pole 'abstract  gates'). 

4.5.4. Results in heuristics 

EURISKO has synthesized many new heuristics using the techniques presented in 
Sections 4.1-4.4. Sometimes this has occurred as a by-product  of other activi- 
ties, during the course of working in some particular task domain. Additionally, 
EURmKO has f rom time to t ime chosen to focus on the domain of Heuretics 
explicitly for a while. Among  the new heuristics discovered so far by the 
program are: 

Several specific to gaming (such as, " In  Traveller,  prefer a rmor  to agility", or 
"In  designing a military force, go nearly but not quite to extremes").  

Several specific to mathematics  (such as, " I f  an inverse function is going to 
be used even once, then it 's probably worth it to search for a fast algorithm for 
computing it"). 
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Several specific to programming (such as, " I f  you can use E Q  instead of 
E Q U A L ,  do it to save t ime",  or "Sometimes 'and '  means 'do in sequence' ,  and 
sometimes it means 'do simultaneously',  and those two cases are important 
to distinguish before you consider generalizing or specializing a piece of 
code").  

A few specific to heuristics itself (such as, " I f  you ' re  generalizing a heuristic, 
then avoid changing the main connective of the premises of the heuristic from 
'and '  to 'or ' ;  it is a generalization but it leads to terrible results such as infinite 
loops and LISP errors").  

Many additional heuristics have been created synergistically, with credit to 
both EURISKO and one or more humans working with that program. For 
example: 
-In  Traveller, having a small agile ship might give you an infinite ' restart '  

capability for the battle (this made the difference between 1st and 2nd place 
at the tournament).  

-When  designing three-dimensional VLSI devices, in alternating layers of 
metal and semiconductor material,  have the 'wires'  run Nor th-South  in odd 
metal  layers, and Eas t -West  in even metal  layers (amusingly, this is an 
analogue of an ancient T F L  heuristic). 

- W h e n  folding a 2-dimensional NMOS design into 3 dimensions, look for two 
gates whose controls are identical, and implement  them as a single '2-pole '  
gate controlling regions both above and below it' (compare Figs. 31a and 31b 
to see how four transistors were replaced by only two gates). 

5. Conclusions 

The field of Heuretics was proposed as a promising one for AI  to investigate, 
one which may aid us in unders tanding--and constructing---expert systems. We 
began by defining what it meant  for something to be a scientific discipline, and 
showing that Heuretics met  these criteria. 

Heuretics asks "What  is the source of power of heuristics?", to which our 
first-order reply is: "Behave  as though APPROPRIATENEss(Action,Situation) were 
time-invariant and continuous in both variables." Heuristic search is adequate 
for modeling worlds which are observable (so heuristics can be formed), stable 
(so heuristics abstracted from past experiences will be useful in the future), and 
continuous (so that if A was (in)appropriate in S, then actions similar to A will 
be (in)appropriate in situations similar to S). Corollaries of this provide the 
justification for the use of analogy, generalization, and even for the utility of 
memory.  The central assumption was seen to be just t ha t - - an  assumption. I t 's  
often false in small ways, but nevertheless the central assumption has proven 
itself to be a useful fiction to be guided by. 

Using the metaphor  of APPROPRIAXENESS being a function, we considered 
graphing the power curves of a heuristic (the utility of that heuristic as a 
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function of task being worked on), and were able to see the ga ins- -and  
dangers----of specializing and generalizing heuristics to get new ones. Con- 
sideration of such curves led us to an algorithm for deciding in which order  to 
obey relevant heuristics, and suggested several specific new attributes worth 
measuring and recording for each heuristic (e.g., the sharpness with which it 
flips from useful to harmful, as one leaves its domain of relevance). 

By arranging all the world 's  heuristics (well, at least all of AM'S, and later 
several more  from chess, biological evolution, naval fleet design, device phy- 
sics, plumbing, game-playing, and oil spills) into a hierarchy using the relation 
'More-Genera l -Than ' ,  we were surprised to find that hierarchy very shallow, 
thereby implying that analogy (a side-to-side operation) would be more useful a 
method of generating new heuristic than would specialization or generalization 
(up-and-down operations). By noting that both Utility and Task have several 
dimensions, most of this 'shallow-tree '  problem went away. By noting that two 
heuristics can have many important  relations connecting them, of which 
More-Genera l -Than  is just one example,  the shallowness problem turns into a 
powerful heuristic: if a new heuristic h is to differ from an old one along some 
dimension (relation) r, then use analogy to get h if r 's  graph graph is shallow, 
and use generalization/specialization if r's graph is deep. We also discussed 
some useful slots which heuristics can have, and a principled method for 
generating new kinds of slots. 

Heuretics asks " H o w  do new heuristics originate?",  to which we recursively 
reply: "By generalizing other  heuristics, abstracting from data, specializing 
other heuristics, finding analogies to other  heuristics and to processes whereby 
other  heuristics were formed."  EURmKO demonstra ted that these processes 
themselves can be guided adequately by a corpus of heuristics, that there is no 
need to distinguish such 'meta-heuristics '  f rom 'object-level heuristics', a n d - -  
surprisingly to us - - tha t  analogy has as much potential  as generalization or 
specialization. In more  detail: AM demonstra ted the adequacy of the heuristic 
search paradigm to guide a program in formulating useful new concepts, 
gathering data about  them, and noticing relationships connecting them. 
However ,  as the body of domain-specific facts grew, the old set of heuristics 
became less and less relevant,  less and less capable of guiding the discovery 
process effectively. New heuristics must also be discovered. 

EURISKO was developed as the successor system, one whose field of expertise 
was not mathematics,  or diagnosis, but ra ther  Heuretics.  That  is, EUaISKO had a 
corpus of heuristics which, as they ran, gathered data about their own running, 
and synthesized new members  of that corpus (and modified old ones). As 
expected, this process was very slow and explosive. By taking the four best (in 
EURISKO'S judgment)  synthesized heuristics, and rerunning the program from 
scratch, almost an order  of magnitude improvement  in performance  was 
obtained (a factor 7 in the number  of tasks executed, a factor of 8 in the 
number  of losing heuristics synthesized, a factor of 4 in the cpu t ime involved, 
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and a factor of 9 in the storage cells used). The explosive process of synthesiz- 
ing heuristics was made feasible only by having ' the right representat ion' .  
EURISKO, like AM, used a schematized representation, so the right representation 
meant having a large repertoire of very useful kinds of slots. 

We saw how, in EURISKO, heuristics led to the development  of useful new 
kinds of slots, and to improved representations of knowledge. Note that the 
same representation AM used for attributes and values of object-level math 
concepts was also used to represent heuristics and even to represent represen- 
tation. E.g., Primes (a set of numbers),  General izeRarePredicate  (a heuristic), 
General izeRareHeuris t ic  (a meta-heuristic), and DefinedUsing (a represen- 
tation concept) are all represented adequately as concepts (units with slots 
having values). Since meta-heuristics are not distinguished from heuristics, a 
single interpreter of necessity runs both types of rules, and is itself represented 
as a collection of units (and dynamically redefinable). While meta-heuristics 
could be tagged to distinguish them from heuristics, the utility of doing so rests 
on the existence of rules which genuinely treat them differently s o m e h o w - - a n d  
few such rules have to date been encountered. Finally, we surveyed some 
recent results obtained by running EURISKO in several different domains outside 
mathematics,  namely: wargames, programming,  and circuit design. 

To advance the Heuristics research programme,  much more must be known 
about analogy, and more complete theories of heuristics and of representation 
must exist. Toward that goal we must obtain more empirical results from 
programs trying to find useful new domain-specific heuristics and represen- 
tations. 
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